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Abstract

Background: Sphingosylphosphorylcholine (SPC) acts as a potent lipid mediator and signaling molecule in various
cell types. In the present study, we investigated the effects of SPC on melanogenesis and SPC-modulated signaling
pathways related to melanin synthesis.

Methods: Melanin production was measured in Mel-Ab cells. A luciferase assay was used to detect transcriptional
activity of the MITF promoter. Western blot analysis was performed to examine SPC-induced signaling pathways.

Results: SPC produced significant hypopigmentation effects in a dose-dependent manner. It was found that SPC
induced not only activation of Akt but also stimulation of mTOR, a downstream mediator of the Akt signaling
pathway. Moreover, SPC decreased the levels of LC3 II, which is known to be regulated by mTOR. Treatment with
the mTOR inhibitor rapamycin eliminated decreases in melanin and LC3 II levels by SPC. Furthermore, we found
that the Akt inhibitor LY294002 restored SPC-mediated downregulation of LC3 II and inhibited the activation of
mTOR by SPC.

Conclusions: Our data suggest that the mTOR signaling pathway is involved in SPC-modulated melanin synthesis.
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Background
Melanin, a pigment found in hair, eyes, and skin, is pro-
duced by melanocytes and its synthesis is promoted by
various stimulators such as UV irradiation, hormones,
and cytokines [1-3]. At least 3 enzymes are required for
melanin synthesis. Tyrosinase catalyses the first 2 rate-
limiting steps of melanogenesis, whereas tyrosinase-
related protein 1 (TRP1) and TRP2 convert melanin
into different types. Microphthalmia-associated tran-
scription factor (MITF) is a critical factor in melanin
synthesis because it modulates the expression of tyrosi-
nase, TRP1, and TRP2 [4,5]. Thus, much attention has
been directed toward finding materials that regulate the
expression of MITF.

It has been reported that several signaling pathways
are involved in regulating melanin synthesis. The extra-
cellular signal-regulated kinase (ERK) signaling pathway
induces the inhibition of melanin synthesis in mouse
B16 melanoma cells [6]. The activation of ERK leads to
phosphorylation of MITF at serine 73, which results in
MITF ubiquitination and degradation [7-9]. Addition-
ally, LY294002, a specific inhibitor of the Akt pathway,
triggers melanogenesis in B16 cells [10]. Thus, the acti-
vation of Akt is implicated in modulating melanogenesis
[11].
Sphingolipids are known to function as key signaling

messengers in a variety of cellular processes such as cell
growth, differentiation, cell death, and cell movement
[12,13]. In recent years, many reports have shown that
sphingolipids are deeply involved in regulating melanin
synthesis. It has been reported that the sphingolipid
metabolites ceramide and sphingosine-1-phosphate inhi-
bit melanogenesis in melanocytes [9,14-16].
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Sphingosylphosphorylcholine (SPC), another sphingoli-
pid, is produced by the N-deacylation of sphingomyelin
and has been reported to act as a signaling molecule in
various biologic processes [17,18]. It was found that SPC
stimulates melanin synthesis in human melanocytes [19].
On the other hand, we reported that SPC reduces mela-
nogenesis via ERK activation in human and mouse mel-
anocytes [20,21]. To understand these conflicting
results, the molecular mechanisms of SPC responsible
for melanogenesis should be completely elucidated. In
the present study, we further examined the effects of
SPC on melanogenesis and SPC-modulated signaling
pathways in Mel-Ab cells.

Materials and methods
Reagents
SPC was purchased from Avanti Polar Lipids (Alabaster,
AL, USA); LY294002 and rapamycin were from Cell Sig-
naling Technology (Beverly, MA, USA). Fetal bovine
serum (FBS) was obtained from Hyclone (Logan, UT,
USA), and Complete™ protease inhibitor cocktail was
from Roche (Mannheim, Germany). Cholera toxin (CT),
12-O-tetradecanoylphorbol-13-acetate (TPA), Triton X-
100, Tris, b-mercaptoethanol, phenylmethylsulfonyl
fluoride, fatty acid-free bovine serum albumin (BSA),
synthetic melanin, a-MSH, and L-DOPA were all pur-
chased from Sigma (St. Louis, MO, USA). Antibodies
recognizing phosphorylated Akt (Ser473, no. 9271), total
Akt (no. 4691), phosphorylated mTOR (no. 2971), and
total mTOR (no. 2972) were obtained from Cell Signal-
ing Technology. Microphthalmia Ab-1 (C5, MS-771-P0)
was from NeoMarkers (Fremont, CA, USA), and anti-
actin (I-19) antibody was purchased from Santa Cruz
Biotechnology, Inc. (Santa Cruz, CA, USA).

Cell cultures
The Mel-Ab cell line is a mouse-derived spontaneously
immortalized melanocyte cell line that synthesizes large
quantities of melanin [22]. Mel-Ab cells were main-
tained in DMEM supplemented with 10% FBS, 100 nM
TPA, 1 nM CT, 50 μg/mL streptomycin, and 50 U/mL
penicillin at 37°C in 5% CO2. B16/F10 murine mela-
noma cells were cultured in DMEM supplemented with
10% FBS, 50 μg/mL streptomycin, and 50 U/mL penicil-
lin at 37°C in 5% CO2.

Cell viability assay
Cell viability was measured using a crystal violet assay.
After incubation with SPC for 24 h, the culture media
was removed. Mel-Ab cells were stained with 0.1% crys-
tal violet in 10% ethanol for 5 min at room temperature
then rinsed 4 times with distilled water. The crystal vio-
let retained by adherent cells was extracted with 95%
ethanol, and the absorbance was determined at 590 nm

using an ELISA reader (VERSAMax; Molecular Devices,
Sunnyvale, CA, USA).

Assessment of melanin contents and microscopy
Mel-Ab cells were incubated with SPC for 4 d, and
were observed under a phase contrast microscope
(Olympus Optical Co., Tokyo, Japan) and photo-
graphed using a DCM300 digital camera (Scopetek,
Inc., Hangzhou, China) supported by ScopePhoto soft-
ware (Scopetek, Inc.). The melanin contents of the
cells were analyzed as previously described [23] with
some modifications. Cell pellets were dissolved in 1
mL of 1 N NaOH at 100°C for 30 min and centrifuged
for 20 min at 16,000 × g. The optical densities (OD) of
the supernatants were assessed at 400 nm using an
ELISA reader. Standard curves were prepared with
synthetic melanin (0 - 300 μg/mL) in triplicate for
each experiment.

Tyrosinase activity
Tyrosinase activity was analyzed using the method
described by Busca et al. [10] with slight modification.
In brief, Mel-Ab cells were seeded in 6-well plates and
incubated with SPC for 4 d. The cells were washed
with ice-cold PBS, lysed with phosphate buffer (pH
6.8) containing 1% Triton X-100, and disrupted by
freezing and thawing. After quantifying the protein
levels of the lysate and adjusting the protein concen-
trations with lysis buffer, 90 μL of each lysate contain-
ing the same amount of protein was placed in each
well of a 96-well plate, and 10 μL of 10 mM L-DOPA
was then added to each well. The control wells con-
tained 90 μL of lysis buffer and 10 μL of 10 mM L-
DOPA. Following incubation at 37°C for 20 min, the
absorbance of each well was measured at 475 nm
using an ELISA reader.

Western blot analysis
Mel-Ab cells were lysed in cell lysis buffer containing
62.5 mM Tris-HCl (pH 6.8), 2% SDS, 5% b-mercap-
toethanol, 2 mM phenylmethylsulfonyl fluoride, pro-
tease inhibitor cocktail, 1 mM Na3VO4, 50 mM NaF,
and 10 mM EDTA. Proteins were separated by SDS-
polyacrylamide gel electrophoresis and blotted onto
PVDF membranes, which were then blocked with 5%
skim milk in Tris-buffered saline containing 0.05%
Tween 20. The blots were incubated with the appro-
priate primary antibodies at a dilution of 1:1000, and
then further incubated with horseradish peroxidase-
conjugated secondary antibody. The blots were devel-
oped by a chemiluminescent substrate (Pierce, Rock-
ford, IL, USA). The images of the membranes were
obtained using a LAS-1000 lumino-image analyzer
(Fuji Film, Tokyo, Japan).
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Transfection and luciferase assay
B16/F10 melanoma cells were cultured in 60 mm dishes
and transfected using the GenePORTER transfection
reagent according to the manufacturer’s recommenda-
tions (Gene Therapy Systems, San Diego, CA, USA).
The luciferase reporter plasmid (pMITF) which contains
the fragment of the mouse MITF promoter (pMI;
-2135/+136) in pGL2B vector was kindly provided by
Dr. R. Ballotti (Nice, France) [24]. To examine the
effects of SPC, cells were transfected with 2 μg per well
of the reporter plasmid and 1 μg of pSV-b-galactosidase
vector (Promega, Madison, WI, USA) as a control for
transfection efficiency variability. After transfection, cells
were treated with SPC for 24 h in the absence or pre-
sence of a-MSH and then, the cells were processed
using a Luciferase Assay Kit (Applied Biosystems, Bed-
ford, MA, USA). Soluble extracts were analyzed for luci-
ferase and b-galactosidase activities.

Statistical analysis
The statistical significance of the differences between
groups was assessed by analysis of variance (ANOVA),

followed by the Student’s t-test. P values < 0.01 were
considered significant.

Results
Effect of SPC on Mel-Ab cell viability
The effect of SPC on Mel-Ab cell viability was deter-
mined using a crystal violet assay. Mel-Ab cells were
treated with SPC at concentrations of 0.1-20 μM. Treat-
ment of SPC exhibited no effects on the viability of
Mel-Ab cells over a concentration range of 0.1-10 μM,
indicating that SPC was not cytotoxic to Mel-Ab cells at
a concentration of 0.1-10 μM (Figure 1A).

Effects of SPC on melanin synthesis and tyrosinase
activity in Mel-Ab cells
We previously reported that SPC suppresses melanin
production in normal human melanocytes [20]. To
examine the effect of SPC on melanogenesis in Mel-Ab
cells, cells were treated with SPC at concentrations of
0.1-10 μM. Following SPC treatment for 4 d, the cells
were observed under a phase contrast microscope. As
shown in Figure 1B, SPC-treated Mel-Ab cells showed a
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Figure 1 Effects of SPC on melanogenesis in Mel-Ab cells. (A) Cells were treated with SPC at various concentrations (0-20 μM) for 24 h and cell
viability was determined using a crystal violet assay. (B) Cells were incubated with 0-10 μM SPC for 4 d, and phase contrast microscopy photographs
were obtained using a digital video camera. Melanin contents (C) and tyrosine activity (D) were analyzed as described in ‘Materials and Methods’. Data
represent the mean ± SD of triplicate assays expressed as percentages of the control. **P < 0.01 compared to the untreated control.
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reduction in melanin pigmentation in a dose-dependent
manner. Moreover, SPC treatment significantly reduced
the melanin content of Mel-Ab cells (Figure 1C), indi-
cating that SPC induces significant hypopigmentation.
In addition, we examined tyrosinase activity in Mel-Ab
cells exposed to SPC and observed that SPC significantly
inhibited tyrosinase activity in a concentration-depen-
dent manner (Figure 1D).

SPC reduces MITF transcription and protein levels
Next, we examined whether SPC induces MITF downre-
gulation in Mel-Ab cells. As shown in Figure 2A, SPC
decreased melanocyte specific MITF (MITF-M) protein
levels in a dose-dependent manner in Mel-Ab cells. We
further investigated whether SPC regulates the expres-
sion of MITF by reducing transcription activity of the
MITF promoter. Treatment with SPC suppressed MITF
promoter activity induced by a-MSH in B16 melanoma
cells, indicating that SPC blocks the transcription of
MITF (Figure 2B).

The mTOR signaling pathway is involved in SPC-induced
hypopigmentation
We recently reported that SPC-induced Akt activation
blocks melanin synthesis in Mel-Ab cells [21]. Recent
studies have also demonstrated that Akt activates ser-
ine/threonine mTOR protein kinase [25]. Therefore, we
investigated whether SPC induces activation of mTOR.
As shown in Figure 3A, SPC induced not only Akt
phosphorylation but also mTOR phosphorylation.
Because mTOR is known to regulate the accumulation
of LC3 II [26], we examined the level of LC3 II after
SPC treatment. SPC-treated cells showed a continuous
reduction of LC3 II levels (Figure 3B). Because SPC trig-
gered the activation of mTOR (Figure 3A), cells were
incubated with SPC in the presence or absence of rapa-
mycin, a specific mTOR inhibitor. Addition of rapamy-
cin significantly abolished the inhibition of melanin
synthesis in SPC-treated cells (Figure 3C). Moreover,
rapamycin restored the production of LC3 II downregu-
lated by SPC (Figure 3D), indicating that SPC-induced
activation of mTOR was inhibited by rapamycin.
Because Akt is known to activate mTOR, cells were
treated with SPC in the presence or absence of
LY294002, a specific Akt pathway inhibitor. As shown
in Figure 4A, addition of LY294002 abrogated the
reduction of LC3 II levels in SPC-treated cells. It was
also found that LY294002 eliminated melanin synthesis
inhibition by SPC (Figure 4B). Moreover, LY294002
inhibited the Akt phosphorylation and suppressed
mTOR phosphorylation in SPC-treated cells (Figure 4C).
These results indicate that the Akt and mTOR signaling
pathways may be involved in SPC-modulated melanin
synthesis.

Discussion
Sphingolipids have been reported to regulate melanin
synthesis in mouse and human melanocytes [9,14,15]. In
the present study, we confirmed that SPC inhibits melanin
synthesis in mouse melanocytes. Moreover, our results
revealed that SPC treatment for 24 h suppressed the tran-
scription activity of MITF. However, we previously
reported that there is no change in the level of MITF
mRNA in Mel-Ab cells until 6 h after SPC treatment, but
MITF protein levels are reduced 24 h post-SPC treatment
[21]. Because the proteasome inhibitor MG132 mostly
prevents SPC-induced MITF expression downregulation,
we concluded that the reduced MITF levels were due to
MITF degradation. As mentioned, however, the
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Figure 2 SPC induces MITF downregulation in Mel-Ab cells. (A)
After serum starvation for 24 h, Mel-Ab cells were treated with 0-10
μM SPC for 3 h. Whole cell lysates were analyzed by Western
blotting with antibodies against MITF-M and actin (loading control).
(B) B16/F10 cells were transfected with 2 μg of luciferase reporter
plasmid plus 1 μg of the pSV-b-galactosidase control vector. After
incubating with 10 μM SPC for 24 h, luciferase activity was assessed
and normalized with respect to b-galactosidase activity. Results are
expressed as percentages of the untreated control. Each
determination was made in triplicate; the data shown represent
means ± SD. **P <0.01 compared to the a-MSH-treated cells.
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transcription activity of MITF was reduced by long-term
SPC treatment. Thus, SPC-induced MITF downregulation
may result from both inhibition of MITF transcription
activity and MITF degradation.
It has been suggested that the Akt signaling pathway is

related to regulation of melanin synthesis [10,11]. It was
reported that glycogen synthase kinase 3b (GSK3b) phos-
phorylates MITF at serine 298, consequently augmenting
the binding of MITF to the tyrosinase promoter [27]. In
addition, GSK3b is known to be phosphorylated and
inactivated by Akt [28]. In a previous report, we have

shown that Akt activation triggered by SPC regulates
melanogenesis via G-protein-coupled receptors [21]. In
the present study, we investigated whether there are any
other downstream effectors of the Akt signaling pathway
in SPC-treated melanocytes.
One of the important downstream targets of Akt is

mTOR, which controls cell growth and proliferation [29].
Recently, it has been reported that activation of the ser-
ine/threonine mTOR protein kinase is involved in the
inhibition of melanin synthesis in B16 melanoma cells
[30]. Because SPC triggers the activation of Akt, we
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indicated times. Whole cell lysates were analyzed by Western blotting with antibodies against phospho-Akt, Akt, phospho-mTOR, mTOR, and
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incubated for another 3 d. Whole cell lysates were analyzed by Western blotting with antibodies against LC3 II and actin (loading control).
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examined whether SPC activates mTOR. As expected,
treatment with SPC induced the activation of mTOR in
Mel-Ab cells (Figure 3A). Since mTOR is known to be a
critical signaling factor which inhibits the accumulation
of LC3 II, an autophagosomal marker, we examined the
effect of SPC on LC3 II levels. SPC-treated cells showed
a decrease of LC3 II, indicating that the activation of
mTOR by SPC may regulate the level of LC3 II (Figure
3B). Treatment with rapamycin, a specific mTOR path-
way inhibitor, reversed the inhibition of melanin synth-
esis and decrease of LC3 II level by SPC. Although
LY294002, a specific inhibitor of the Akt pathway, par-
tially inhibited mTOR phosphorylation in SPC-treated
Mel-Ab cells, it completely restored a decrease of LC3 II
by SPC. These results indicate that activation of mTOR
may be partially due to the activation of Akt by SPC, and

mTOR may be regulated through another pathway in
SPC-treated Mel-Ab cells. In previous studies, it has been
reported that mTOR was activated by phospholipase D1
(PLD1), which plays a negative regulatory role in melano-
genesis [30], and that WIPI1 depletion stimulated the
activation of mTOR, leading to inhibition of melanosome
maturation [31]. Thus, additional investigation is needed
to clarify whether there is another upstream regulator of
mTOR in SPC-treated melanocytes. Interestingly, it was
reported that autophagic and melanosomal markers co-
localize in mature melanosomes, indicating that autop-
hagy-related factors may be involved in melanogenesis
[32]. These findings raise the possibility that a relation-
ship may exist between autophagy and melanogenesis.
Further investigations are currently underway to eluci-
date this possibility.
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Figure 4 SPC stimulates mTOR via the Akt signaling pathway in Mel-Ab cells. Cells were preincubated with 20 μM LY294002 for 30 min
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with 10 μM SPC for 30 min in the presence or absence of 20 μM LY294002. Whole cell lysates were analyzed by Western blotting with
antibodies against phospho-Akt, Akt, phospho-mTOR, mTOR, and actin (loading control). Fold increases over the control were determined by
densitometric analysis and are shown below each lane.
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Conclusions
In summary, the present study demonstrated that SPC
has hypopigmentation effects by regulating both the
mRNA and protein levels of MITF, a key transcription
regulator in melanogenesis. Moreover, our data suggest
that the mTOR signaling pathway may participate in the
SPC regulation of melanin synthesis.
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