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Abstract

control of inflammatory skin diseases.

Background: Skin is the largest organ in the body, and is directly exposed to extrinsic assaults. As such, the skin
plays a central role in host defense and the cutaneous immune system is able to elicit specific local inflammatory
and systemic immune responses against harmful stimuli. 12-O-tetradecanoylphorbol-13-acetate (TPA) can stimulate
acute and chronic inflammation and tumor promotion in skin. TPA-induced dermatitis is thus a useful in vivo
pharmacological platform for drug discovery. In this study, the inhibitory effect of briarane-type diterpenes (BrDs)
from marine coral Briareum excavatum on TPA-induced dermatitis and dendritic cell (DC) function was explored.

Methods: Evans blue dye exudation was used to determine vascular permeability. H&E-stained skin section was
used to determine the formation of edema in mouse abdominal skin. We also used immunohistochemistry
staining and western blot assays to evaluate the activation of specific inflammation makers and key mediators of
signaling pathway in the mouse skin. Furthermore, mouse bone marrow DCs were used to determine the
relationship between the chemical structure of BrDs and their regulation of DC function.

Results: BrD1 remarkably suppressed TPA-induced vascular permeability and edema in skin. At the biochemical
level, BrD1 inhibited TPA-induced expression of cyclooxygenase-2, inducible nitric oxide synthase and matrix
metalloproteinase-9, the key indicators of cutaneous inflammation. This inhibition was apparently mediated by
interference with the Akt/NF-xB-mediated signaling network. BrD1 also inhibited TNF-a. and IL-6 expression in LPS-
stimulated BMDCs. The 8, 17-epoxide of BrDs played a crucial role in the inhibition of IL-6 expression, and
replacement of the C-12 hydroxyl group with longer esters in BrDs gradually decreased this inhibitory activity.

Conclusions: Our results suggest that BrDs warrant further investigation as natural immunomodulatory agents for
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Background

Skin is the largest organ in the body. As the primary
interface between the body and environment, it serves
as the first line of defense against microbial pathogens
as well as physical and chemical stress or insults [1,2].
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The skin does not only serve as a physical and a chemi-
cal barrier, but is also an immune-competent organ that
elicits effective innate and adaptive immune responses
to protect the human body. The cutaneous immune sys-
tem maintains a balance between restricting excessive
inflammation following tissue damage or injury and pre-
serving the ability to rapidly respond to pathogen infec-
tion [3]. It is clear that inadequate or misdirected
immune response is involved in the pathogenesis of a
variety of acquired inflammatory skin disorders [1].

© 2011 Wei et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.


mailto:nsyang@gate.sinica.edu.tw
mailto:sheu@mail.nsysu.edu.tw
http://creativecommons.org/licenses/by/2.0

Wei et al. Journal of Biomedical Science 2011, 18:94
http://www.jbiomedsci.com/content/18/1/94

Therefore, systematic investigation of the mechanisms of
action of immunomodulatory agents on the skin’s
immune system is necessary for the development of
therapies for skin disorders.

Acute inflammation is the initial immune response to
harmful stimuli. Acute inflammation in the skin often
involves an increase in the vascular permeability of skin
tissues, resulting in an accumulation of fluid at the
inflamed site (edema). The release of mediator mole-
cules such as nitric oxide and prostaglandins also elicits
vascular permeability, thus permitting the efficient
migration of leukocytes, mainly neutrophils, to the
inflamed tissue site. Matrix metalloproteinase-9 (MMP-
9) has been reported to be a crucial player in such neu-
trophil migration by degrading some major cellular
components of the epidermis and dermis [4]. In addi-
tion, it is well-known that secretions of cytokines such
as TNF-a, IL-1o. and IL-6 by keratinocytes or antigen-
specific cells can play a key role in mediating the cuta-
neous inflammatory response [2,5,6]. These mediators
were employed as indicators of skin inflammation in
this study.

Several novel approaches have been explored to
manage risk factors for skin cancers, tissue damage
from UVB exposure, and inflammatory skin disorders
[7]. Several phytochemicals and tissue extracts from
medicinal plants have been reported to confer immu-
nostimulatory activities and have potential clinical
applications [8,9]. Our laboratories previously reported
that a small phytochemical from Lithospermum ery-
throrhizon (shikonin) can inhibit the transcriptional
activation of human TNF-o promoter in vivo in mouse
skin [10]. We also showed that caffeic acid suppresses
UVB radiation-induced expression of IL-10 and activa-
tion of MAPKs in mouse skin tissues [11]. More
recently, we demonstrated that ferulic acid, a phenolic
phytochemical, can effectively inhibit UVB-induced
matrix metalloproteinases in mouse skin via a post-
translational mechanism [7].

Natural products from plants and terrestrial microor-
ganisms have traditionally provided good sources of lead
compounds/agents for human medicines. However, due
to the biological diversity of the marine environment
and the discovery of marine compounds with certain
unique structures and pharmacological activities, com-
pounds from marine organisms are expected to be a
major source of lead compounds for future generations
of pharmaceuticals [12]. A spectrum of different novel
marine compounds have been identified, and their
bioactivities evaluated for potential pharmaceutical
application [13]. Among these compounds, we isolated
and identified a group of briarane-type diterpenes
(BrDs) from Briareum excavatum, a Formosan gorgo-
nian coral [14,15].
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In this study, we selected a group of specific BrDs
from our chemical library of marine origin for systema-
tic study and showed that BrD1 (excavatolide B) can
drastically inhibit 12-O-tetradecanoylphorbol-13-acetate
(TPA)-induced acute inflammation in murine skins, as
determined by its effect on vascular permeability, edema
and key inflammatory mediators. We further determined
a structure-activity relationship (SAR) of selected BrDs
in terms of their regulation of cytokine expression. The
possible molecular mechanisms for the mode of action
of these BrDs were also studied.

Methods

Reagents

Recombinant cytokines mIL-4 and mGM-CSF were pur-
chased from PeproTech (Rocky Hill, NJ). TPA (12-O-
tetradecanoyl-13-phorbol-acetate), Evans blue dye, N, N-
dimethyl-formamide and LPS (Escherichia coli 055:B5)
were purchased from Sigma-Aldrich (St. Louis, MO).
BrDs were prepared from marine soft coral (Briareum
excavatum) as previously described [14].

Mice

Female C57BL/6JNarl mice (5-6 weeks old) were pur-
chased from the National Laboratory Animal Breeding
and Research Center, Taipei, Taiwan. All mice were
maintained in a laminar airflow cabinet in a specific
pathogen free (SPF) animal room kept at 24 + 2°C and
40-70% humidity with a 12 h light/dark cycle under SPF
conditions. All facilities were approved by the Institu-
tional Animal Care and Utilization Committee of Aca-
demia Sinica, and animal experiments were all
conducted according to institutional guidelines.

Preparation of 12-acyloxyl analogues of BrD1

An appropriate acyl chloride (0.02 mmol) was added to
a solution of BrD1 (excavatolide B) (10 mg) in 5 ml of
pyridine; the mixture was allowed to stand overnight at
room temperature. Four milliliters of water was added
to the reaction mixture followed by extraction with
EtOAc (5 ml x 3). The EtOAc layers were combined,
dried over anhydrous MgSO, and evaporated. The
afforded residue was purified by column chromatogra-
phy on silica gel using EtOAc/hexane (1:8) as eluent to
yield analogues of BrD1 (BrD1-5C, BrD1-6C, BrD1-7C
and BrD1-10C). Yields varied from 61.6% to 78.3%.

Measurement of vascular permeability

TPA-induced vascular permeability assay was modified
and performed as previously described [16]. Shaved
abdominal skins of female C57BL/6JNarl mice were
topically treated with vehicle (acetone, 200 ul/site) or
TPA (10 nmol in 200 pl acetone/site) for 6 h or treated
with TPA for 10 min and subsequently treated for 6 h
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with the indicated concentrations of BrD1. Abdominal
skins of untreated mice were used as the control group.
One percent Evans blue dye (100 pl) was injected into
mouse tail veins. After 20 min, anatomical appearances
of mouse abdomens from the various treatments were
photographically recorded. Abdominal skins representa-
tive of each test group were removed, turned over and
photographed. Evans blue dye extravasated into the
skins was extracted by incubation of the skin samples in
99% N, N-dimethyl-formamide overnight at 60°C and
optical density was measured at 620 nm.

Generation of mouse bone marrow-derived dendritic cells
For mouse bone marrow-derived DCs (BMDCs), five to
six-week-old female C57BL/6]Narl mice were purchased
from the National Laboratory Animal Center, Taiwan
and kept under SPF conditions. BMDCs were generated
from bone marrow cells of C57BL/6 mice as described
previously [17]. In brief, bone marrow was isolated from
femurs and tibiae which were then flushed with RPMI-
1640 medium using a syringe with a 0.45-mm needle on
Day 0. Red blood cells in suspension were lysed for 5 min
with ACK lysing buffer (150 mM NH,CIl, 1.0 mM
KHCOs3, 0.1 mM EDTA). Bone marrow cells were sus-
pended at a density of 1 x 10”cells/30 ml in RPMI-1640
containing 10% FBS, 2 mM L-glutamine, 1% of nonessen-
tial amino acids, 100 U/mL penicillin and 100 pg/mL
streptomycin supplemented with 20 ng/mL of mGM-
CSF in 15-cm dishes at 37°C with 5% CO,. On day 2,
two-thirds of the medium was removed and 30 mL fresh
medium with mGM-CSF was added to the cells. On day
5, culture plates were gently swirled and the floating and
loosely adherent cells were discarded. Aliquots of 75%
culture media were replenished with 20 ng/mL mGM-
CSF and 20 ng/mL mIL-4. On day 7, mouse BMDCs
(95% pure CD11b and MHCII) were harvested and incu-
bated in RPMI 1640 medium containing 1 mM sodium
pyruvate, 0.1 mM nonessential amino acids, 100 U/ml
penicillin, 100 pg/ml streptomycin, and supplemented
with 10% fetal bovine serum (Invitrogen, Carlsbad, CA)
for 24 h at 37°C with or without test chemicals in the
presence or absence of LPS (100 ng/ml).

Measurement of pro-inflammatory cytokines

BMDCs were treated with or without test chemicals in
the presence or absence of LPS (100 ng/ml) for 24 h at
37°C. Aliquots of supernatants from DC cultures were
assayed for IL-6 and TNF-a using commercial ELISA
kits (R&D Systems, Minneapolis, MN) following the
manufacturer’s recommendations.

Primer design and RT-PCR
YES: Yesp Shaven abdominal skins of female C57BL/
6JNarl mice were untreated or topically treated with
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vehicle (acetone, 200 ml/site) or TPA (10 nmol in 200
ml acetone/site) for 6 h or treated first with TPA for 10
min and then with the indicated concentrations of BrD1
for 6 h. Total RNA was extracted from treated abdom-
inal skins of female mice using TRIzol reagent (Invitro-
gen Corp., Carlsbad, CA). RT-PCR reactions using
AccessQuick RT-PCR system (Promega, Madison, WI)
were carried out as described previously [7]. The pri-
mers contained the following sequences: mouse MMP-9
sense primer 5-CTAGTGAGAGACTCTACACGGAG-
3’, and anti-sense primer 5-GAGCCACGACCATACA-
GATACTG-3’; mouse GAPDH sense primer 5-CAT-
CACTGCCACCCAGAAGACTGTGGA-3’, and anti-
sense primer 5-TACTCCTTGGAGGCCATGTAGGC-
CATG-3. Gel images were scanned and densitometry
analysis of the captured image was performed using
Gene Tools software (Syngene, Cambridge, UK).

Histopathological analysis

Mice were treated or not treated topically on their sha-
ven abdomens with acetone (vehicle only) or TPA (10
nmol in 200 pl acetone/site) for 6 h or treated first with
TPA for 10 min, then with the indicated concentrations
of BrD1 for 6 h. Mice were killed by cervical dislocation.
Abdominal skin tissues were collected, fixed with forma-
lin buffer and embedded in paraffin. Tissue sections (5
mm) were cut and laid onto silanized glass slides and
deparaffinized three times with xylene for 5 min each
prior to rehydration using a graded alcohol bath. For
hematoxyline and eosin staining, the sections were
stained with hematoxyline and eosin staining. For
immunohistochemical staining, the deparaffinized sec-
tions were boiled in 10 mM citrate buffer (pH 6.0) for
10 min for antigen retrieval and rinsed with PBS con-
taining 0.05% Tween-20 buffer for 5 min. The sections
were treated with 3% hydrogen peroxide in methanol
for 15 min to decrease non-specific binding. They were
subsequently washed with blocking solution (PBS con-
taining 1% BSA) for 30 min and then PBST twice for 5
min. All slides were incubated first with 2% goat serum
in blocking solution for 30 min, then with a 1:200 dilu-
tion of polyclonal iNOS antibody (eBioscience, San
Diego, CA) at room temperature for 1 h. The slides
were further developed using HPR EnVisionTM system
(Dako, Glostrup, Denmark). Subsequently, peroxidase-
binding sites were determined by staining with 3,3’-dia-
minobenzidine tetrahydrochloride (Dako). Eventually,
Mayer’s hematoxyline was used for counterstaining.

Western blotting analysis

Shaven abdominal skins of female C57BL/6JNarl mice
were not treated or topically treated with vehicle (acetone,
200 pl/site) or TPA (10 nmol in 200 pl acetone/site) at
indicated time points or treated first with TPA for 10 min,
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then with the indicated concentrations of BrD1 at the indi-
cated time points. Abdominal skin samples were collected,
homogenated and lysed to prepare total proteins. Protein
samples were subsequently resolved by SDS-PAGE using a
gradient gel. The resolved proteins were transferred to a
PVDF Immobilon-P membrane (Millipore, Bedford, CA.),
and the membrane was blocked with 5% non-fat dry milk
in PBST buffer (phosphate-buffered saline (PBS) contain-
ing 0.1% Tween 20) for 60 minutes at room temperature.
The membranes were incubated overnight at 4°C with
commercially available antibodies (1:1000 dilutions). Load-
ing of equal amounts of protein was assessed using mouse
B-actin. The blots were rinsed three times with PBST buf-
fer for 5 minutes. Washed blots were incubated with
HRP-conjugated secondary antibody (1:100,000 dilution),
then washed again three times with PBST buffer. The
transferred proteins were visualized with an enhanced che-
miluminescence (ECL) detection kit (Amersham Pharma-
cia Biotech, Buckinghamshire, UK). Quantification of
bands was performed using Image ] software.

Statistical analysis

Statistical analyses were performed with GraphPad
Prism software, version 5. Data are presented as mean *
SD and statistical significance was determined by a one-
way ANOVA followed by Tukey multiple comparison
tests. Means were considered significantly different if
the P value was less than 0.05.

Results

Excavatolide B (BrD1) effectively inhibits TPA-induced
vascular permeability in mouse skin

Acute inflammatory reactions are known to include
changes in vascular permeability, edema and cellular infil-
tration [18]. In order to evaluate the anti-inflammatory
effect of BrD1 on TPA-induced dermatitis in a murine
model, we initially evaluated the possible inhibitory effect
of BrD1 on TPA-induced vascular permeability. Abdo-
mens of female C57BL/6 mice were treated topically with
TPA (10 nmol) or acetone (vehicle control) for 6 h, or
treated first with TPA for 10 min and then with the indi-
cated concentrations of BrD1 for 6 h. Mice were injected
for 20 min via the tail vein with 100 ul of 1% Evans blue.
Consistent with previous reports, TPA strongly increased
vascular permeability (Figure 1A, B and 1C). Topical appli-
cation of BrD1 after TPA treatment significantly inhibited
the TPA-induced vascular permeability. The level of inhi-
bition was approximately 58% (0.5 mg/site of BrD1) and
77% (1 mg/site of BrD1) (Figure 1C).

BrD1 inhibits TPA-induced edema

Since increased vascular permeability is one of factors con-
tributing to the formation of edema, we next evaluated
whether BrD1 inhibited formation of edema in TPA-
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induced inflammation by examining H&E-stained longitu-
dinal sections of skin samples. As seen in Figure 2, topical
application of TPA markedly increased the skin thickness,
especially in the hypodermal layer as compared with that
of untreated or vehicle control groups. Treatment with
BrD1 after TPA application substantially decreased the
skin thickness, indicating BrD1 can effectively inhibit
TPA-induced edema in mouse abdominal skin.

BrD1 suppresses TPA-induced COX-2 and iNOS expression
in mouse skin

Cyclooxygenase-2 (COX-2) and inducible nitric oxide
synthase (iNOS) are key mediators of various inflamma-
tion and immunity activities. A relatively high level of
COX-2 and iNOS expression can be observed in skin
during the acute phase of inflammation [19]. To exam-
ine whether BrD1 can also inhibit COX-2 and iNOS
expression in TPA-inflamed skin, we applied BrD1 topi-
cally to TPA-treated skin for 6 h, and then stained it
immunohistochemically with anti-COX-2 and anti-iNOS
antibodies. As seen in Figure 3A and 3B, TPA treatment
stimulated COX-2 expression in the epidermal layer,
and TPA treatment strongly stimulated iNOS produc-
tion in the epidermal and dermal layers as compared
with those of the untreated or vehicle control-treated
mice. Furthermore, BrD1 treatment reduced the TPA-
induced COX-2 expression in the epidermis (Figure 3A)
and markedly reduced the TPA-induced iNOS expres-
sion in the epidermal and dermal layers of test mouse
skin (Figure 3B).

BrD1 inhibits TPA-induced MMP-9 expression in mouse
skin

Matrix metalloproteinases (MMPs) play a crucial role in
many physiological and pathological processes through
remodeling extracellular matrix tissues [20]. Matrix
metalloproteinase-9 (MMP-9), a gelatinase which has a
key role in inflammatory response, is activated in skin
during tissue injury [21]. In order to evaluate the anti-
inflammatory effect of BrD1 on MMP-9 activation in
TPA-inflamed skin, BrD1 was topically applied after
TPA treatment for 24 h. As seen in Figure 4A, TPA
treatment vigorously stimulated MMP-9 protein expres-
sion as compared with untreated or vehicle control
groups. On the other hand, BrD1 significantly inhibited
TPA-induced MMP-9 protein expression in a dose-
dependent manner. Inhibition with BrD1 treatment (1
mg/site/mouse) was up to a maximum 89%. Inhibiton of
TPA-induced MMP-9 expression by BrD1 treatment
could also be readily observed at the mRNA level. As
shown in Figure 4B, TPA strongly stimulated MMP-9
mRNA expression and BrD1 applied topically after TPA
treatment also significantly inhibited MMP-9 mRNA
expression in a dose-dependent manner. BrD1 treatment
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Figure 1 Briarane-type diterpene 1 (BrD1) inhibits TPA-induced vascular permeability in mouse skin. Abdominal skins of female C57BL/6
mice were treated topically with TPA (10 nmol) or acetone (vehicle control) for 6 h, or treated with TPA for 10 min and then treated for 6 h
with the indicated concentrations of BrD1. One percent Evans blue dye (100 ul) was injected into mouse tail veins for 20 min. (A) Photograph of
mouse abdominal skins subjected to various treatments and vascular permeability test. (B) Photographs of the dermal (internal) sides of
representative abdominal skins subjected to the above treatment and test. (C) Evans blue extravasation in test skins was determined by assay of
optical density at 620 nm. *, P < 0.05, and **, P < 0.01 versus LPS control. Data are representative of two independent experiments.

(1 mg/site/mouse) inhibited MMP-9 mRNA expression
up to a maximum 82%.

BrD1 inhibits TPA-stimulated NF-xB and Akt activation in
mouse skin

The roles of the Akt and Erk signaling pathways in
inflammatory activities in mouse skin have been well-
demonstrated. We therefore evaluated whether BrD1
could interfere with TPA-induced activation of Akt and
Erk in inflamed skin. In order to assess the kinetics of
Akt and Erk activation, abdominal skin was stimulated
with TPA for 0.5 to 8 h. A high level of phosphorylation
of Akt and Erk was observed at 2 h after TPA treatment
(Figure 5A). We therefore chose 2 h as the time point at
which to assess the BrD1-associated signaling transduc-
tion activity in TPA-inflamed skin. The immuno-asso-
ciated transcription factor NF-xB is a key upstream
mediator of iNOS and MMP-9 expressions, and is known
to be involved in various cutaneous inflammatory

responses. We thus determined the phosphorylation level
of Akt, Erk, NF-xB and IxBa in skins subjected to differ-
ent treatments. TPA treatment strongly stimulated the
phosphorylation of Akt, Erk, NF-xB and IxBa (Figure
5B). BrD1 seemed to inhibit TPA-induced Erk phosphor-
ylation only slightly. However, BrD1 treatment effectively
inhibited the phoshporylation of NF-xB, and also signifi-
cantly inhibited the TPA-stimulated phosphorylation of
Akt and IxBa.. These results indicate that BrD1 can sig-
nificantly inhibit TPA-stimulated NF-~B and Akt activa-
tion in test mouse skin.

BrD1 inhibits LPS-induced IL-6 and TNF-o. expression in
mouse bone marrow-derived dendritic cells

Several studies have reported that the secretion of speci-
fic cytokines, including IL-13, TNF-a and IL-6 by kera-
tinocytes and various immune cells is involved in
cutaneous inflammation [2,5,6]. In order to investigate
the anti-inflammatory effect of BrD1 on cytokine
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Figure 2 BrD1 inhibits TPA-induced edema. Abdominal skins of female C57BL/6 mice were topically treated as described above in Figure 1.
Skin biopsies of abdominal skins were collected and stained with hematoxylin and eosin. a, b, ¢ and d indicate the tissue layers: epidermis,
dermis, hypodermis and peritoneum, respectively. Data are representative of two independent experiments.
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expression, mouse bone marrow-derived dendritic cells
were used to evaluate the inhibitory effect of BrD1 on
LPS-induced expressions of TNF-a and IL-6. In our
time-course study for expression of TNF-a and IL-6,
after LPS stimulation, a high expression of TNF-o and
IL-6 was maintained at 24 h (Figure 6A). We therefore
chose 24 h as the time point at which to assess the
expression of TNF-o and IL-6. BrD1 treatment strongly
inhibited IL-6 expression in LPS-stimulated dendritic
cells, and inhibited TNF-a expression to a much lesser
extent (Figure 6B).

Structure-activity relationship of BrDs that underlies
inhibition of LPS-induced IL-6 expression

In order to explore the relationship between the chemi-
cal structures of the BrDs and their inhibition of inflam-
mation, immature DCs were co-treated for 24 h with
LPS and BrDs (BrD1-BrD8) at 20 uM. Initially, IL-6 was
used as a target to evaluate the inhibitory activity of the

BrDs. As seen in Table 1 and Figure 7A, the BrDs
exhibited a broad spectrum of inhibition in test mouse
DCs. The range of inhibition was between 97.6% (BrD1)
and 18.7% (BrD8). Importantly, MTT cell viability assays
showed that treatment with BrDs at the test concentra-
tion of 20 uM for 24 h had no significant effect on the
cytotoxicity of test DCs (data not shown). As shown in
Table 1 and Figure 6, BrD1 to BrD6 with 8, 17-epoxides
inhibited IL-6 expression more strongly than BrD7 and
BrD8 without 8, 17-epoxides indicating that the 8, 17-
epoxides of BrDs are crucial for the inhibition of LPS-
induced IL-6 expression by BrDs. In addition, BrD5 and
BrD6 with a-functional groups at C-12 were found to
inhibit IL-6 expression less vigorously than BrD1 to
BrD4 without a-functional groups at C-12, suggesting
that the o position of the functional group at C-12 may
have impaired the inhibitory capacity of these com-
pounds (Table 1 and Figure 7A). Furthermore, replace-
ment of the C-12 hydroxyl group in BrD2 to BrD4 with
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Figure 3 BrD1 suppresses TPA-induced iNOS expression in mouse skin. Abdominal skins of female C57BL/6 mice were topically treated as
described in Figure 1. Longitudinal tissue sections of abdominal skins were immunostained for COX-2 (A) and iNOS (B) proteins and counter-
stained with hematoxylin, as described in Materials and Methods. Positive staining for COX-2 and iNOS are visualized as brownish cells in the
dermis and epidermis (arrow). Data are representative of two independent experiments.
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longer ester chains gradually decreased the level of inhi-
bition of IL-6 expression by these BrDs, suggesting that
the steric hindrance of longer acyloxyl groups can inhi-
bit the capacity of the briarane-type diterpenes to inhibit
of LPS-induced IL-6 expression (Table 1 and Figure 7A).

Steric hindrance of 12-acyloxyl substituents reduces the
inhibitory bioactivity of briarane-type diterpenes

Our results suggest that steric hindrance of the 12-acy-
loxyl substituents of BrDs decreases their inhibitory
activity. In order to confirm this SAR, we semi-synthe-
sized several analogues of BrD1 by replacing the hydro-
xyl group at C-12 with longer acyloxyl groups (Cs, Cq,
C;, and C;p) (Figure 7B). We then examined the inhibi-
tory effect of BrD1 and these BrD1 analogues (BrD1-5C,
BrD1-6C, BrD1-7C and BrD1-10C) on cytokine secre-
tion activity in LPS-stimulated mature DCs. BrD1 signif-
icantly inhibited the expression of cytokine IL-6 in LPS-
stimulated, mature DCs (Figure 7C). This inhibitory
activity gradually decreased when the hydroxyl group at

C-12 was replaced by longer acyloxyl groups (Cs to
Ci0), confirming that steric hindrance of 12-acyloxyl
substituents can effectively suppress the capacity of
BrDs to inhibit LPS-induced IL-6 expression. These
results thus strongly suggest that the 8, 17-epoxide and
12-hydroxyl groups of BrD1 are instrumental in confer-
ring the BrD-mediated inhibitory activity in mouse bone
marrow-derived dendritic cells.

Discussion

The immune response in skin tissues is systemic and
sophisticated. A variety of vaccination strategies are
administered through the skin to produce antigen-speci-
fic immune responses and protect the host [22-25]. The
skin is also a useful organ for drug delivery, for example,
certain pharmaceuticals can be delivered via the use of a
transdermal patch. On the other hand, excessive inflam-
mation or inadequate immune response in skin can lead
to various cutaneous diseases such as allergic reactions,
psoriasis and even skin cancers. Our laboratories have
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Figure 4 BrD1 inhibits TPA-induced MMP-9 expression in mouse skin. (A) Abdominal skins of female C57BL/6 mice were treated topically
with TPA (10 nmol) or acetone (vehicle control) for 24 h, or treated with TPA for 10 min and then treated for 24 h with indicated
concentrations of BrD1. Skin samples were collected, processed and analyzed for MMP-9 protein expression using western blot analysis. Mouse
B-actin was used as a control. (B) Abdominal skins of female C57BL/6 mice were topically treated as described in Figure 1. MMP-9 mRNA
expression was determined using RT-PCR assay. The ratio is presented as the value relative to the intensity of TPA-treated control skin. Data are
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previously demonstrated that a number of phytochem-
icals derived from medicinal plants or fruits exhibit
strong anti-inflammatory effects either on TPA-induced
inflammatory mediators or UVB radiation-induced cyto-
kine and MMP expression in mouse skin tissues
[7,11,26]. In the present study, we showed that a group
of marine briarane-type diterpenes, particularly BrD1,
can strongly suppress TPA-induced inflammation and
dermatitis in a mouse skin model. In combination with
our previous studies [7,10,11,26], the current study leads
us to suggest that a specific combination of several skin
model/system test sets [27] may warrant a systematic
evaluation for use as the first in vivo platform for drug
screening or efficacy verifications.

Epidermis tissue contains keratinocytes, Langerhans
cells and other cells types. When the epidermis is
exposed to 12-O-tetradecanoylphorbol-13-acetate
(TPA), keratinocytes and Langerhans cells are stimu-
lated through activation of protein kinase C (PKC)
resulting in activation of PI3K/Akt, Erk and NF-xB sig-
naling transduction pathway [28-30]. This activation of
Akt and NF-xB activity via TPA stimulation was faith-
fully observed in the present investigation (Figure 5A),
providing a solid baseline from which to investigate the
effect of BrD1. Akt and NF-xB play crucial roles in the
activation of key inflammatory enzymes such as induci-
ble nitric oxide synthase (iNOS) and cyclooxygenase-2
(COX-2) [31-33]. Interestingly, our results showed that

the expression of COX-2 and iNOS was detected mainly
in the epidermis after TPA stimulation, indicating that
COX-2 and iNOS were mainly released from epidermal
cells (likely mainly from keratinocytes) (Figure 3A and
3B). In addition, we also observed considerable sporadic
expression of iNOS in the dermal layer after TPA treat-
ment, and BrD1 strongly inhibited this iNOS expression
in both the epidermal and dermal layers (Figure 3B).
The specific cell types in these two tissue layers that are
responsive to BrD1 inhibition effect need to be further
investigated. The major dermis cell types are fibroblasts,
macrophages and fabric basophils (mast cells). During
inflammation, immune cells, mainly neutrophils, can
effectively infiltrate into the dermal layer. Keratinocytes,
mast cells and infiltrated neutrophils in skin have been
reported to secrete MMP-9 for tissue remodeling in
response to inflammation [34-36]. MMP-9 has further
been reported to be directly mechanistically involved in
the increases of vascular permeability [37-39]. Our
results (Figure 4A and 4B) show that BrD1 can effec-
tively inhibit TPA-induced MMP-9 expression. We sug-
gest that this may be partly due to the inhibitory effect
of BrD1 on vascular permeability and edema. Together,
our present results suggest that BrD1 may suppress the
inflammatory responses mediated by different types of
cells present in different tissue layers of the skin. Our
data (Figure 5A and 5B) also indicate that the molecular
mechanisms responsible for the anti-inflammatory
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Figure 5 BrD1 inhibits TPA-induced NF-kB and Akt activation in mouse skin. (A) Mouse skin was untreated or TPA-treated for indicated
time points, and test skin samples were collected and analyzed for phosphorylation levels of Akt and Erk1/2. (B) Abdominal skins of female
C57BL/6 mice were treated topically with TPA (10 nmol) or acetone for 2 h or treated with TPA for 10 min and then treated for 2 h with the
indicated concentrations of BrD1 for 2 h. Skin samples were collected, processed and analyzed for the phosphorylation levels of Akt, NF-xB, xBo
and Erk1/2 by Western blot analysis. Mouse B-actin was used as a control. The ratio is presented as the value relative to the intensity of TPA-
treated control skin. Data are representative of two independent experiments.
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effects of BrD1 may involve the Akt and NF-xB signal-
ing transduction pathway.

The pro-inflammatory cytokines TNF-a and IL-6,
released by dendritic cells, are key mediators of inflam-
matory and immune responses. It is known that expres-
sion of these cytokines is controlled by TLR4-stimulated
activation of NF-xB via regulation of the transcriptional
activities of these cytokines in monocytes and dendritic
cells. The results from this study show that BrD1 can
inhibit the activation of NF-xB in TPA-induced mouse
dermatitis (Figure 5B) and in LPS-stimulated mouse

BMDCs (data not shown). However, BrD1 exhibited a
differential inhibitory effect on TNF-a and IL-6 in LPS-
induced mouse BMDCs. As seen in Figure 6B, BrD1
strongly inhibited LPS-induced IL-6 expression but only
partially inhibited LPS-induced TNF-a expression. In
order to distinguish between TNF-o. and IL-6 inhibition,
a time course study of LPS-induced TNF-a and IL-6
expression was performed. After LPS stimulation, a rela-
tively high level of expression of TNF-a was detected
between 1 h and 2 h post-treatment, and an elevated
level of IL-6 expression was detected between 2 h and 4
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Figure 6 BrD1 inhibits LPS-induced IL-6 and TNF-o. expression in mouse BMDCs. (A) BMDCs from C57BL/6 mice were treated with LPS
(100 ng/ml) for 1 to 24 h. (B) BMDCs from C57BL/6 mice were treated with LPS (100 ng/ml) for 24 h or LPS plus BrD1 at different
concentrations for 24 h. Levels of IL-6 and TNF-a proteins in supernatants of conditioned media were analyzed by ELISA. *, P < 0.05, and ***, P <
0.001 versus LPS control. Data are representative of two independent experiments.

12 24 (h)

400+

h post-treatment (Figure 6A). Our previous findings and
those of others have shown evidence of post-transcrip-
tional regulation of TNF-o pre-mRNA in resting T-
cells, B-cells and monocytes [40-42]. LPS-induced
mRNA splicing can lead to massive and rapid expres-
sion of TNF-oo mRNA in monocytes [42]. The differen-
tial effect on expression of TNF-a and IL-6 in LPS-
activated BMDCs seen in this study may have implica-
tions for the future use of BrD1 in pharmaceutical
applications. The detailed molecular mechanisms
responsible for this differential effect warrant further
investigation.

Conclusions

In summary, we conclude that marine briarane-type
diterpene (BrD1) can not only effectively suppress
TPA-induced vascular permeability and edema, but
can also decrease the expression of COX-2, iNOS and
MMP-9, and reduce the activation of NF-xB and Akt
in test mouse skin tissues. In addition, BrD1 can also
strongly inhibit IL-6 expression in LPS-stimulated
BMDCs, a key immunoregulatory cell type. The 8, 17-

Table 1 Inhibitory effect of briarane-type diterpenes from
marine coral Briareum excavatumon on LPS-induced IL-6
in mouse BMDCs

IL-6 (% of LPS control)

Code Name (20 pM) % (Mean * SD)

BrD1 Excavatolide 24 + 093
B

BrD2 Excavatolide 225+ 45
K

BrD3 Excavatolide 262 + 40
’:

BrD4 Briaexcavatolide 347 £ 86
R

BrD5 Excavatolide 370+ 96
z

BrD6 Briaexcavatolide 56.6 + 2.1
B

BrD7 Briaexcavatolide 61.3 £ 9.5
K

BrD8 Briaexcavatolide 813+ 19
H

IL-6 in supernatants of diterpenes BrD1 to BrD8 were determined by using a
standard sandwich ELISA. Results are expressed as a percentage of LPS-
induced IL-6 expression.
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including BrD1-5C, BrD1-6C, BrD1-7C and BrD1-10C. Immature DCs were co-treated with LPS and BrDs at 20 uM. The level of IL-6 proteins in
supernatants was determined using ELISA. ***, P < 0.001 versus LPS+BrD1 treatment. Data are representative of two independent experiments.
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epoxide of the BrDs apparently contribute stereoche-
mically to the inhibition of IL-6 expression, and steric
hindrance of the 12-acyloxyl substituents was found to
effectively reduce the inhibitory bioactivity of BrD1. In
view of the unique structure and specific active func-
tional group of BrD1, we suggest this marine natural
product should be further evaluated for development
as an immunotherapeutic agent for control of inflam-
mation and skin diseases, and for other healthcare
applications.
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