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Ischemic postconditioning attenuates liver warm
ischemia-reperfusion injury through Akt-eNOS-
NO-HIF pathway
Jia Y Guo1†, Tong Yang1†, Xiang G Sun1, Ni Y Zhou1, Fu S Li1, Dan Long1, Tao Lin2, Ping Y Li1 and Li Feng1*

Abstract

Background: Ischemic postconditioning (IPO) has been demonstrated to attenuate ischemia/reperfusion (I/R) injury
in the heart and brain, its roles to liver remain to be defined. The study was undertaken to determine if IPO would
attenuate liver warm I/R injury and its protective mechanism.

Methods: Mice were divided into sham, I/R, IPO+I/R (occlusing the porta hepatis for 60 min, then treated for three
cycles of 10 sec brief reperfusion consecutively, followed by a persistent reperfusion); L-NAME+ sham (L-NAME, 16
mg/kg, i.v., 5 min before repefusion); L-NAME+I/R; and L-NAME+ IPO. Blood flow of caudate and left lobe of the
liver was blocked. Functional and morphologic changes of livers were evaluated. Contents of nitric oxide, eNOS
and iNOS in serum were assayed. Concentration of eNOS, iNOS, malondialdehyde (MDA) and activity of superoxide
dismutase (SOD) in hepatic tissue were also measured. Expressions of Akt, p-Akt and HIF-1a protein were
determined by western blot. Expressions of TNF-a and ICAM-1 were measured by immunohistochemistry and RT-
PCR.

Results: IPO attenuated the dramatically functional and morphological injuries. The levels of ALT was significantly
reduced in IPO+I/R group (p < 0.05). Contents of nitric oxide and eNOS in serum were increased in the IPO+I/R
group (p < 0.05). IPO also up-regulated the concentration of eNOS, activity of SOD in hepatic tissue (p < 0.05),
while reduced the concentration of MDA (p < 0.05). Moreover, protein expressions of HIF-1a and p-Akt were
markedly enhanced in IPO+I/R group. Protein and mRNA expression of TNF-a and ICAM-1 were markedly
suppressed by IPO (p < 0.05). These protective effects of IPO could be abolished by L-NAME.

Conclusions: We found that IPO increased the content of NO and attenuated the overproduction of ROS and I/R-
induced inflammation. Increased NO contents may contribute to increasing HIF-1a level, and HIF-1a and NO
would simultaneously protect liver from I/R injury. These findings suggested IPO may have the therapeutic
potential through Akt-eNOS-NO-HIF pathway for the better management of liver I/R injury.

Background
Multiple studies have shown that ischemic precondition-
ing (IPC), defined as one or more brief ischemic insult,
confers organ protection from I/R injury [1,2]. Although
IPC has shown protective effects against I/R injury, its
utilization as clinical strategy is largely limited because
the onset of ischemia is difficult to be predicted.

However, the onset of reperfusion is more predictable.
Recently, a new strategy, named ischemic postcondition-
ing (IPO), was described by Zhao et al [3] and showed
promising results for cardiac reperfusion injury. It con-
sists in application of several brief cycles of ischaemia
and reperfusion, made soon after the ischemia phase
and before reperfusion phase [3,4]. This method was
used successfully in heart [5,6], brain [7], kidney [8,9],
spinal cord [10], intestine [11] and, recently, a few study
that demonstrate its efficacy in liver [12-14] I/R injury.
Although the protective effects of IPO on several organs
have been identified, the interventions among the multi-
ple and interacting components involved in IPO remains
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unclearly understood. And so far, the exact protective
mechanism of IPO on liver I/R injury have not been
completely elucidated.
Several studies have suggested that NO protects

organs against I/R injury [15,16]. The potentially protec-
tive role of endogenous NO in liver I/R injury is also
supported by several studies. There is evidence implicat-
ing NO is involved in the heart [17] and kidney [18]
protections of ischemic postconditioning, but there was
no information as to whether NO participates in the
protective response elicited by liver IPO.
Studies have shown that NO can upregulate the rate

of hypoxia inducible factor-1a (HIF-1a) synthesis by
activating the phosphatidylinositol 3-kinase (PI3K)-Akt
[19,20] and blocks proline hydroxylase (PHD) activity
[19]. Activation and upregulation of HIF-1a has been
recently found to be able to protect liver from I/R
[21,22]. Several studies also indicated that the PI3K/Akt
pathway plays an important role in protective action of
IPO [23,24], but mechanism by which PI3K/Akt path-
way is involved in the liver IPO remain poorly under-
stood. Furthermore, Akt is important in the activation
of eNOS mediated NO production [25]. Studies have
shown that cardioprotection is associated with NO pro-
duction following Akt-mediated eNOS activation
[26,27]. So we wonder if IPO treatment may have pro-
tective role against liver I/R injury through Akt-NO-HIF
pathway. As such, the present study was undertaken to
investigate the more detailed protective mechanism of
IPO on liver I/R injury. Our data indicate that IPO may
have the therapeutic potential through Akt-eNOS-NO-
HIF pathway for the better management of liver I/R
injury.

Materials and methods
N-nitro-L-arginine methylester (L-NAME)
N-nitro-L-arginine methylester (L-NAME), a non-selec-
tive nitric oxide synthase (NOS) inhibitor, were pur-
chased from Sigma (St. Louis, MO, USA). In this study,
L-NAME was dissolved and diluted with saline.

Animal model of 70% liver I/R injury
Male BALB/c mice (weight, 20-25 g) were used as
experimental animals, maintained on a standard diet
and water ad libitum, and kept in a temperature-con-
trolled environment (20°C to 22°C) with alternating 12-
hour cycles of light and dark. Six groups were studied
(n = 16/group): Group I, sham group; group II, I/R
group; group III, IPO+I/R group (occlusing the porta
hepatis for 60 min, then treated for three cycles of 10
sec brief reperfusion consecutively, followed by a persis-
tent reperfusion); group IV, L-NAME+sham (L-NAME,
16 mg/kg, i.v., 5 min before reperfusion); group V, L-
NAME+I/R; and group VI, L-NAME+ IPO. After a

midline laparatomy incision, an atraumatic vascular clip
was placed on the vessels blocking the portal venous
and hepatic arterial blood supply to the median and left
lateral lobes of the liver, which results in approximately
70% mouse liver I/R injury. The animals were placed on
a heating table to maintain core body temperature at
37°C. After 55 min ischemia, 5 min before reperfusion,
L-NAME was injected through the tail vein. Sham-oper-
ated animals went through the same surgical procedure
as other animals; however, hepatic vessels clip were not
applied. Animals were killed at 2, 4 and 12 hours after
liver I/R injury or sham surgery. Liver tissues and blood
samples were taken for analysis. This study was
approved by Sichuan Bioethics Committee, and all pro-
tocols were conducted under the guidelines of Animal
Care and Use.

Serum alanine aminotransferase (ALT), NO, and NOS
Blood samples were obtained at the time of sacrifice.
The serum concentration of alanine aminotransferase
(ALT) was measured in a clinical laboratory as markers
of hepatic functional damage. The serum levels of NO
and NOS were determined by using an NO and NOS
Kit (Jiancheng Biotech Ltd, Nanjing, China) according to
the manufacture’ instructions.

Histopathologic analysis
Tissue samples taken at the time of sacrifice after hepa-
tic I/R injury were fixed in 10% buffered formalin solu-
tion and embedded in paraffin. Sections at 5 μm
intervals were prepared and processed for H&E staining.
Histological changes were scored in a blind fashion
from 0 to 3 based on the degree of cytoplasmic vacuoli-
zation, sinusoidal congestion, sinusoidal derangement,
and necrosis of parenchymal cells using modified Suzuki
classification as described by Takeda et al [28].

Determination of malondialdehye (MDA) level, total
superoxide dismutase (SOD) activity, and nitricoxide
synthase (NOS) in tissue
The involvement of ROS in I/R includes increased lipid
peroxidation (LPO). LPO causes production of second-
ary products, among which MDA is used widely as a
marker of oxidative stress. Levels of MDA in 2 hours
post-ischemic livers were measured as previously
described [29]. Liver samples were homogenized and tri-
chloroacetic acid was added to the homogenate, fol-
lowed by addition of TBA-water solution to the
supernatant and boiling for 60 minutes. After samples
were cooled down, the optical density of supernatant at
532 nm was measured. Total SOD activity was deter-
mined by monitoring the concentration of nitroblue tet-
razolium, which was reduced to a water-insoluble blue
formazan dye with an absorbance maximum at about
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560 nm by superoxide anion generated by xanthine-
xanthine oxidase as previously described [30]. Data are
expressed as mean ± SD. NOS contents were assayed by
using NOS assay kit (Jiancheng Biotech Ltd, Nanjing,
China) according to the manufactures’ instructions.

Measurement of hepatic TNF-a and ICAM-1 mRNA levels
Total RNA was extracted from liver tissues using TRIzol
reagent (Invitrogen, Carlsbad, CA). For semiquantitative
PCR analysis, cDNA samples were standardized based on
the content of b-actin cDNA as a housekeeping gene.
RNA (1 μg) was reverse-transcribed and amplified using
TaKaRa One-Step RT-PCR Kit (Takara Shuzo Co., Japan)
at following RT-PCR conditions: 95°C for 2 min, 30 cycles
at 95°C for 1 min, 59°C for 90 seconds, and 72°C for 2
min. Primers used in PCR reactions were as follows: TNF-
a 5’ primer (5’-AGCCCACGTAGCAAACCACCAA-3’)
and 3’ primer (5’-ACACCCATTCCCTTCACAGAG-
CAAT-3’); ICAM-1 5’ primer (5’-TGGAACTGCACGTG
CTGTAT-3’) and 3’ primer (5’-ACCATTCTGTTCA
AAAGCAG-3’);
and b-actin 5’ primer (5’-CTGAAGTACCCCATTGAA-

CATGGC-3’) and 3’ primer (5’-CAGAGCAG-
TAATCTCCTTCTGCAT-3’). PCR products were stained
with ethidium bromide and electrophoresed in a 1.5%
agarose gel. The target bands were visualized with an
ultraviolet illuminator (Gel Doc EQ) (Bio-Rad Laboratories
Inc., Hercules, CA) and image analysis software (QUAN-
TITY ONE) (Bio-Rad). The mRNA expressions of TNF-a
and ICAM-1 were presented as percent of b-actin.

Protein expression of HIF-1a, p-Akt and Akt
Proteins were extracted from hepatic tissues and quanti-
fied using the Bradford assay (Bio-Rad). Equal amounts
of protein (40 μg) were separated by sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).
The proteins were transferred onto polyvinylidene
difluoride (PVDF) membranes (Bio-Rad). After overnight
blocking at 4°C, the membranes were incubated and
shaken for 2 h at 37 °C with a mouse monoclonal anti-
body against HIF-1a (diluted 1:500, AbCam, Canbridge,
UK); p-Akt (diluted 1:500, Signalway Antibody); rabbit
polyclonal antibody against Akt (diluted 1:500, Signal-
way Antibody); followed by a secondary antibodies
(diluted 1:2000, Santa Cruz, CA). The signals were
detected by using an ECL kit(Millipore, Bedford, MA,
USA). The membranes were re-incubated with a mouse
monoclonal antibody against glyceraldehydes 3-phos-
phate dehydrogenase (GAPDH) (diluted 1:10,000, Santa
Cruz, CA) to control for protein loading.

Immunohistochemistry for TNF-a and ICAM-1
Tissue samples taken at the time of sacrifice after liver
I/R injury were fixed in 10% buffered formalin and

embedded in paraffin. Sections at 5 μm intervals were
stained with primary rabbit anti-mouse mAbs against
TNF-a (diluted, 1:500, Santa Cruz, CA) or ICAM-1
(diluted, 1:500, Santa Cruz, CA). After incubation, the
sections were incubated with a biotinylated rabbit anti-
mouse IgG. Then the samples were incubated with per-
oxidase-labeled streptavidin. DAB solution was added to
the samples, and the colorimetric reaction was allowed
to proceed for 1 min. The estimates were performed by
a blinded pathologist (3 to 4 sections per liver and 10 to
12 fields per section).

Statistical analysis
All data were expressed as mean ± SD. Data were ana-
lyzed using ANOVA for multiple comparisons. Analysis
between two groups was performed using unpaired Stu-
dent’s t test (two-tailed) where ANOVA indicated signif-
icance for the multiple comparison. P values of less than
0.05 were considered as significant differences.

Results
Physiological function of IPO in hepatic I/R injury
To determine if IPO was able to attenuate I/R injury, 3
cycles of 10s of reperfusion followed by 10s ischemia
immediately after 60 min ischemia of the medium and
left liver lobes were applied to the IPO+I/R group.
Serum levels of ALT were measured after 2 h of reper-
fusion following 60 min of ischemia and were signifi-
cantly different among the groups. Compared with
sham-operated control mice, I/R mice showed signifi-
cant increases in ALT. IPO treatment significantly
reduced all serum levels of ALT compared to I/R group
(Figure 1). Subsequent determination of transaminases
levels at 4, 12 h of reperfusion showed maintained low
values in mice post-treated with IPO but high levels in
I/R group (data not shown).

Protective effect of IPO on the liver tissue from I/R injury
To further confirm the protective effect of IPO on hepa-
tic I/R injury, sections of the liver obtained from the
ischemic lobe at 2 h after reperfusion were evaluated for
histopathological analysis. Compared with sham-oper-
ated control group(Figure 2A), I/R mice liver tissue
showed significant cytoplasmic vacuolization, sinusoidal
congestion, extensive hepatic cellular necrosis and mas-
sive cellular infiltration (Figure 2B). However, the par-
enchymal appearance was near normal in IPO+I/R
group. Mild cellular infiltration, few necrosis as well as
comparatively preserved lobular architecture were seen
in the liver treated with IPO (Figure 2C). In the evalua-
tion of the histological features of I/R injury, the IPO+I/
R group had significantly lower scores of cytoplasmic
vacuolization and massive necrosis compared with the I/
R group (Figure 2D). L-NAME abolished the protective
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effect of IPO post-treatment with increased cytoplasmic
vacuolization and hepatocellular necrosis (Figure 2D).

IPO reduces oxidative stress in liver tissues
To assess the effect of IPO on oxidative stress after liver
I/R, MDA and activity of superoxide dismutase (SOD)

were measured. Hepatic 60 min ischemia and 2 hours of
reperfusion caused substantial increase in liver MDA
levels and marked decrease in liver SOD activity com-
pared with IPO+I/R group (Figure 3). In the post-treat-
ment of IPO, the liver MDA content reduced 64.11%
and liver SOD activity was elevated by 27.68%.

Figure 1 ALT levels after reperfusion. After 60 minutes of ischemia and 2 hours of reperfusion, serum levels of ALT were determined.
Compared with sham-operated control mice, I/R mice showed significant increases in ALT. The post-treatment of IPO significantly reduced all
serum levels of ALT compared to I/R group. “+L” means “+L-NAME”. For all groups, n = 8. * p < 0.05 compared to sham group. † p < 0.05
compared to IPO+I/R group.

Figure 2 Hepatic histological changes in mice subjected to I/R. (A): sham, (B): I/R, (C): IPO+I/R. Hematoxylin-eosin-stained liver sections from
animals undergoing 60 minutes ischemia and 2 hours following reperfusion (Original magnification: ×200). Decreased hepatic necrosis is seen in
the IPO+I/R group compared to the nontreated I/R group. Images are representative liver sections from eight mice per group. Black arrow shows
the infiltrated neutrophils and black arrow head shows hepatic cellular necrosis in Figure 2B. (D): Histological scores for sinusoidal congestion,
cytoplasmic vacuolization, and hepatocyte necrosis were obtained via analysis of hematoxylin-eosin staining. Data are expressed as the mean ±
SD of 8 animals per group. * p < 0.05 compared with I/R group.
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IPO increases NO, NOS in serum and in liver tissues
To determine whether IPO have protective role through
NO-mediated production, we detected the contents of
nitric oxide (NO) and nitric oxide synthase (NOS).
Hepatic 60 min ischemia and 2 hours of reperfusion
markedly reduced both the serum levels of NO, total
NOS (TNOS), endothelial NOS (eNOS), iNOS, and pro-
duction of TNOS, eNOS, iNOS in liver tissues. Com-
pared to I/R group, IPO post-treatment markedly
induced NO, eNOS in serum (U/ml: 22.21 ± 1.13 vs.
36.33 ± 7.57), and eNOS in tissue (U/mgprot: 0.038 ±
0.004 vs. 0.058 ± 0.006; I/R vs. IPO) (Figure 4), while no
significant difference was found in TNOS [serum(U/ml):
38.514 ± 4.074 vs. 46.147 ± 7.045, tissue(U/mgprot):
0.107 ± 0.045 vs. 0.131 ± 0.038; I/R vs. IPO] both in
serum and tissues, and iNOS [serum(U/ml): 12.971 ±
3.055 vs. 10.817 ± 2.116, tissue(U/mgprot): 0.069 ±
0.018 vs. 0.073 ± 0.014; I/R vs. IPO] both in serum and
tissues between I/R and IPO+I/R group. Although no
significant difference was found in TNOS between I/R
and IPO+I/R group, some trends of higher TNOS levels
could be seen in the IPO+I/R group. In L-NAME+ IPO
and L-NAME+ I/R groups, the serum levels of NO,
TNOS, eNOS and iNOS, production of TNOS, eNOS,
iNOS in liver tissues were all decreased. These findings
suggest that IPO have protective role partially through
up-regulating NO and iNOS.

IPO induce HIF-1a and p-Akt expression in liver tissues
and modulates I/R-induced inflammatory signaling
cascades
To further assess whether the NO-mediated production
is associated with HIF-1alpha, we measured the protein
expressions of HIF-1alpha and p-Akt by western blot
analysis. Western blot analysis results showed that the
contents of HIF-1a in liver tissues with IPO post-treated

mice were significantly higher than those in the I/R
group (Figure 5). Reports have shown that PI3K signal-
ing pathway is involved in HIF-1a up-regulation in the
relevant experiments[19,31]. So we also determined
whether IPO altered liver I/R-induced PI3K signaling
pathway activation. And Figure 5 shows changes in
phosphorylation of Akt upon reperfusion. The ratios of
p-Akt and Akt in sham, IPO+I/R, IPO+I/R+L, I/R, I/R
+L groups were as follows: 0.91 ± 0.31, 14.53 ± 2.88,
0.84 ± 0.15, 0.64 ± 0.15, 0.57 ± 0.12. So IPO post-treat-
ment markedly enhanced Akt phosphorylation at reper-
fusion compared to other group (Figure 5),
corroborating the role of the PI3K/Akt pathway in the
action of IPO.

IPO reduces TNF-a and ICAM-1 mRNA in liver tissues
To determine the expressions of proinflammatory med-
iators and adhesion molecules, mRNA transcripts for
TNF-a and ICAM-1 were assessed. Liver I/R remarkably
increased mRNA expression of TNF-a and ICAM-1.
IPO significantly abrogated liver warm I/R-induced
increases in TNF-a and ICAM-1 mRNA expression
(Figure 6A). L-NAME treatment did not decrease the
up-regulation of TNF-a and ICAM-1 mRNA expression.
The comparison of band intensity ratios of ICAM-1 to
b-actin demonstrated that IPO treatment effectively sup-
pressed the TNF-a and ICAM-1 mRNA expression
induced by I/R injury (Figure 6B).

IPO reduces TNF-a and ICAM-1 protein in liver tissues
To further determine the protein expression changes of
TNF-a and ICAM-1 induced by IPO, we detected these
protein expressions by immunohistochemical assay. The
over-expressions of TNF-a and ICAM-1 on liver tissues
after 4 h of reperfusion were detected (Figure 7B, E). In
IPO+I/R group, hepatic I/R-induced increases in TNF-a

Figure 3 Effects of IPO on SOD (A) and MDA (B) levels in liver tissues. To assess the effect of IPO on oxidative stress after liver I/R, MDA
and activity of SOD were measured. Hepatic 60 minutes ischemia and 2 hours of reperfusion caused substantial increase in liver MDA levels and
marked decrease in liver SOD activity compared with IPO+I/R group. For all groups, n = 8. *Significant at p < 0.05 when compared with I/R
group.

Guo et al. Journal of Biomedical Science 2011, 18:79
http://www.jbiomedsci.com/content/18/1/79

Page 5 of 12



and ICAM-1 expression were dramatically suppressed
(Figure 7C, F). While the up-regulation of TNF-a and
ICAM-1 protein expressions were not decreased in the
L-NAME+ IPO group. These findings suggest that IPO
have a role in modulating the inflammatory process.

L-NAME abolishes the hepatic protection by IPO
To further confirm the NO protection against I/R
injury, we also applied a non-selective NOS inhibitor, L-
NAME, in the experimental groups. And we found the
treatment with L-NAME almost completely abolished
the liver protective effect of IPO against I/R-induced
hepatic dysfunction (Figures 1, 2, 3, 4, 5, 6).

Discussions
We investigated the potential protective mechanism of
IPO on hepatic warm I/R injury. It was observed that IPO
post-treatment could effectively attenuate liver injury in a
model of mice hepatic warm I/R. The protective effect of
IPO was associated with an enhanced, sustained NO gen-
eration at reperfusion that was abrogated by NOS inhibi-
tion. IPO also increased expression of HIF-1a and
phosphorylation of the survival kinase Akt following I/R
while inhibiting ROS production, suppressing the over-
expression of proinflammatory mediators and adhesion
molecules. These results suggest that IPO protects liver
from I/R injury, at least in part, by increasing HIF-1a and
p-Akt, and suppressing ROS production, which lead to the
maintenance of an elevated level of NO.
A series of studies have demonstrated that IPO effectively

protects against I/R injuries through NO-mediated

production [17,18]. Unfortunately, little is known about the
more detailed protective mechanism of IPO on liver I/R
injury. So we demonstrated that IPO, 3 cycles of 10 s of
reperfusion followed by 10 s ischemia immediately after 60
min ischemia, exhibited significant protection to the mice
liver from I/R injury, as assessed by liver function tests and
histology. IPO post-treatment significantly reduced serum
levels of ALT, and contributed to significantly lower scores
of cytoplasmic vacuolization and massive necrosis com-
pared with the I/R group. L-NAME treatment almost com-
pletely abolished the liver protective effect of IPO against I/
R injury morphologically and functionally.
It has been demonstrated by several studies that NO

could attenuate I/R injury of different organs [15,16].
Nitric oxide can also cross biological membranes and
travel significant distances in cells and tissues [32]. Lang
et al recently reported that inhaled NO accelerates
restoration of liver function in adults following liver
transplantation [33]. It has also been reported that IPO
could stimulate production of NO [17,18], so we deter-
mined if IPO would protect liver against liver I/R injury
through NO-mediated production. We observed the
changes of NO levels in serum and tissues, as well as
NOS. Until now, three different kinds of NOS have
been identified. Previous study has demonstrated that
nNOS were expressed in liver tissue of mouse, but it
has been reported that nNOS is mainly involved in neu-
ronal signaling and it does not participate in the events
involved during I/R [34]. So we detected the serum
levels of NO, TNOS, eNOS, iNOS and production of
TNOS, eNOS, iNOS in liver tissues.

Figure 4 Effects of IPO on NO in serum (A), eNOS in serum (B) and in liver tissues (C). To determine whether IPO have protective role
through NO-mediated production, the contents of NO and NOS were detected. Compared to I/R group, IPO post-treatment markedly induced
NO and eNOS production in serum and in liver tissues. For all groups, n = 8. * p < 0.05 compared with I/R group.
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Hepatic I/R significantly reduced both the serum
levels of NO, TNOS, eNOS, iNOS and production of
TNOS, eNOS, iNOS in liver tissues. Increased NO,
eNOS in serum and eNOS in tissue (Figure 4) were
found in IPO+I/R group, while no significant differences
were found in TNOS and iNOS in serum and tissues
between I/R and IPO+I/R group. L-NAME decreased
the serum levels of NO, TNOS, eNOS and iNOS, pro-
duction of TNOS, eNOS, iNOS in liver tissues. eNOS

was reported to play a beneficial role against I/R injury.
It was found that eNOS could lead to amelioration of I/
R-induced liver injury [35,36] and protect against renal
I/R injury [37]. eNOS over-expression also could lead to
reduced infarct sizes after cardiac I/R injury [36,37]. NO
production by eNOS seems to be of central importance
in ischemic injury [38,39]. It has been reported that
eNOS-derived NO production constitutes a promising
therapeutic approach to prevent myocardial I/R injury

Figure 5 Expression of HIF-1alpha, p-Akt and Akt by Western blot. The expression of HIF-1alpha, p-Akt and Akt were detected in liver
tissues by western blot analysis. The blot shown is representative of three different experiments with similar results (A). Lain 1-5: sham; IPO+I/R;
IPO+I/R+L-NAME; I/R; I/R+L-NAME. The expression of the housekeeping gene, glyceraldehydes 3-phosphate dehydrogenase (GAPDH), served as a
control. The expression of HIF-1alpha, and p-Akt were significantly higher in the liver tissues with IPO+I/R group than I/R group, and the signals
were decreased in liver tissues with L-NAME (16 mg/kg) pre-treatment. HIF-1alpha, p-Akt and Akt proteins were calculated by densitometry
relative to GAPDH, and the results were expressed as ratios after normalization at 100% of the control (B). Data are mean ± SD from three
separate experiments. * p < 0.05 compared with other groups. † p < 0.05 compared to sham group.
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[40]. Our results showed that increased eNOS levels
both in serum and tissue using assay kits. So it increased
both locally and systemically, and that might contribute
to NO production and liver protection. These findings
support our hypothesis that the IPO elevates NO and
eNOS levels, which in turn reduces or compensates the
I/R-induced hepatic injury.
ROS play a critical role in the I/R injury. After warm

ischemia, ROS were produced at the moment of reper-
fusion and promoted the adhesion of leukocytes to
microvascular endothelium [41]. Our study showed that
IPO post-treatment reversed the increase of MDA levels

to a considerable extent, thereby confirming its antioxi-
dant role in I/R. Furthermore, we showed that SOD
activity significantly increased in IPO+I/R group. Total
SOD activity is decreased following I/R injury [42], and
the decrease would render the tissue susceptible to oxi-
dant injury. Therefore, the elevated SOD activity
induced by IPO post-treatment may contribute to
reduce superoxide radicals following liver I/R. Our
results indicated IPO may reduce the oxidative stress
caused by hepatic warm I/R injury and attenuate subse-
quent organ damages (Figure 3). It has been shown that
NO may augment antioxidant protection by forming

Figure 6 RT-PCR product of TNF-a and ICAM-1 using template RNA extracted from 4 h post-ischemic liver tissues (A). IPO significantly
abrogated liver warm I/R-induced increases in TNF-a and ICAM-1 mRNA expression. Lain 1-5: sham; I/R+L-NAME; I/R; IPO+I/R+L-NAME; IPO+I/R.
Representative experiments of three are shown in each case. The mRNA band intensities of TNF-a and ICAM-1 in sham, I/R+L-NAME, I/R, IPO+I/R
+L-NAME, IPO+I/R groups were compared as indicated (B). (n = 8). Data are mean ± SD from three separate experiments. * p < 0.05 compared
with other groups.
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intracellular antioxidants (nitrosothiols and glutathione)
[43] and by decreasing ROS release through inhibition
of NADPH oxidase activity [44]. ROS was also signifi-
cantly reduced in mice treated with the eNOS enhancer
[40]. In turn, bioavailability of NO can be reduced by
oxidative inactivation by excessive production of the
superoxide anion. Increased generation of superoxide
may inhibit the physiological functions of NO [45]. In
contrast, SOD can also rapidly scavenge superoxide
(O2-) and prolong the vasorelaxant effects of NO [46].
NO responses can be restored by the addition of super-
oxide dismutase (SOD). So in our study, elevated NO
induced by IPO might contribute to reducing ROS
release, and also decreased MDA and increased SOD by
IPO could contribute to the beneficial effect of NO.
Several reports have shown that HIF-1 activation

might attenuate I/R injury [47-49]. Since HIF-1 can
upregulate genes intimately involved in ischemic pre-
conditioning (e.g., VEGF [50], and HO-1[51], it becomes
an attractive molecular target to limit ischemic or post-
ischemic tissue injury. In our study, we found that IPO
post-treatment could up-regulate the expression of HIF-
1a. The contents of HIF-1a in liver tissues in IPO+I/R
group were significantly higher than those in I/R group.
It has been shown that NO could influence the levels of
HIF-1a in complex ways. NO concentration has a
strong influence on whether HIF-1a is stabilized under
aerobic conditions [52]. PHD is active under normal
oxygen supply and can hydroxylate HIF-1a [53]. Under
normoxia, NO can block PHD activity by interacting
with enzyme bound Fe2+, directly attenuate hydroxyla-
tion of HIF-1a [54] and accumulate HIF-1a. Exposure
to NO has been shown to nitrosylate thiols in the HIF-
1a protein leading to HIF-1a stabilization [55,56]. NO

can also promote binding of HIF-1a to hypoxia
response elements (HREs) in HIF-1a target genes and
act as a transcriptional co-activator [57]. NO can act as
a diffusible, paracrine messenger to elicit a functional
HIF-1 response [58,59]. In turn, unregulated VEGF
induced by HIF-1 can activate eNOS in vascular
endothelial cells through adenylate cyclase (AC)-protein
kinase A (PKA), phosphoinositide 3-kinase (PI3K)-Akt
pathways [60], and HIF-1 has been reported to be able
to improve the actions of NO [61]. So in our study, ele-
vated NO levels by IPO post-treatment at 2 h after
reperfusion contributed to increasing HIF-1a stability,
and in turn, up-regulated expression of HIF-1a induced
by IPO might also increase the levels of eNOS and NO.
PI3K and its downstream regulated protein Akt as

well as eNOS are known to play important roles in sur-
vival against ischemia/reperfusion injury. Studies have
shown that NO can upregulate the rate of HIF-1a
synthesis by activating the PI3K-MAPK (mitogen-acti-
vated protein kinase) pathway [19,20]. It was found that
the NO donor NOC18 treatment could induce phos-
phorylation of Akt, HIF-1a protein expression and HIF-
1 transcriptional activation [20]. In our study, western
blot analysis results showed that IPO post-treatment
could markedly enhance Akt phosphorylation at 2 h
after reperfusion compared to control group, and p-Akt
was markedly decreased after using L-NAME. So
increased NO levels induced by IPO might help in
increasing the expression of p-Akt, and then upregulat-
ing the rate of HIF-1a synthesis. In turn, Akt has been
shown to increase the formation of NO, specifically via
the activation of eNOS [62]. Unregulated VEGF induced
by HIF-1 can activate eNOS also through PI3K/Akt
pathway, and increased the NO production. PI3K is a

Figure 7 Immunohistochemical assay of TNF-a (A, B, C) and ICAM-1(D, E, F) on 4 h post-ischemic liver tissue. In the IPO+I/R group,
hepatic I/R-induced increases in TNF-a and ICAM-1 expression were dramatically suppressed. (A, D): sham group, (B, E): I/R group, (C, F): IPO+I/R
group. Original magnification: ×400.
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redox-sensitive kinase; thus, it may be activated through
changes in intracellular ROS levels, leading to eNOS
activation and increased NO release [63]. It was
reported that ischemic postconditioning’s protection
involves adenosine receptors and requires PI3-kinase
activation [24]. It has been shown that inhibiting PI3K
using LY294002 or Wortmannin (Wort) completely
abolished IPO-induced protection, so IPO could protect
the myocardium by activating the PI3K/Akt pathway
[23]. And it was also reported that the PI3K inhibitor
LY294002 enlarged infarct in ischemic postconditioned
rats, and LY294002 could also abolish the protective
effects of IPO on both disease models and healthy
hearts, so PI3K/Akt pathway contributes to postcondi-
tioning’s protection [64,65]. These results also suggested
that the PI3K/Akt pathway could play a role in the pro-
tective action of liver IPO.
Studies have shown TNF-a could activate neutrophils

to release inflammatory mediators and play an important
role in I/R injury. TNF-a also caused overexpression of
adhesion molecules on both endothelial cells and leuko-
cytes [66], and increased neutrophils aggregation and
adhesion to endothelial cells. In this study, the I/R-
induced increases in hepatic levels of TNF-a was inhib-
ited in IPO+I/R group (Figure 7) and this effect was con-
firmed by RT-PCR analysis on TNF-a mRNA in liver
tissues (Figure 6). The I/R-induced hepatic accumulation
of neutrophils was also decreased following IPO treat-
ment (Figure 2). Thus, inhibition of TNF-a production
may prevent the subsequent neutrophils activation.
Accumulating evidence indicates that ischemia alone
may induce TNF-a mRNA and protein via the generation
of ROS [67]. Activation of oxidant-sensitive enzymes
involved in TNF-a production represents an additional
mechanism by which oxidant stress induces cellular
damage. ICAM-1 is also important in the pathogenesis of
I/R injury. Hydrogen peroxide can also induce endothe-
lial ICAM-1 through activation of transcriptional factors,
such as nuclear transcription factor �B (NF-�B) [68].
Our results showed that increased expression of ICAM-1
was observed 4 h post-reperfusion in untreated mice and
IPO effectively suppressed the overexpression of ICAM-1
on liver tissue and abrogated hepatic I/R-induced
increase in ICAM-1 mRNA expression (Figure 6). There-
fore, the inhibition of I/R-induced increases of ROS fol-
lowing IPO treatment may help in reducing the
overexpression of TNF-a and ICAM-1.
Nitric oxide (NO) has been reported to decrease

endothelial ICAM-1 mRNA and surface expression, which
results in reduction in PMNs adhesion to endothelium sti-
mulated by TNF-a [69]. One mechanism by which NO
may modulate the inflammatory process is via its interac-
tion with the Rel/NF-�B family of transcription factors. In
the current study, we found that IPO posttreatment

significantly reduced hepatic ICAM-1 mRNA levels during
early reperfusion periods, and suppressed neutrophil accu-
mulation in liver. These findings are consistent with pre-
vious reports that inhibition of NO synthesis increased
ICAM-1 expression and enhanced neutrophil-dependent
reperfusion injury in hepatic warm I/R injury [70] and that
NO enhancement attenuated neutrophil infiltration and
hepatic warm I/R injury [71]. Therefore, up-regulated NO
by IPO post-treatment might also have a role in modulate
the infammatory process by decreasing the expression of
TNF-a and ICAM-1.

Conclusions
In conclusion, our investigations demonstrated that IPO,
3 cycles of 10 s of reperfusion followed by 10 s ische-
mia, resulted in protection in liver warm I/R injury
which was associated with increases in NO, eNOS,
SOD, p-Akt and HIF-1a, and decrease in ROS, TNF-a
and ICAM-1. IPO induced protection was abrogated in
the presence of the NO inhibitor L-NAME. The
increased NO concentration produced a cytoprotective
environment, resulting in reduced cell death and
restoration of hepatic function following reperfusion.
Thus, the protection conferred by IPO appears to be
mediated by increased NO and HIF-1a productions dur-
ing reperfusion via the activation of Akt and inhibition
of ROS. These findings suggested IPO might have the
therapeutic potential through Akt-eNOS-NO-HIF path-
way for the better management of liver warm I/R injury.
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