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Drosophila king tubby (ktub) mediates light-
induced rhodopsin endocytosis and retinal

degeneration

Shu-Fen Chen, Yu-Chen Tsai and Seng-Sheen Fan’

Background: The tubby (tub) and tubby-like protein (tulp) genes encode a small family of proteins found in many
organisms. Previous studies have shown that TUB and TULP genes in mammalian involve in obesity, neural
development, and retinal degeneration. The purpose of this study was to investigate the role of Drosophila king
tubby (ktub) in rhodopsin 1 (Rh1) endocytosis and retinal degeneration upon light stimulation.

Results: Drosophila ktub mutants were generated using imprecise excision. Wild type and mutant flies were raised
in dark or constant light conditions. After a period of light stimulation, retinas were dissected, fixed and stained
with anti-Rh1 antibody to reveal Rh1 endocytosis. Confocal and transmission electron microscope were used to
examine the retinal degeneration. Immunocytochemical analysis shows that Ktub is expressed in the rhabdomere
domain under dark conditions. When flies receive light stimulation, the Ktub translocates from the rhabdomere to
the cytoplasm and the nucleus of the photoreceptor cells. Wild type photoreceptors form Rh1-immunopositive
large vesicles (RLVs) shortly after light stimulation. In light-induced ktub mutants, the majority of Rh1 remains at the
rhabdomere, and only a few RLVs appear in the cytoplasm of photoreceptor cells. Mutation of norpA allele causes

degeneration.

massive Rh1 endocytosis in light stimulation. In ktub and norpA double mutants, however, Rh1 endocytosis is
blocked under light stimulation. This study also shows that ktub and norpA double mutants rescue the
light-induced norpA retinal degeneration. Deletion constructs further demonstrate that the Tubby domain of the
Ktub protein participates in an important role in Rh1 endocytosis.

Conclusions: The results in this study delimit the novel function of Ktub in Rh1 endocytosis and retinal
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Background

The tubby (tub) and tubby-like protein (tulp) genes en-
code a small family of proteins found in many organ-
isms, including Drosophila [1], C. elegans [2,3], Gallus
[4], Arabidopsis [5] and other plants [6]. Four members
of Tubby proteins are in mammals, including TUB,
TULP1, TULP2 and TULP3 [7,8]. Mutation in mouse
tubby gene leads to photoreceptor and cochlear degener-
ation and adult-onset obesity [9-11]. Target deletion of
tulpl in mice causes photoreceptor cell degeneration
[12,13]. Mutation of tulp3™'~ in mice causes defects in
neural tube development, increases neuronal apoptosis,
and eventually leads to embryonic lethality [14]. Human
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mutations of TULP1 gene result in retinitis pigmentosa,
an inherited disease that typically causes retinal degener-
ation [15-17]. Taken together, these studies suggest an
important role of Tub family proteins in retinal develop-
ment and maintenance. Structural analysis indicates that
the C-terminus of TULP proteins are highly conserved,
and contain a DNA binding domain. The N-terminus of
TULP proteins contain the remnants of the transactiva-
tion domains of many transcription factors, suggesting
that TULPs may act as transcription factors [18,19]. Sub-
sequent studies have shown that TULPs bind to actin
and Dynamin-1, suggesting their function in regulating
vesicle transport in photoreceptor cells [20,21]. Mutation
of tulpl in mice causes mislocalization of rhodopsin
in photoreceptor cells and abnormal formation of
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photoreceptor synapse [22,23]. According to recent
studies, Tulps have an extracellular function in which
they act as phagocytosis ligands for retinal pigment epi-
thelium [24,25]. The role of Tulp as phagocytosis ligand
occurs through binding to the MerTK, a TAM receptor
tyrosine kinase subfamily [26]. Together, these studies
have shown important functions of Tulps in multicellu-
lar organisms. However the molecular and cellular func-
tions of tubby family proteins remain obscure. The
Drosophila visual system is an excellent model for study-
ing retinal degeneration [27-29]. The Drosophila genome
contains one gene, king tubby (ktub), belonging to the
tub gene family. Immunocytochemical study has indi-
cated that ktub is expressed in the developing nervous
system, suggesting its role in neural development [1].
Whether ktub participates in retinal degeneration and
mediates phototransduction cascade remains unclear.
Drosophila photoreceptor cells contain specialized por-
tions of the plasma membrane, called the rhabdomeres.
Each rhabdomere consists of numerous tightly packed
microvilli, rhodopsin photopigments, and other compo-
nents of the phototransduction cascade [30-32]. The
phototransduction cascade in Drosophila begins with the
light activation of rhodopsin (Rh1). Once activated, Rhl
binds to heterotrimeric G protein, which catalyzes the
exchange of GDP for GTP on the G, subunit (Gqq). The
Gqq subunit then activates retinal-specific phospholipase
C and causes the opening of the cation-specific channels
Trp and Trpl. This eventually leads to the depolarization
of the photoreceptor cell and neurotransmitter release.
After light activation, rhodopsin kinase and arrestin in-
activate the rhodopsin activity [33-35]. Arrestin and AP-
2 are critical factors for receptor into clathrin mediate
endocytosis [36]. Studies in Drosophila have demon-
strated that visual arrestin (Arrl) is essential for light-
induced Rh1 internalization [37] and Arr2 is involved in
rhodopsin endocytosis under certain pathological situa-
tions [38-40].

This article studies how Ktub participates in Drosoph-
ila phototransduction and retinal degeneration. Results
show that subcellular localization of Ktub in adult
photoreceptor cells is light-dependent. In kfub mutant,
rhodopsin endocytosis is blocked under light conditions.
In addition, retinal degeneration is evident in ktub mu-
tant flies reared in constant light. In norpA mutant,
massive endocytotic rhodopsin vesicles appear in the
cytoplasm. However, the rhodopsin vesicles appear less
in the cytoplasm of norpA and ktub double mutant. To
further investigate what domain in Ktub protein is
involved in rhodopsin endocytosis, this study uses dele-
tion constructs to examine its ability to mediate endo-
cytosis. Results show that the C-terminal Tubby domain
is required for endocytosis. Taken together, these results
provide new evidence showing that the Ktub protein is

Page 2 of 12

required for mediating rhodopsin endocytosis and retinal
degeneration.

Methods

Drosophila stocks and transgenic constructions
Drosophila melanogaster w''*® was used as wild type. P-
element insertion fly, P(GSV6)17325/SM was obtained
from the Szeged Drosophila stock center and was used
for imprecise excision to isolate ktub mutants. norpA®,
Df (2R) ED3791, and rhi1-Gal4 were obtained from the
Bloomington stock center. All flies were reared on
standard corn meal agar media at 25°C in dark, 12D/
12 L light or constant-light condition. The ambient light
used to create light-induced condition was approxi-
mately 500 lux. To make transgenic flies that expressed
full-length, N-terminus (N-ktub) and C-terminus (C-
ktub) of Ktub protein, we amplified ktub cDNA by Pfu-
Turbo DNA polymerase from EST clone, RE38560, using
the following primers: ktub (5-ATGTCCGGAATCAA
CAGTCGTAATCAG-3; 5-TCACTC GCAGGCTATTT
TGC-3); N-ktub (5-ATGTCCGGAATCAACAGTCGT
AATCAG-3, 5-ATTGCCGATGACATCTCCCTCGGA
C-3); C-ktub (5-ATCGACCAGTTCGTGATGC AAC-3;
5-TCACTCGCAGGCTATTTTGC-3). The PCR frag-
ments were subcloned into plUAST-Flag expression vec-
tor [41] to make pUAST-Flag-ktub, pUAST- Flag- N-
ktub, and pUAST- Flag-C-ktub. All constructions were
verified by DNA sequencing before germ-line trans-
formation. P-element mediated germ-line transform-
ation [42] produced more than three independent
lines. The transgenic lines were crossed to rhil-Gal4
for further analysis.

Generation of ktub mutant fly by P-element imprecise
excision

To generate ktub mutants, we crossed P(GSV6)
17325/SM to a transposase expressing line (A2-3)
to induce P-element excision. After imprecise exci-
sion, flies with white eye were crossed to Df (2R)
ED3791 to isolate the ktub /Df (2R) ED3791 adult
flies. To identify the mutation site, two primers:
5-GGCAATTTCAATCGAATTTACC-3 and 5-ATCGAA
GTAACTCGAAGGACCC-3’ were used to amplify the 5
region of the ktub gene. A total of 200 P-excision lines
were screened to obtain six lines with DNA deletion in
the ktub gene. DNA sequence confirmed two alleles,
ktub®and ktub'">™ have deleted the ATG translation
start site, and these two alleles were used for further
analysis.

Antibody production and Western blotting

To generate antibody against Ktub protein, PCR
was used to amplify ktub fragments by two pri-
mers: 5-ATGGAGGCCTACATCCGGCAGAAGAG-3;
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5-TCACTCGCAGGCTATTT TGCCATCGA- 3. The
PCR products were cloned into pQE-31 vector (Qiagen,
Valencia, CA). After IPTG induction, a 56 kDa Ktub re-
combinant protein was isolated from E. coli and used as
antigen to inject rabbit. After several boosts, the serum
was collected to test its immunoreactivity. For Western
blotting, adult eyes were collected and homogenized
with a homogenization buffer (50 mM HEPES, 50 mM
KClL, 1 mM EGTA, 1 mM MgCl,, 10% Glycerol) with
protease inhibitors. The cell extract was then centrifuged
at 1500 g for 10 min at 4°C and subjected to SDS-PAGE
to separate the protein. SDS-PAGE and Western blotting
were performed with slight modification from previous
studies [43]. After electrophoresis, the proteins were
transferred to a PVDF membrane. To perform immune
blotting, the membrane was blocked with 5% non-fat
milk in TBST (10 mM Tris, pH7.4, 150 mM NaCl, with
0.1% Tween20). The membrane was then incubated with
anti-Ktub antiserum (1:2000) at 4°C overnight. The fol-
lowing day, the membrane was washed three times with
TBST and then incubated with peroxidase conjugated
goat anti-rabbit IgG (1:10000). After incubation with the
secondary antibody, the membrane was washed and pro-
cessed for chemiluminescent reaction (Milipore, Billerica
MA). The signals were detected with a CCD camera
(Fuji film, Japan).

Immunohistochemistry

To perform immunohistochemical staining, dissected
eyes were fixed in 4% paraformaldehyde for 20 minutes.
After three washes and blocking, the eyes were incu-
bated with primary antibody. The primary antibodies
used in this study included rabbit anti-Ktub (1:500) and
mouse anti-Rh1l (4C5) from Developmental Studies
Hybridoma Bank (1:100). Rhodamine or FITC conju-
gated phalloidin (Sigma-Aldrich, St. Louis, MO), which
stained the F-actin, was used to label the cell boundary.
Stained eye discs were washed three times with PBST
(137 mM NaCl, 2.68 mM KCI, 10 mM Na,HPO,,
1.7 mM KH,PO,, pH7.2 with 0.2% TritonX-100), and
then incubated with secondary antibodies. The second-
ary antibodies used in this study were conjugated
with Alex 488 (Invitrogen Molecular Probes, Carlsbad,
CA), Texas Red, or Cy5 (Jackson Immuno Research
Lab. West Grove, PA). After three washes, eyes were
mounted in a mounting medium (0.25% n-propyl gallate,
50% glycerol in PBS, pH 8.6) and examined using a Zeiss
LSM 510 confocal microscope. Images were processed
using Adobe Photoshop 6.0 software.

Electron microscopy

Transmission electron microscopy was performed as
previously described [44]. Flies were injected with a fixa-
tive (2% paraformaldehyde and 2% glutaraldehyde in
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0.1 M cacodylate buffer). After dissection, the eyes were
incubated in fixative for another 2 hours and postfixed
with 2% OsO, in 0.1 M cacodylate buffer at 4°C. The
eyes were subjected to series dehydration with alcohol
and embedded in Epox-812 (EMS). The tissues were
then sectioned using a Reichert ultramicrotome and
observed using a Tecnai spirit G2 (FEI) transmission
electron microscope.

Results

Isolation of ktub mutants and their phenotypic analysis
Studies have shown that the mutation of human
and mouse tubby family genes results in retinal degener-
ation, late onset obesity, and cochlear degeneration
[12,13,15,45,46]. However, the biological functions of
tubby genes remain obscure. Using a Basic Local Align-
ment Search Tool (BLAST) search, we identified Dros-
ophila king-tubby (ktub) gene as a potential homologue
of human and mouse Tubby genes. Drosophila ktub is
located on chromosome 2R, 57B20-57C2. Genomic an-
notation indicates ktub contains two transcripts and two
polypeptides. The long and the short forms of Ktub pro-
teins are only 17 amino acids difference in their N-
terminus (Additional file 1: Figure S1). This study takes
the advantage of Drosophila genetics and uses it to study
the cellular functions of Tubby proteins in phototrans-
duction and retinal degeneration. To study the function
of ktub, we used imprecise excision to generate ktub de-
letion mutants from P(GSV6)17325 flies (Figure 1A).
Screening approximately 200 P-excision lines revealed
two mutant alleles (ktub®3 ktub'’>?%) whose transla-
tional initiation site ATG of long form was deleted
(Figure 1B). Western blot analysis showed that Ktub ex-
pression in all mutants was significantly reduced, but
not completely absent. The remained protein in the
Western blot is possibly due to the expression of short
form Ktub since our antibody cannot distinguish the
long form and the short form of Ktub (Figure 1C). Im-
munocytochemistry further confirmed the Western blot
data, showing that Ktub expression decreased signifi-
cantly in the adult eyes of ktub mutants (Figure 1D).
These results show that we have successfully isolated
two ktub mutant alleles, which were used for further
functional studies.

The subcellular localization of Ktub in Drosophila eye is
light-dependent

To study the function of Ktub in phototransduction and
retinal degeneration, we generated antibodies against
Ktub protein. The full length of Ktub recombinant pro-
tein was expressed using bacteria, and purified using
SDS-PAGE. The purified protein was injected into rab-
bits to generate anti-Ktub antibody. Western blot ana-
lysis revealed that anti-Ktub antibody recognized a band
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Figure 1 Isolation of ktub mutants by P-element excision. Schematic drawing indicates the gene structure of Drosophila king tubby (ktub)
gene (A). The P-element (GSV6)17325 is inserted in the first exon of ktub gene. Fly genomic annotation indicates that ktub gene has two
transcripts and two polypeptides; the long form (L) and short form (S), which are activated by distinct promoters. Arrows indicate two PCR
primers, which were used to screen for the imprecise excision of ktub mutants (B). ktub’ "> and ktub®> mutants deleted 1.6 kb and 1.3 kb,
including the translation start site of the long form transcript, respectively (B). Western blotting indicates the reduced of Ktub expression in

D

Actin/Ktub

mutant flies (C

, arrowhead). Confocal images reveal that the expression of Ktub decreases significantly in mutant photoreceptor cells (D). Green
indicates anti-Ktub antibody, and red is rhodamine-phalloidin. The scale bar is 10 pum.

at 50 kDa (Additional file 2: Figure S2A). The 50 kDa
band disappeared when anti-Ktub antibody was pre-
incubated with Ktub recombinant protein. These results
indicate that the anti-Ktub antibody produced in this ex-
periment is specific to Ktub protein (Additional file 2:
Figure S2A). We also used this antibody to probe Dros-
ophila S2 cells. When S2 cells incubated with anti-Ktub
antibody, the Ktub protein appeared primarily in the nu-
cleus (Addtional file 2: Figure S2B). When S2 cells were
probed with anti-Ktub antibody, which has been pre-
incubated with Ktub recombinant protein, no nuclear
signals were detected. This result further indicates the
specificity of anti-Ktub antibody generated in this study.
To further study the function of Ktub in Drosophila
photoreceptor cells, the adult wild type eye was stained
with anti-Ktub antibody. When wild type flies were
reared in the dark, the Ktub primarily appeared in the
rhabdomere domain of photoreceptors R1 to R6
(Figure 2A’). No obvious Ktub signals were detected in
the R7 rhabdomere, suggesting its specific function in
the photoreceptors R1 to R6. When the dark-reared wild

type flies were exposed to light for a few minutes, the
rhabdomere localization disappeared, and the Ktub be-
came localized in the cytoplasm instead (Figure 2B’).
Under normal 12 hours light/12 hours dark conditions,
the Ktub was mainly localized at the nucleus, with some
in the cytoplasm of the photoreceptor cells (Figure 2C’).
The specific cellular localization of Ktub in the photo-
receptor cells between light and dark conditions suggest-
ing its important function in phototransduction.

Knockdown ktub expression resulted in light-dependent
retinal degeneration

Previous studies have found that mutation of mouse
tubby caused late-onset and light-dependent retinal de-
generation [47]. In this study, we examined whether mu-
tation of Drosophila ktub causes retinal degeneration.
To test this hypothesis, we reared wild type and ktub
mutant flies under constant light (500 lux) or dark for
6 days. We dissected and stained the eyes with
rhodamine—phalloidin to observe whether loss of ktub
leads to retinal degeneration. Confocal images revealed
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Actin
Figure 2 Expression of Ktub in Drosophila photoreceptor cells. Drosophila photoreceptor cells were stained with rhodamine-phalloidin and
anti-Ktub antibody. When flies were reared under dark conditions, the majority of Ktub appeared in the rhabdomere domain (A’, arrows). The
subcellular localization of Ktub is light sensitive. When flies were removed from the dark and immediately dissected in the light, the Ktub became
to localize in the cytoplasm of photoreceptor cells (B). When flies were exposed to light (500 lux) for 12 hours, the majority of Ktub appeared in

the nucleus with some in the cytoplasm (C). A, B and C were stained with rhodamine-phalloidin (red) A, B and C" were stained with anti-Ktub
antibody (green). A", B" and C" are merged images. The scale bar is 10 um.

wild type ktub™*

Figure 3 Light-induced retinal degeneration in ktub mutant. Young adults flies (<1 day) were reared in the dark (A, B), or under constant
light (500 lux) (C, D) for 6 days. Confocal images indicate that photoreceptor cells arrayed as a typical trapezoid, and the rhabdomere appeared
as an oval shape in the wild type and ktub mutant in dark condition (A, C). When flies were reared under constant light for 6 days, wild type
photoreceptor cells remained normal (B), but the ktub mutant photoreceptor cells showed significant degeneration (D). The photoreceptor R7
was not affected, and remained as in the wild type (D, arrows). The scale bar is 5 um.
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that photoreceptor cells in wild type fly were organized
in a typical trapezoid structure for both dark and light
conditions (Figure 3A, C). In ktub mutant flies, the rhab-
domeres remained intact in flies reared in the dark con-
ditions (Figure 3B). However, the retinal degeneration
become evident in photoreceptors R1 to R6 in kfub mu-
tant flies which were reared in light conditions for 6 days
(Figure 3D). Generally, the structure of the rhabdomeres
appeared loose and lost their integrity when compared
to the wild type (Figure 3C, D). The photoreceptor R7
was normal in ktub mutants. This observation is consist-
ent with the expression of Ktub only found in photore-
ceptors R1 to R6 (Figure 2A’). To further investigate the
function of Ktub in retinal degeneration, a transmission
electron microscope was used to examine the ultrastruc-
ture of the photoreceptor cells in both wild type and
ktub mutant flies. In light-reared conditions, the wild
type photoreceptor cells consisted of regular ommatidia
arrays. In a tangential section, seven photoreceptor cells
were found in an ommatidium. Each photoreceptor cell
had a distinguished photosensitive structure, the rhabdo-
mere, which is organized by microvillar structures
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(Figure 4A, B). When ktub mutant was reared in light
conditions for 6 days, the rhabdomere in photoreceptor
Rl to R6 displayed short microvilli and distorted
catacomb-like structures at the microvillar base. In
addition, we often found that involution of the microvil-
lar membrane into the photoreceptor cell in these mu-
tant cells (Figure 4C, D). These observations suggest
that kzub plays a critical role in maintaining rhabdomere
integrity during phototransduction.

Drosophila ktub participates in rhodopsin endocytosis

Previous research has shown that blocking endocytosis
causes intensive retinal degeneration [48]. To determine
whether the retinal degeneration in kfub mutant is
caused by the blocking of endocytosis, this study ana-
lyzes the Rhl endocytosis in flies containing a mutation
in the ktub gene. When dark-reared wild type received
three hours of light stimulation, a significant amount of
the Rhl-immunopositive large vesicles (RLVs) were
found in the cytoplasm (Figure 5A). In ktub mutants,
however, the Rhl was mainly localized in the rhabdo-
meric domain, and only a few RLVs were found in the

is 2 pm (A, €) and 1 um (B, D).

Figure 4 TEM revealed retinal degeneration in ktub mutant. Transmission electron micrographs indicated the photoreceptor cells of wild
type and ktub flies raised under constant light for 6 days. Figures show one ommatidium of the wild type (A) and the ktub mutant retina (C).
Higher magnification shows single rhabdomere in the wild type (B) and the ktub mutant (D). In the wild type, the rhabdomeres were organized
as a regular array of microvilli. The plasma membrane at the base of the rhabdomere appeared as a catacomb-like extracellular space (B, arrows).
In the ktub mutant, the rhabdomeres displayed short microvilli, distorted catacomb-like structures at the base, and curtains of microvillar
membranes involuting into the photoreceptor cell (C, D). The photoreceptor R7 as not affected, and remained as in the wild type. The scale bar

N
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Figure 5 ktub participates in light-induced rhodopsin endocytosis. Confocal images reveal rhodopsin localization in the photoreceptor cells
of the wild type and ktub mutants. The flies received three hours of light stimulation and then investigated the endocytosis of rhodopsin in the
photoreceptor cells. In the wild type (A), a significant amount of RLVs appeared in the cytoplasm of photoreceptor cells. In the ktub mutants (B),
the majority of rhodopsin remained in the rhabdomere, with only few RLVs appearing in the cytoplasm of photoreceptor cells. Statistical analysis
indicates the number of rhodopsin vesicles in the cytoplasm was significantly different in wild type and ktub mutants (three experiments,
Student’s t-test *** indicating p < 0.001). The scale bar is 10 um. )

Actin

wild type

Figure 6 Loss of ktub blocked norpA-mediated rhodopsin endocytosis. Confocal images show the ability of rhodopsin endocytosis in wild
type (A), norpA” (B) and norpA“/ktub”g"’doub\e mutants (C). Flies were reared in the dark and then followed by light exposure (500 lux) for
24 hours. After light exposure, some RLVs were detected in the cytoplasm of the wild type photoreceptor cells (A). The norpA** mutants
exhibited massive RLVs in the cytoplasm of photoreceptor cells (B). However, the massive RLVs were rescued by loss of ktub in norpA®® mutants
(C). A, B and C were stained with Anti-Rh1antibody (green), and A’, B’ and C’ were stained with rhodamine-phalloidin (red).
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cytoplasm (Figure 5B). The failure to completely block
the Rhl endocytosis in ktub mutant may be due to the
present of short form of Ktub. Quantitative analysis
showed the number of RLVs in the wild type and ktub
mutant were significantly different suggesting an import-
ant role of ktub gene in mediating rhodopsin endocytosis
(Figure 5C).

ktub rescues norpA mediated endocytosis and retinal
degeneration

Drosophila norpA is the eye-specific phospholipase C
gene. Mutation of norpA causes massive internalization
of rhodopsin from rhabdomere to the cell body [49]. To
further investigate the role of ktub in endocytosis, this
study examines whether ktub blocks norpA-mediated
endocytosis. In wild type flies, the localization of Rh1 oc-
curred mainly in the rhabdomere after 24 hours of light
treatment (Figure 6A). In norpA mutants, the majority
of rhodopsin disappeared in the rhabdomere, but formed
RLVs in the cytoplasm after light stimulation
(Figure 6B). In contrast, the majority of Rhl in the ktub
and norpA double mutants remained in the rhabdomere
which was same as found in the wild type (Figure 6C).
To further investigate the role of the ktub on norpA
mediated retinal degeneration, wild type and mutant flies
were treated with constant-light for 6 days to determine
their retinal morphology. The wild type retina contains
highly organized ommatidia; each ommatidium contains
seven photoreceptor cells in a tangential section. The
photosensitive structures, the rhabdomeres faced each
other and arranged as a typical trapezoid (Figure 7A).
The organization of photoreceptor cells in norpA
mutants was severely distorted. Most of the rhabdo-
meres disappeared after 6 days of light stimulation
(Figure 7B). In ktub and norpA double mutants, the
organization of photoreceptor cells was almost same as
in the wild type. The rhabdomeres appeared distinct and
were arrayed as a typical trapezoid (Figure 7C). These
observations demonstrate that the norpA mutant
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phenotype can be rescued by loss-of-function ktub allele
suggesting that an important function of ktub in mediat-
ing rhodopsin endocytosis.

Tubby domain is critical for mediating rhodopsin
endocytosis

To further investigate the molecular mechanism of Ktub
protein in endocytotic pathway, transgenic flies expres-
sing different ktub deletion constructs were prepared to
identify the specific protein domain involved in rhodop-
sin endocytosis. To achieve this goal, we generated
three transgenic flies which express the full-length
(UAS-Flag-ktub), the N-terminus (UAS- Flag-N-ktub)
and the C-terminus (UAS- Flag-C-ktub) of the Ktub pro-
tein. Their ability to mediate rhodopsin endocytosis was
tested by activating these transgenic flies with the photo-
receptor specific driver, the ri1-Gal4. In control experi-
ment, we crossed rhl-Gal4 flies into wild type and
found the rhodopsin was mainly localized in the rhabdo-
mere after 3 hours of light activation (Figure 8A). Under
the same conditions, the rhodopsin has formed the RLVs
and been moved into the cytoplasm of the photorecep-
tor cells in rh1-Gal4/UAS-Flag-ktub (rhl > ktub) flies
(Figure 8B). When the N-terminus of Ktub protein was
deleted in rhi1-Gal4/UAS-Flag-C-ktub (rhl > C-ktub)
flies, the RLVs were also found in the cytoplasm, sug-
gesting the endocytosis of rhodopsin into the cytoplasm
of the photoreceptor cells (Figure 8C). When the C-
terminus of Ktub was deleted in r11-Gal4/UAS-Flag-N-
ktub (rhl > N-ktub) flies, few RLVs were found in the
photoreceptor cells, suggesting the suppression of endo-
cytotic process (Figure 8D). These results suggest that
the C-terminus Tubby domain is required for mediating
rhodopsin endocytosis.

Discussion

The results of this study demonstrate that Drosophila
ktub plays an important role in mediating Rh1 endocyto-
sis. Immunocytochemical analysis reveals that Ktub is

wild type

A

norpA*

Figure 7 Loss of ktub blocked norpA-mediated retinal degeneration. Confocal images show photoreceptor cells stained with rhodamine-
phalloidin in wild type (A), norpA* (B) and norpA®/ ktub'™** double mutants (C). Wild type photoreceptor cells were arrayed as a typical
trapezoid in an ommatidum (A). The majority of photoreceptor cells were degenerated in norpA*mutant (B). In norpA®/ktub’’>*double mutants,
the retinal degeneration in norpA**mutant was rescued by loss of ktub gene (C). The scale bar is 10 um.

norpA*; ktub'%+
C
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Rh1

rh1>C-ktub rh1>ktub rh1-Gal4/+

_rh1>N-ktub

Figure 8 Tubby domain of Ktub is critical for mediating rhodopsin endocytosis. Confocal images show Rh1 endocytosis in photoreceptor
cells. Flies received light stimulation for three hours and then processed for immunostaining with anti-Rh1 antibody and rhodamine-phalloidin. In
wild type (A), some RLVs appeared in the cytoplasm of photoreceptor cells. In rh1 > ktub flies, massive RLVs appeared in the cytoplasm of
photoreceptor cells (B). rh1 > C-ktub flies, many RLVs appeared in the cytoplasm of photoreceptor cells (C). In rh1 > N-ktub flies, only a few RLVs
appeared in the cytoplasm of photoreceptor cells (D). The scale bar is 10 um.

primarily located in the rhabdomeric domain in the
dark. When the eye was exposed to light, the Ktub pro-
tein was immediately translocalized from the rhabdo-
mere to the cytoplasm of the photoreceptor cells. This
study further demonstrated that the subcellular expres-
sion pattern of the Ktub is correlated with Rhl expres-
sion, which is also internalized upon light stimulation.
The correlation of Ktub and Rhl expression in photo-
receptor cells suggests that these two molecules play

similar roles during phototransduction. To determine
whether Ktub regulates Rh1 internalization, we gener-
ated ktub mutants and assayed the role of Ktub in Rhl
endocytosis. Light-reared ktub mutant flies had signifi-
cantly fewer RLVs in the cytoplasm of the photoreceptor
than the wild type. In addition, light-stimulated ktub
mutant flies also exhibited a severe retinal degeneration
phenotype. To further demonstrate the role of ktub in
endocytosis, we examined its ability to suppress norpA-
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mediated endocytosis. Results clearly demonstrate that
ktub mutant blocked norpA-mediated endocytosis and
retinal degeneration. Previous research has intensively
studied the functions of Tub proteins in vertebrate sys-
tems. Several studies have shown that Tub and Tulp
proteins are involved in retinal degeneration, obesity,
and protein trafficking [19]. Studies also show that ret-
inal degeneration in tubby mice is regulated by caspase-
3 mediated pathway [47]. Currently, we do not know
whether the retinal degeneration in ktub mutant is
mediated by caspase-3 mediated pathway. However, pre-
vious studies show that the retinal degeneration in
norpA mutant is not regulated by caspase mediated
pathway [50]. The results in this study find that ktub
mutant could rescue norpA mutant phenotype suggest-
ing that the retinal degeneration in ktub mutant is not
through caspase mediated pathway. Thus, it will be
interested to study the molecular mechanism of Ktub in
mediated retinal degeneration. This study shows that
Ktub protein was mainly localized in the rhabdomeric
microvilli of dark-reared flies (Figure 2). When flies were
exposed to the light, the Ktub proteins translocated from
the rhabdomere to the cytoplasm of the photoreceptor
cells, suggesting that the function of Ktub is light-
dependent (Figure 2). In Drosophila eyes, the photo-
sensitive protein Rhl is localized in the rhabdomeric
microvilli in dark-reared flies. When flies receive light
stimulation, rhodopsin kinase phosphorylates the Rh1 at
its C-terminus [51,52] and then internalizes into the
cytoplasm of the photoreceptor cells (Figure 5 and [38]
). Arrestin 1 and arrestin 2 are required for Rhl endo-
cytosis upon light stimulation [37,53]. In the arrestins
mutant, Rh1l remains in the active stage in the photo-
transduction cascade. The consequence of active Rhl
accumulation causes photoreceptor cells to undergo
light-dependent retinal degeneration [54]. Previous stud-
ies have revealed massive Rhl endocytosis in norpA
mutants, and that the Rh1 endocytosis in norpA mutant
is blocked by the shi* mutant allele [38,55]. The current
study reveals that the formation of RLVs in ktub mutant
is less than that in wild type upon light stimulation
(Figure 5). The ktub/norpA double mutant also sup-
pressed Rhl endocytosis and retinal degeneration, fur-
ther supporting that Ktub regulates Rh1l endocytosis
(Figure 6). In mice, Dynamin-1 is colocalized with
TULP1 in the outer plexiform layer and the inner seg-
ments of retina [21]. Biochemical analysis demonstrates
that Dynamin-1 binds directly to TULP1[21]. Dynamin-
1 is a major component of vesicle formation in receptor
mediated endocytosis, synaptic vesicle recycling, and
vesicle trafficking in and out of the trans-Golgi network
[56-58]. This study shows that Ktub has a similar func-
tion to Dynamin-1 in blocking norpA-mediated massive
Rh1 endocytosis. Although this study does not provide
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evidence showing a direct interaction between Ktub and
Drosophila Dynamin, the idea that Ktub may bind to
Drosophila Dynamin is consistent with the observation
that Tub protein binds to Dynamin and regulates vesicle
transport in mice [21]. In addition, the TUB-1 protein in
C. elegans controls fat storage through the RAB-7
mediated endocytosis pathway [3]. Previous studies sup-
port the function of Ktub in mediating the endocytotic
pathway. Further research should test whether Ktub also
binds to Dynamin or whether it mediates the endo-
cytotic pathway through Rab-7.

To determine which domain of Ktub protein is
involved in endocytosis, this study uses Ktub deletion
constructions in which either the N-terminus or C-
terminus of Ktub protein was deleted. This study also
tests which constructs failed to mediate Rh1 endocytosis
in photoreceptor cells. Results show that the deletion of
the C-terminus in the Ktub protein blocked light-
induced Rh1 endocytosis (Figure 8). Structural analysis
indicates that the Tubby C-terminal domain binds to
double strand DNA and its N-terminal domain activates
transcription [18]. Previous studies have also shown an
unconventional secretion of Tubby and Tulpl, indicating
that they function as phagocytosis ligands for retinal pig-
ment epithelium and macrophage phagocytosis [24,25].
Further investigation reveals that Tubby and Tulpl act
as bridging molecules, as their N-terminal region func-
tions as an MreTK- binding domain and the C-terminal
region functions as a phagocytosis prey-binding domain
[26]. This study shows that the deletion of the Ktub C-
terminus blocked Rhl endocytosis, suggesting that the
C-terminus may contain an important domain for medi-
ating endocytosis. It is worth further investigation which
specific peptide sequence is involved in mediating endo-
cytosis. Because of the large fragment of deletion, it can-
not be ruled out the possibility that the results from the
deletion constructs are not physiological. Although the
role of the C-terminus of Ktub protein in endocytosis is
not completely clear, this study provides valuable infor-
mation to further investigate the function of Ktub in
endocytosis. Taken together, this study provides substan-
tial support for the function of Drosophila ktub in medi-
ating Rhl endocytosis and retinal degeneration under
light-dependent conditions.

Conclusions

This study examined the function of Drosophila ktub
gene in phototransduction. Immunocytochemical studies
showed the subcellular localization of Ktub in photo-
receptor cells is light-dependent. In ktub mutants, the
rhodopsin endocytosis is blocked under light stimula-
tion. We also observed a retinal degeneration phenotype
in ktub mutants. Using deletion constructs, we found
the C-terminus of Ktub is required for Rh1 endocytosis.
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Taken together, these results delimit the novel function
of Ktub in Rh1 endoytosis and retinal degeneration.

Additional files

Additional file 1: Figure S1. Sequence alignments ofDrosophila Ktub-
long (Ktub-L) form and short (Ktub-S) form. Two peptide sequences were
aligned using Expasy. The peptide sequence between long form and
short form match perfectly with the exception of an additional 17 amino
acids in the N-terminus of the long form protein. The blue line indicates
the Tubby domain.

Additional file 2: Figure S2. Determining the specificity of anti-Ktub
antibody. Western blot analysis reveals that anti-Ktub antibody recognizes
a 50 kDa protein (A, arrow). When antibody was preincubated with Ktub
recombinant protein, the 50 kDa band disappeared (A). Confocal images
show Ktub expression in the Drosophila S2 cells (B). When Drosophila S2
cells were probed with anti-Ktub antibody, the antibody detected a
nuclear signal in the S2 cells. The nuclear signal disappeared when
antibody was preincubated with Ktub recombinant protein. Propidium
iodide (PI) stains for nucleus (red). The scale bar is 10 pm.
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