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Cellular stress-induced up-regulation of FMRP
promotes cell survival by modulating PI3K-Akt
phosphorylation cascades
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Abstract

Background: Fragile X syndrome (FXS), the most commonly inherited mental retardation and single gene cause of
autistic spectrum disorder, occurs when the Fmr1 gene is mutated. The product of Fmr1, fragile X linked mental
retardation protein (FMRP) is widely expressed in HeLa cells, however the roles of FMRP within HeLa cells were not
elucidated, yet. Interacting with a diverse range of mRNAs related to cellular survival regulatory signals,
understanding the functions of FMRP in cellular context would provide better insights into the role of this
interesting protein in FXS. Using HeLa cells treated with etoposide as a model, we tried to determine whether
FMRP could play a role in cell survival.

Methods: Apoptotic cell death was induced by etoposide treatment on Hela cells. After we transiently modulated
FMRP expression (silencing or enhancing) by using molecular biotechnological methods such as small hairpin RNA
virus-induced knock down and overexpression using transfection with FMRP expression vectors, cellular viability
was measured using propidium iodide staining, TUNEL staining, and FACS analysis along with the level of
activation of PI3K-Akt pathway by Western blot. Expression level of FMRP and apoptotic regulator BcL-xL was
analyzed by Western blot, RT-PCR and immunocytochemistry.

Results: An increased FMRP expression was measured in etoposide-treated HeLa cells, which was induced by PI3K-
Akt activation. Without FMRP expression, cellular defence mechanism via PI3K-Akt-Bcl-xL was weakened and
resulted in an augmented cell death by etoposide. In addition, FMRP over-expression lead to the activation of PI3K-
Akt signalling pathway as well as increased FMRP and BcL-xL expression, which culminates with the increased cell
survival in etoposide-treated HeLa cells.

Conclusions: Taken together, these results suggest that FMRP expression is an essential part of cellular survival
mechanisms through the modulation of PI3K, Akt, and Bcl-xL signal pathways.

Background
Fragile X syndrome (FXS) is a well known neurodeve-
lopmental disorder caused by loss of fragile X linked
mental retardation protein (FMRP) which is encoded by
Fmr1 gene [1]. FXS patients typically show a wide spec-
trum of cognitive and behavioral problems such as
attention deficit, anxiety and mood disorder, increased
risk of seizures, autistic spectrum behaviors, and mental
retardation [1]. FMRP is expressed in many tissues

including testis, placenta, and brain [2,3] and in a variety
of cell types including HeLa [4].
FMRP is a RNA binding protein, which regulates

translation of target mRNAs. A wide range of potential
target mRNAs have been suggested, most of which have
been correlated to the regulation of synaptic function as
well as neuronal development (for a review, see [5,6]).
Interestingly, many mRNAs encoding a diverse array of
proteins having no known link to neuronal development
and synaptogenesis were also suggested including phos-
phoinositide 3 kinase (PI3K) [7], amyloid precursor pro-
tein (APP) [8], and Bcl-2 interacting protein (Bnip) [9].
In addition, FMRP is found both in the nucleus and
cytoplasm and shuttles between the two compartment
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depending on the cellular context [10,11], suggesting the
cellular function of FMRP might be much broader than
previously thought.
Recently, in a study using a Danish cohort of 223

patients with fragile X syndrome, Schultz-Pedersen and
colleagues have reported that standardized incidence
ratio (SIR) of cancer was reduced to 0.28 [12] compared
with cancer rates in the general population, which can
not be attributed to the compounding factors such as
differences in mortality rate, neglected symptoms or fail-
ure in diagnosis etc. Although no clear mechanism of
decreased cancer rates has been suggested in that parti-
cular study, it is one intriguing hypothesis that the lack
of FMRP in FXS patients may alter cellular apoptosis/
survival mechanism, thereby decreasing cancer incidence
in the long run. In addition, investigations of prolifera-
tive stem cells from FMRP deficient mice or postmor-
tem brain showed an increased number of TUNEL
positive cells [13,14], which might suggest that the con-
trol of cellular survival mechanism is defective in FMRP
deficient cells.
Regulation of Ras-PI3K-Akt signaling pathway is one

of the essential regulators of cellular survival/apoptosis
control and activated Ras-PI3K-Akt signaling was
regarded as a hallmark of many cancer cells [15,16],
which are characterized by unregulated apoptosis and
prolonged survival. Akt/PKB is a serine/threonine pro-
tein kinase that plays a key role in multiple cellular pro-
cesses such as cell proliferation, apoptosis, and
transcription [17]. Generally, Akt increases cellular sur-
vival rates both directly and indirectly by mechanism
involving the regulation of the level of (anti)apoptotic
proteins such as Bcl-2 and Bcl-xL [17,18]. Collectively,
Akt signaling pathway seems to be one of major media-
tors of cellular survival/death determinant. Interestingly
enough, impaired PI3K-Akt activation in FXS was
reported by Hu et al. [19], even though synaptic stimu-
lation can induce upregulation of Ras activity.
In this study, using HeLa cells as a model system,

which have been used for the elucidation of essential
cellular functions of FMRP such as the association of
FMRP in translating polysomes [20,21], biochemical
interaction with the components of microRNA pathways
[4,22,23] as well as translational inhibition of target
mRNAs by FMRP [24,25], we tried to investigate the
role of FMRP-PI3K-Akt pathway in the regulation of
cell survival in the condition of etoposide-induced
apoptosis.
Here we show that HeLa cells exposed to the cell

death inducer etoposide up-regulate FMRP. This
increase in FMRP synthesis was synchronized with the
phosphorylation of Akt, a known cell survival-related
signaling molecule. Indeed, cell survival was compro-
mised when FMRP levels were reduced and was

prolonged in cells over-expressing FMRP. Therefore, we
provide the first experimental evidence that induction of
FMRP plays a protective role against the stressed status
of the cells.

Methods
Materials
Dulbecco’s Modified Eagle’s medium (DMEM), fetal
bovine serum (FBS) and penicillin/streptomycin were
purchased from Gibco-BRL (Grand Island, NY). The
antibodies for Western blotting, p-PI3K, PI3K, p-Akt,
and Akt were purchased from Cell Signaling (Beverly,
MA). b-actin and Bcl-xL antibodies were from Santa
Cruz Biotechnology (Santa Cruz, CA) and FMRP anti-
body was from Millipore (Billerica, MA). ECL™ Wes-
tern blotting detection reagents were obtained from
Amersham Life Science (Arlington Heights, IL). Trizol R

reagents were purchased from Invitrogen (Carlsbad,
CA). Small hairpin RNA virus (Sh RNA virus) associated
reagents were all purchased from Sigma (St. Louis, MO,
USA). SYBR green mix was obtained from Fermentas
(Glen Burnie, Maryland) and TUNEL assay kit was
obtained from Millipore (Billerica, MA). Transfection
reagents were purchased from Invitrogen (Carlsbad, CA)
and Roche (Roche Diagnostics Corp., Indianapolis, IN).
All other reagents were purchased from Sigma (St.
Louis, MO, USA). Dr. Darnell kindly provided eGFP-
empty vector and eGFP-tagged FMRP vector.

Cell culture and treatment
HeLa cells were cultured in DMEM containing 10%
heat-inactivated FBS, 100 units/ml penicillin and
100 μg/ml streptomycin for 2 days before treatment.
Apoptosis-inducing conditions by etoposide were deter-
mined from preliminary experiments similar to those
shown in Figure 1-A. Unless otherwise indicated, cells
were challenged by treatment with 20 μM of etoposide
for the indicated time period. The Akt inhibitor
LY294002 (10 μM), Akt inhibitor IV (5 μM), and inhibi-
tor VIII (10 μM) were added 1 hr prior to etoposide
treatment. Before treatment, cells were washed and fresh
serum free media was added. All cells were cultured at
37°C in humidified incubator containing 5% CO2.

MTT assay
Cell viability was determined by MTT assay. After treat-
ment, cells were incubated with the MTT solution (final
concentration, 5 mg/ml) for 30 min. The dark blue for-
mazan crystals formed in intact cells were solubilized
with lysis buffer (100% ethanol) and the absorbance of
samples was read at 540-595 nm with a microplate
reader (Molecular Devices, Sunnylvale, CA, USA). Data
were expressed as the percentage (%) of control
(untreated cells).
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Western blot analysis
After washing with PBS two times, cells were lysed with
2X sample buffer (4% w/v SDS, 20% glycerol, 200 mM
DTT, 0.1 M Tris-HCl, pH 6.8, and 0.02% bromophenol
blue) and heated at 90°C for 10 min. The samples were
then run through a 10% SDS-PAGE and transferred to
nitrocellulose (NC) membrane. The NC membrane was
blocked with 1 μg/ml polyvinyl alcohol (PVA) for
30 min at room temperature and incubated overnight at
4°C with the appropriate primary antibodies which were
diluted at 1:5000 in 5% skim milk (Santa Cruz Biotech-
nology Inc., Santa Cruz, CA). After washing three times
with PBS containing 0.2% Tween-20 (PBS-T), NC mem-
branes were incubated with peroxidase-conjugated sec-
ondary antibodies for 2 hr at room temperature. After
another three times washings, membranes were detected

by enhanced chemiluminescence (Amersham, Buckin-
ghampshire, UK).

Reverse transcription polymerase chain reaction (RT-PCR)
Cells were washed with PBS and lysed using Trizol
reagent (Invitrogen, Carlsbad, CA, USA) and extracted
to total RNA according to the manufacturer’s recom-
mendation. 2 μg of total RNA was converted to cDNA
by Maxime RT PreMix Kit (iNtRON Biotechnology,
Seoul) and the amplification was performed using Max-
ime PCR premix Kit (iNtRON Biotechnology, Seoul).
The procedure was consisted of 26 cycles (94°C, 1 min;
60°C, 1 min; 72°C, 1 min and continued by a final
extension step at 72°C for 10 min) with the primers for
FMRP (accession number NM_002024.4) and glyceral-
dehyde 3-phosphate dehydrogenase (GAPDH, accession
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Figure 1 Etoposide (ETO)-induced cell death and FMRP induction in HeLa cells. (A) HeLa cells were treated with 1-200 μM ETO for 3 hr,
then cell viability was analyzed by MTT assay. (B) Fmr1 mRNA level was analyzed by reverse transcription polymerase chain reaction (RT-PCR)
procedures. For comparison, PCR reaction for housekeeping gene, GAPDH, was also performed. (C) The increase of FMRP protein was analyzed
by Western blot and b-actin was used as a loading control. (D) ETO-induced expression of FMRP was visualized by immunocytochemistry. Blue
fluorescence represents DAPI staining and green fluorescence means FMRP. Each graph represents quantification of RT-PCR and Western blot
band intensity, respectively. Data represent mean ± S.E.M. * significantly different as compared with control and # significantly different as
compared with ETO alone treatment (p < 0.01, n = 4).
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number M17701). The following primers were used for
amplification reactions:

for FMRP,

forward primer: 5’-TTG GTA CCT TGC ACA CAT
CA-3’
reverse primer: 5’-AAG TTA GCG CCT TGC TGA

AT-3’

for GAPDH,

forward primer: 5’-TCC CTC AAG ATT GTC AGC
AA-3’
reverse primer: 5’-AGA TCC ACA ACG GAT ACA

TT-3’
The expected size of the amplified DNA fragments

was 486 base pairs for FMRP and 308 base pairs for
GAPDH.

Real time RT-PCR
Cells were extracted and mRNA converted to cDNA as
above (RT-PCR). cDNAs were diluted at 1:10 in double
distilled water and SYBR green mix. The PCR protocol
was: 95°C for 30 sec, 60°C for 8 sec, 72°C for 15 sec,
and continued by a final step at 4°C for 10 sec. After all
the reactions were finished, data was compiled automa-
tically by the equipment (Roche, Indianapolis, IN, USA).

Immunocytochemistry (ICC)
HeLa cells on pre-coated cover glasses (Fisher Scientific,
PA) were treated appropriately. After then, samples were
washed twice and fixed with ice cold methanol (-20°C,
0.5 hr). For permeabilization, samples were incubated with
permeabilization buffer (0.3% Triton X-100 in PBS) at
room temperature for 15 min followed by blocking pro-
cess using blocking buffer (1% BSA, 5% FBS in PBS). After
30 min, samples were incubated at 4°C overnight with an
appropriate primary antibody (1:500 diluted at blocking
buffer). Next day, after twice washing with diluted block-
ing buffer (1:10 diluted at PBS), samples were incubated
with an appropriate secondary antibody (TMRE or FITC
conjugated, 1:500 diluted at blocking buffer) at room tem-
perature for 2 hr. Followed with three times of washing,
samples were mounted using Vectashield (Vector labora-
tories, Burlingame, CA) and visualized with a fluorescence
microscope (TCS-SP, Leica, Heidelberg, Germany) in ran-
domly selected 5 areas.

Small hairpin RNA (shRNA) virus preparation and
transduction
(1) shRNA virus preparation
FMRP shRNA transfer vector were purchased as gly-
cerol stocks (Sigma, SHGLY TRCN0000059759) and

prepared using maxi-prep kit (QIAGEN, Valencia, CA,
USA). After preparation, shRNA vector, packaging vec-
tor (Sigma) and FuGENE 6 (Roche) were mixed accord-
ing to the manufacturer’s recommendation and
incubated with 293T cells for 24 hr. Next day, cells
were replaced with fresh DMEM containing 10% FBS
and incubated for another 24 hr. After 48 hr post-
transfection, viral particles were collected by carefully
removing the media and placing it in a collection tube.
And the titer of viral particles was immediately deter-
mined by performing the HIV p24 Western blot assay
and stored at - 70°C. The resulting shFmr1 virus targets
Fmr1 gene (NM_002024) and the sequence composed
of sense, loop, and antisense strands as follows:
CCGGGCGTTTGGAGAGATTACAAATCTCGAG-

ATTTGTAATCTCTCCAAACGCTTTTT
As a control, non-target shRNA control vector was

used (Sigma, SHC002) and its stem and loop structure
is as follows:
CCGGCAACAAGATGAAGAGCACCAACTCGAG-

TTGGTGCTCTTCATCTTGTTGTTTTT
(2) in vitro shRNA virus transduction
shRNA virus was used at 50 multiplicity of infection
(MOI) for transduction. Briefly, cells were incubated
with shRNA virus for 48 hr and replaced with fresh
media. After recovery, cells were treated with etoposide
as described in methods.

Transfection of eGFP-tagged FMRP vector
Cells were transfected using Lipofectamine 2000 (Invi-
trogen, Carlsbad, CA) as suggested by the manufacturer
with slight modification. A transfection cocktail consist-
ing of 0.4 μg DNA and 2 μl lipofectmine was added to
cells grown in 24 well plates containing opti-MEM
media (GIBCO BRL, Grand Island, NY, USA). After
6 hr, the transfection cocktail was replaced with proper
culture media and incubated for another 24 hr, followed
by fresh media containing 0.4 μg/ml of G418. G418
media was replaced every 4 days to select cells expres-
sing either eGFP or eGFP-FMRP. Cells were visualized
using a fluorescence microscope as above (Leica, Heidel-
berg, Germany).

Propidium iodide (PI) staining
HeLa cells plated on cover glass were treated as indi-
cated above (20 μM of etoposide for 3 hr). After treat-
ment, cells were incubated with propidium iodide (PI,
10 μg/ml, RNase 10 μg/ml) for 1 hr at room tempera-
ture followed by fixation using ice cold methanol for
30 min at -20°C and mounted using a Vectashield (Vec-
tor laboratories, Burlingame, CA). PI positive apoptotic
cells were manually counted blind to experimental con-
ditions in five visual fields which were chosen at random
per each sample [26].
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TUNEL assay
After treatment, cells were fixed using 4% paraformalde-
hyde in PBS (pH 7.4) for 10 min at room temperature.
Then samples were permeabilized by pre-cooled ethanol:
acetic acid (2:1) for 5 min at -20°C. After two times
wash, equilibration buffer was applied directly on the
specimen and incubated for 10 sec at room temperature.
Working strength TdT enzyme (70% reaction buffer
+30% TdT enzyme) was added immediately and incu-
bated in a humidified chamber at 37°C for 1 hr. The
reaction was stopped for 10 min and samples were incu-
bated with anti-digoxigenin-conjugated rhodamine in a
humidified chamber for 30 min at room temperature.
Specimens were mounted under a glass coverslip and
observed as above.

Fluocytometry (FACS) analysis
Following treatment, cells were harvested with Tris-
EDTA buffer and centrifuged 13,000 rpm for 3 min at
4°C. Cells were suspended with 1 ml PBS and PI was
added (2.5 μg/ml). Then samples were analyzed using
FACS apparatus (BD Biosciences, San Jose, CA) for
apoptotic cells.

Data analysis
Data are expressed as the mean ± standard error of
mean (S.E.M.) and analyzed for statistical significance by
using one way analysis of variance (ANOVA) followed
by Newman-Keuls test as a post hoc test and a p value <
0.01 was considered significant.

Results
Etoposide induced cell death and an increase in FMRP
expression
To induce cell death in HeLa cells we used the topoi-
somerase II inhibitor etoposide. Preliminary experiments
showed that other stimuli such as hydrogen peroxide
and TNF-a□ produced similar cell death (data not
shown) but etoposide gave the most consistent and
robust response. Etoposide induced both concentration
(Figure 1A) and time (data not shown) dependent cell
death in HeLa cells as determined by MTT analysis. At
20 μM, etoposide also induced an increase in the steady
state level of mRNA encoding FMRP (Figure 1B) as well
as an increase in protein level of FMRP (Figure 1C-D)
suggesting that etoposide treatment results in a tran-
scriptional up-regulation of Fmr1 mRNA that leads to
increased FMRP protein level.
In this study, the time window of Fmr1 mRNA and

FMRP protein induction was 1-6 hr. To more specifi-
cally address the exact mechanism of protein induction
in our system it might be needed to investigate earlier
time points such as 15 and 30 min. Fmr1 mRNA is
known for its translational control of protein synthesis

by a rapid translation of pre-existing mRNA responding
to stresses [27,28]. For example, after 15 min of light
exposure, visual cortical FMRP expression was peaked
at 30 min implying a post-transcriptional regulation of
protein synthesis in this system [29]. Lim et al. sug-
gested that the regulation of FMRP expression is highly
modality-specific because either transcriptional or post-
transcriptional mechanisms may modulate FMRP pro-
tein levels. Whether the translational control of Fmr1
mRNA may happen in HeLa cells at earlier time points
after etoposide treatment may require additional experi-
ments including the use of specific transcriptional and
translational inhibitors.

Akt phosphorylation is necessary for up-regulation of
FMRP by etoposide
Akt (PKB) protein kinase is a critical regulator of many
cellular functions including cell survival [30]. Therefore,
we next investigated the activation state of the Akt sig-
naling pathway after etoposide treatment, as indicated
by the phosphorylation (activation) of PI3K and Akt.
Etoposide induced an increase in phosphorylation of
both PI3K (Figure 2A) and Akt (Figure 2B) within 1 hr
of treatment. Since the PI3K-Akt pathway is a well
known cellular pro-survival pathway [31], it was not sur-
prising that inhibition of Akt phosphorylation by
LY294002 increased cell death (Figure 2D) as well as the
decrease in the level of Bcl-xL expression (Figure 2E)
following etoposide treatment. However, interestingly,
the up-regulation of FMRP protein by etoposide was
also completely blocked by pretreatment with LY294002
(Figure 2C). This suggests that Akt phosphorylation is
required for the induction of FMRP protein following
etoposide stimulation.
To verify the role of Akt pathway in the regulation of

FMRP induction and cell survival in etoposide treated
cells, we used another inhibitor of Akt such as Akt inhibi-
tor VIII (sc-202048, Santa Cruz Biotechnology, CA, USA)
before etoposide treatment (Figure 2F). Akt inhibitor VIII
reduced etoposide-induced phosphorylation of Akt as well
as the induction of FMRP and Bcl-xL expression in a con-
centration dependent manner (Figure 2F, top panel). Akt
inhibitor IV (sc-203809, Santa Cruz Biotechnology, CA,
USA) also showed similar results (data not shown). Cellu-
lar viability was also decreased in Akt inhibitor VIII trea-
ted cells (Figure 2F, bottle panel). These results suggest
that PI3K-Akt signaling pathway plays essential role in the
control of FMRP-Bcl-xL expression and cell survival in
etoposide treated HeLa cells.

Loss of FMRP protein leads to an increase in etoposide-
induced cell death
To investigate the role of FMRP in the regulation of cell
death, we first adopted loss of function experiments
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using shFmr1 viral transduction. After shFmr1 lentiviral
transduction, the expression of both Fmr1 mRNA
(Figure 3A) and FMRP (Figure 3B) was almost comple-
tely eliminated in HeLa cells. When we analyzed cell
death using propidium iodide (PI) staining, cells trans-
duced by shFmr1 virus (FV) but not control virus (sh
non-targetd control virus, CV) showed increased cell
death and also augmented etoposide-induced cell death
at 3 hr after etoposide treatment (Figure 3C-D). To con-
firm PI staining results, apoptosis was further analyzed
by using either TUNEL staining (Figure 3E-F) or FACS
analysis (Figure 3G-H). The TUNEL positive cell num-
ber was increased 3.46 folds in basal FV compared to
CV and etoposide treatment further increased the num-
bers of apoptotic HeLa cells (Figure 3E-F). In FACS ana-
lysis, the percentage of PI-positive apoptotic cell was
much higher in FMRP knock-down condition (FV) both
in basal (CV: 3.43 ± 0.57 and FV: 8.11 ± 1.99%) and eto-
poside-stimulated conditions (CV: 6.82 ± 0.62, and FV:
49.30 ± 10.65%) (Figure 3G-H).
To elucidate the mechanisms of cell survival regula-

tion via FMRP, we next investigated the cellular signal-
ing cascades (PI3K-Akt-Bcl-xL) in HeLa cells with
artificially modulated FMRP level. The knock down of
FMRP expression inhibited the ETO-induced activation
of PI3K-Akt signaling cascades as compared to control
condition (Figure 4A-B). Interestingly, etoposide-
induced expression of Bcl-xL, a well known anti-
apoptotic regulator, was also decreased 3.49 fold in
FMRP knock down condition (Figure 4C). Taken
together shFmr1 viral transduction showed an increase
in apoptotic cell death after silencing of FMRP expres-
sion, which is resulted from deteriorated Akt signaling
cascades (PI3K-Akt-Bcl-xL).

Over-expression of FMRP protects HeLa cells against
etoposide-induced apoptotic cell death
To unequivocally demonstrate the role of FMRP on cell
survival, we next over-expressed wild-type FMRP by
using HeLa cells stably transfected with eGFP-tagged
FMRP. The construction and use of these constructs
were previously reported by the Darnell laboratory [32].
To confirm the transfection of eGFP-FMRP, we com-
pared the level of Fmr1 mRNA (Figure 5A) and FMRP
protein (Figure 5B) of these cells to untransfected HeLa
cells by RT-PCR and Western blot, respectively. On
average, cells stably transfected with eGFP-FMRP
resulted in a 553.14% increase in FMRP protein over
untransfected cells. Apoptosis, as determined by PI
fluorescence staining, showed that cells over-expressing
FMRP were less sensitive to etoposide-induced cell
death (Figure 5C-D). Compared with eGFP-FMRP over-
expressing cells, eGFP-empty vector expressing cells
showed 3.76 ± 1.12 fold more PI positive cells,

suggesting over-expression of FMRP decreased etopo-
side-induced cell death. This result was confirmed by
quantifying TUNEL staining at 3 hr following etoposide
treatment (Figure 5E-F). Similar protective effects of the
over-expression of FMRP on ETO-induced cell death
were also observed in TUNEL staining experiments
(Figure 5E-F). Taken together, these data indicate that
induction of FMRP has a protective role in the cell and
delays the onset of apoptosis by etoposide on HeLa cells.
Also activation of PI3K-Akt-Bcl-xL within cells har-

boring eGFP-FMRP vector was reinforced by etoposide
treatment compared to eGFP-empty vector containing
cells (Figure 6A-B). Also Bcl-xL induction was strength-
ened in case of FMRP over-expressed cells by 1.78 times
(Figure 6C).
To validate the involvement of Akt activation in cell

protection from etoposide-mediated apoptosis through
the induction of FMRP, we used a specific Akt inhibitor
VIII before etoposide treatment in eGFP-empty vector
and eGFP-FMRP transfected HeLa cells.
As shown in figure 6D, etoposide-induced Akt phos-

phorylation was inhibited in a concentration dependent
manner even in cells transfected with eGFP-FMRP. As
expected, the increased expression of Bcl-xL by eGFP-
FMRP was abolished by the treatment of Akt inhibitor
VIII (Figure 6D), suggesting the essential role of Akt
pathway in FMRP induced upregulation of Bcl-xL.
In addition, the decreased etoposide-induced apoptotic

cell death in eGFP-FMRP transfected cells compared
with eGFP transfected cells was prevented by Akt inhi-
bitor VIII as determined by the quantification of the
number of PI positive cell (Figure 7). Altogether, these
results imply that Akt activation is an essential mediator
of FMRP-mediated cellular survival response in stressed
condition in HeLa cells.
Considering these results, we assume FMRP activates

Akt signaling pathway, alleviates cellular stress, and ulti-
mately, promotes cellular survival exposed to etoposide
on HeLa cells.

Discussion
Until now, FMRP has been implicated in various neuro-
logical diseases such as genetic FXS, autism, epilepsy,
and attention deficit/hyperactivity disorder (ADHD). As
such, research efforts have been focused on understand-
ing FMRP function during development and the regula-
tion of synaptic protein expression. However, even in
these relatively intensely studied fields the exact regula-
tory mechanism(s) and function(s) of FMRP have yet to
be fully elucidated.
In the work presented here, we describe for the first

time a novel function for FMRP; that of a pro-survival
protein. Using loss- and gain- of functional analysis, we
determined that FMRP promotes cell survival under
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control conditions as well as upon the induction of cel-
lular stress by the application of etoposide. Although the
physiological significance of the present finding is not
clear yet, the pro-survival nature of FMRP may suggest
a role for FMRP being highly conserved and existence
in several tissues. Interestingly, Fmr4, a non-coding

RNA transcript in the FMR family, markedly affected
human cell proliferation in vitro [33]. The knockdown
of Fmr4 using siRNAs resulted in alteration of the cell
cycle and increased apoptosis, while the over-expression
of Fmr4 caused an increase in cell proliferation [33]. In
that same study, a modest but significant decrease in
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proliferation of HeLa cells but not that of HEK 293T
cells was also observed after siRNA induced silencing of
Fmr1.
Also investigations from proliferative stem cells which

were deficient in FMRP expression showed an increased
number of TUNEL positive cells [13,14], which might
be suggestive of increased programmed cell death in
FMRP deficient cells [14].
FMRP has been linked to RNA interference silencing

complex (RISC), a master of mRNA translation regula-
tion, and shown to associate with the pool of mRNAs
that eventually aggregate in stress granules upon cellular
stress [34]. Indeed, Didiot reported that a loss of FMRP
alters stress granule formation in puromycin- or
arsenite-induced stress [34]. FMRP-containing mRNPs
are dynamic structures that oscillate between polyribo-
somes and cytoplasmic granules similar to stress gran-
ules that contain repressed mRNAs in several cell types
including HeLa [35]. The role of FMRP in stress granule
formation and its role in cell viability following etopo-
side treatment have not been examined yet, however we
feel these support our finding that FMRP plays a role in
cell survival and suggest the possible function that in
part may be mediated by harboring mRNAs in stress
granules to overcome the damage.
In FXS patients, impaired Ras-PI3K signaling [19,36]

and decreased cancer incident rate (0.28) [12] were
reported compared with normal subjects. These show that
a loss of FMRP results in a decrease in activated Ras-
PI3K-Akt signaling pathway and a dysregulation of mTOR
pathway, a well known target for FXS [37,38]. And our
data implicate Akt activation in the induction of FMRP as
a protective mechanism. In fact, many reported alteration
of PI3K, Akt, and GSK3-b phosphorylation status in cells
from FMRP knock-out patients and/or animals compared
to wild-type [19,39]. Slightly different from our results,
Gross suggested excess PI3K synthesis from FMRP knock-
out animals was mediated through altered metabotropic
glutamate receptor mediated control [40]. In addition,
p110 subunit of PI3K and its upstream activator PI3K
enhancer PIKE, two predicted targets of FMRP, are upre-
gulated in FMRP knock-out mice [37]. However, p85 sub-
unit of PI3K showed little or no changes in knock-out
mice although there is a slight decrease in phosphorylation
of PTEN at Ser380/Thr382/383, which may contribute to
the inhibition of PI3K activity. In addition, the PI3K activ-
ity in FMRP knock-out did not show further increase of
phosphorylation status exposed to DHPG (a selective
group I mGluRs agonist) treatment [39,41], suggesting the
aberration of stimulation-induced activation in FMRP
knock-out animals [39,42] as observed in the present
study. The discordance among groups including us may
be explained in different experimental conditions such as
origin, state, and stimulation conditions of cells.

FMRP also has been reported to be able to regulate
Bcl-2 family expression or activation [9]. Among them
Bcl-xL plays a pro-survival role against BAD actions
[43-45] and many attempted to modulate it for cure and
therapeutic means of cancer cell research [44,46]. In
accordance with those studies, we focused on Bcl-xL as
a molecular target of survival mechanism mediated by
FMRP on etoposide-stimulated HeLa cells. Interestingly,
FMRP controlled expression of Bcl-xL in etoposide-
stimulated HeLa cells, which might be regulated by
PI3K-Akt-mediated system (our data and [47]). Actually
Bcl-xL expression was controlled by actions of transcrip-
tion factors such as STAT, NF-kB, and FOXO family of
transcription factors and signaling pathways of activated
Ras, integrin, vitronectin, and hepatocyte growth factor
[48]. Attractive points are among them STAT protein
nuclear translocation [9], RAS, and integrin protein sig-
nal transduction [7], which were reported to be modu-
lated by FMRP expression. So it seems possible that
altered Bcl-xL expression in our study might be some-
how affected by the existence of FMRP. In most cases,
PI3K-Akt pathway delivers the pro-survival signal in
many cell types [49]. Growth factors and integrins acti-
vate Akt by phosphorylation at Ser473 and Thr308,
which leads to the modulation of Bad, caspase 9, and
transcription factors including forkhead family and NF-
kB [50]. Also Ramljak showed functional Akt activity was
necessary for Bcl-xL expression in a series of experiments
using dominant negative Akt vector and Akt inhibitor
(LY294002) in epithelial cells [50]. Without Akt activity,
cellular Bcl-xL expression was decreased significantly so
the authors suggested Akt activation was obligatory for
Bcl-xL regulation systems [50].
In etoposide-treated HeLa cells, regulation of apopto-

sis by Bcl-2 over-expression was reported [51]. Elliott
showed pro-apoptotic members of Bcl-2 family, Bax and
Bak expression was inhibited and also caspase was inac-
tivated by Bcl-2 over expression, which led to the inter-
ruption of cell death. Like Bcl-2, the data from the
present study may suggest that upregulation of Bcl-xL
by FMRP plays anti-apoptotic roles in ETO treated
HeLa cells.
In addition, our data suggested a possibility of a feed

forward relationship between FMRP expression and Akt
activation, in that FMRP was required, at least in part,
for Akt phosphorylation and then activated Akt further
promoted FMRP synthesis response in etoposide-
stimulated condition. To strengthen this, we observed a
decrease of FMRP levels in R25C transformed P19 cells
which harbor a single amino acid switch (arginine into
cysteine) in the 25th residue within Akt pleckstrin
homology (PH) domain necessary for activation (data
not shown). The role of Akt in the up-regulation of
FMRP and the action of FMRP in the PI3K-Akt pathway
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activation may underlie the strong regulatory effects of
FMRP in several physiological functions including
synaptic plasticity (previous studies) and cellular survival
(the present study).

Conclusions
FMRP is abundant in a wide range of cell types and
conserved through evolution; however, the exact role(s)
are poorly elucidated in most cell types with the excep-
tion of the role FMRP plays in the regulation of struc-
tural and functional synaptic plasticity. In this study, we
observed a robust FMRP induction after cell-death indu-
cing stimuli in HeLa cells. Adopting molecular biology
technology, we induced FMRP silencing and over-pro-
duction, which showed detrimental and protective
effects on cell viability, respectively, in both basal and
etoposide-stimulated condition. The pro-survival role of
FMRP may provide further insights into the role of
FMRP in the regulation of cellular apoptosis from
damaged as well as basal status.
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