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Abstract

Background: Lipopolysaccharide (LPS) is recognized as the most potent microbial mediator presaging the threat of
invasion of Gram-negative bacteria that implicated in the pathogenesis of sepsis and septic shock. This study was
designed to examine the microRNA (miRNA) expression in whole blood from mice injected with intraperitoneal
LPS.

Methods: C57BL/6 mice received intraperitoneal injections of varying concentrations (range, 10–1000 μg) of LPS
from different bacteria, including Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa, Salmonella enterica,
and Serratia marcescens and were killed 2, 6, 24, and 72 h after LPS injection. Whole blood samples were obtained
and tissues, including lung, brain, liver, and spleen, were harvested for miRNA expression analysis using an miRNA
array (Phalanx miRNA OneArrayW 1.0). Upregulated expression of miRNA targets in the whole blood of C57BL/6 and
Tlr4−/− mice injected with LPS was quantified using real-time RT-PCR and compared with that in the whole blood
of C57BL/6 mice injected with lipoteichoic acid (LTA) from Staphylococcus aureus.

Results: Following LPS injection, a significant increase of 15 miRNAs was observed in the whole blood. Among
them, only 3 miRNAs showed up-regulated expression in the lung, but no miRNAs showed a high expression level
in the other examined tissues. Upregulated expression of the miRNA targets (let-7d, miR-15b, miR-16, miR-25,
miR-92a, miR-103, miR-107 and miR-451) following LPS injection on real-time RT-PCR was dose- and time-dependent.
miRNA induction occurred after 2 h and persisted for at least 6 h. Exposure to LPS from different bacteria did not
induce significantly different expression of these miRNA targets. Additionally, significantly lower expression levels of
let-7d, miR-25, miR-92a, miR-103, and miR-107 were observed in whole blood of Tlr4−/− mice. In contrast, LTA
exposure induced moderate expression of miR-451 but not of the other 7 miRNA targets.

Conclusions: We identified a specific whole blood–derived miRNA signature in mice exposed to LPS, but not to
LTA, from different gram-negative bacteria. These whole blood-derived miRNAs are promising as biomarkers for LPS
exposure.
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Background
Lipopolysaccharide (LPS) from gram-negative bacteria
is a potent inflammatory stimulus and is often admin-
istered as an infectious insult. LPS-induced Toll-like
receptor 4 (TLR4) signal transduction activates well-
characterized pathways, including those involving nu-
clear factor-kappa B (NF-κB) and activator protein 1
(AP-1), leading to the production of downstream pro-
inflammatory cytokines, chemokines, or leukocyte ad-
hesion molecules [1,2]. When an initial host defense
to an infection magnifies, sepsis can develop, leading
to severe adverse outcomes such as organ dysfunction
and death [3]; therefore, early diagnosis of bacterial
infection is clinically important.
MicroRNAs (miRNAs) are approximately 22-nt–long

small regulatory RNA molecules that modulate the ac-
tivity of specific mRNA targets and play important
roles in a wide range of physiologic and pathologic
processes [4,5]. Alteration of miRNA expression pro-
files has been observed in various diseases, including
cancer, cardiovascular diseases, neurological diseases,
and several inflammatory and autoimmune diseases.
Further, differential expression of miRNAs may help
distinguish between disease states [6]. miRNA expres-
sion regulated by LPS target genes reportedly contri-
butes to inflammatory phenotypes [7]. Furthermore,
some studies have identified miRNAs as important
regulators of immune responses [8-10] and as fine-
tuners of Toll-like receptors (TLRs) [11-13]. Although
ribonuclease is present in both plasma and serum,
extracellular miRNAs circulate in the blood of both
healthy and diseased patients and are remarkably
stable, making their isolation and analysis easy [14].
Biochemical analyses indicate that miRNAs are resist-
ant to RNase activity, extreme pH and temperature,
extended storage, and large numbers of free-thaw
cycles [15,16]. In contrast to mRNAs, miRNAs are
themselves active moieties and should thus reflect
physiological alterations more directly [17]. Compared
to protein-based blood biomarkers, most circulating
miRNAs can be easily detected by PCR, and low abun-
dance can significantly hinder the detection of some
protein-based biomarkers [18]. Additionally, protein-
based biomarkers may have different post-translational
modifications that can affect the accuracy of measure-
ment, while miRNAs are relatively homogeneous [18].
Moreover, with the possibility to analyze multiple miR-
NAs in parallel to increase sensitivity and specificity
by using complex miRNA expression patterns, miR-
NAs might constitute very useful and accessible diag-
nostic tools in a cluster pattern [15,17]. The present
study was designed to profile miRNA expression levels
in whole blood during in vivo exposure to LPS in
mice.
Methods
Animal experiments
C57BL/6 mice were purchased from BioLasco (Taiwan).
Tlr4−/− (C57BL/10ScNJ) mice were purchased from
Jackson Laboratory (Bar Harbor, ME, USA). The mice
were maintained in a pathogen-free environment and
had access to food and water ad libitum. LPS from dif-
ferent bacteria, including Escherichia coli serotype 026:
B6 (catalog no. L3755), Klebsiella pneumonia (L1519),
Pseudomonas aeruginosa (L9143), Salmonella enterica
serotype Enteritidis (L6761), and Serratia marcescens
(L6136) were purchased from Sigma (St. Louis, MO,
USA). When the mice gained a weight of 20–35 g and
became 4–6 weeks old, they were intraperitoneally
injected with 10, 100, 1000 μg of LPS reconstituted in
100 μL of phosphate-buffered saline (PBS). Animals
were sacrificed at 2, 6, 24, and 72 h after LPS injection.
The control group was injected with 100 μL PBS. Whole
blood was drawn and tissues, including lung, brain, liver
and spleen, were harvested for miRNA expression ana-
lysis. For comparison, intraperitoneal injections of 10,
100, 1000 μg of lipoteichoic acid (LTA) from Staphylo-
coccus aureus (L2515, Sigma) were performed; animals
were killed 6 h after injection, and whole blood was
drawn. All housing conditions were established and sur-
gical procedures, analgesia, and assessments were per-
formed according to the Animal Care Guidelines and
protocols approved by the Animal Care Committee at
Chang Gung Memorial Hospital.

RNA isolation and preparation
For miRNA detection, whole blood samples (1 mL per
mouse) were collected into tubes containing EDTA.
Total RNA was extracted from whole blood and har-
vested tissue by using the RNeasy Mini kit (Qiagen,
Hilden, Germany). Purified RNA was quantified by
measuring the absorbance at 260 nm by using an SSP-
3000 Nanodrop spectrophotometer (Infinigen Biotech-
nology, Inc., City of Industry, CA, USA). For miRNA
array analyses, the quality of purified RNA was assessed
using a Bioanalyzer 2100 (Agilent Technologies, Santa
Clara, CA, USA). Total RNA (2 μg) was reverse tran-
scribed into cDNA by using the TaqMan miRNA Re-
verse Transcription Kit (Applied Biosystems, Foster
City, CA, USA). Target miRNA was reverse transcribed
using sequence-specific stem-loop primers. miRNA
cDNA (10 ng) for each target was used for real-time
PCR.

miRNA microarray analysis
The Mouse & Rat miRNA OneArrayW 1.0 (Phalanx
Biotech Group, Hsinchu, Taiwan) contains a total of
2,319 probes, including 135 experimental control
probes and 728 unique miRNA probes from mouse
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(miRBase Release 12.0) and 348 from rat (miRBase Re-
lease 12.0). Mouse genome-wide miRNA microarray
analysis was performed by Phalanx Biotech. Briefly,
fluorescent targets were prepared from 2.5-μg total
RNA samples by using the miRNA ULSTM Labeling Kit
(Kreatech Diagnostics, Amsterdam, Netherlands). La-
beled miRNA targets enriched using NanoSep 100K
(Pall Corporation, Port Washington, NY, USA) were
hybridized to the Mouse & Rat miRNA OneArrayW

1.0 with Phalanx hybridization buffer by using the
OneArrayW Hybridization Chamber. After overnight
hybridization at 37°C, non-specific binding targets were
by 3 washing steps (Wash I: 37°C, 5 min; Wash II:
37°C, 5 min and 25°C, 5 min; and Wash III: rinse
20 times). The slides were dried by centrifugation and
scanned using Axon 4000B scanner (Molecular Devices,
Sunnyvale, CA, USA). The Cy5 fluorescent intensities
of each spot were analyzed using GenePix 4.1 software
(Molecular Devices). The signal intensity of each spot
was processed using the R program. We filtered out
spots for which the flag was <0. Spots that passed the
criteria were normalized using the 75% media scaling
normalization method. Normalized spot intensities were
converted into gene expression log2 ratios for the con-
trol and treatment groups. Spots with log2 ratios ≥ 1 or
log2 ratio ≤−1 and P-value< 0.05 are analyzed further.
These differentially expressed miRNAs were subjected
to hierarchical cluster analysis using average linkage
and Pearson correlation as a measure of similarity. The
GEO accession number for the microarray data is
GSE36472.
Quantification of miRNA expression
miRNA expression was quantified by real-time RT-PCR
using Applied Biosystems 7500 Real-Time PCR System
(Applied Biosystems) to verify the miRNA targets with
up-regulated expression that were detected through the
miRNA array from whole blood following injection of
LPS different doses (10, 100, and 1000 μg) or at indi-
cated survival times (2, 6, 24, and 72 h). Expression of
the miRNAs in whole blood following intraperitoneal
injections of LTA at doses of 10, 100, and 1000 μg were
measured for comparison. Expression of each miRNA
was represented relative to the expression of U6 small
nuclear RNA (RUN6B) as an internal control. We calcu-
lated the fold-expression of induction as the relative ex-
pression value obtained from 6 samples in comparison
with that from the control group. Intergroup group
comparisons were performed using analysis of variance
(ANOVA) and an appropriate post hoc test to compen-
sate for multiple comparisons (SigmaStat; Jandel, San
Rafael, CA, USA). P-values< 0.05 were considered
significant.
Results
Up-regulated miRNA targets in microarray analysis
Expression of miRNA was considered significantly differ-
ent when values for all 5 samples from the whole blood,
lung, brain, liver, and spleen of experimental mice at 6 h
after 100 μg LPS (L3755) injections were more than
double of those for the controls (n = 3 for each sub-
group). The hierarchical cluster analysis of all significant
miRNAs is shown in Figure 1, which illustrates miRNAs
differentially expressed in different tissues. Unsupervised
hierarchy clustering was used to separate different sam-
ple tissues into different groups. The up-regulated
miRNA targets more than double of those of the con-
trol is shown in Table 1. 15 miRNAs (miR-223, miR-155,
miR-21, miR-21*, miR-667, let-7a, miR-146a, miR-107,
miR-34b-5p, miR-146b, miR-133a, miR-15a, miR-191, miR-
103, and miR-16) showed significantly up-regulated
expression in the lung tissue. No miRNA showed upreg-
ulated expression in the brain. Only miR-292-5p and
miR-155, miR-21*, and miR-101a showed upregulated
expression in the liver and spleen, respectively. There
were 15 miRNAs showed significantly increased expres-
sion in the whole blood. Among the miRNAs with upre-
gulated expression levels in the whole blood, only
4—miR-16, miR-103, miR-107, and let-7a—showed high
expression in the lung. However, no miRNA with up-
regulated expression levels in the whole blood showed
high expression levels in other tissues, including the
brain, liver, or spleen. The down-regulated miRNA tar-
gets more than double of those of the control is shown
in Table 2. There were 23, 10, 8, and 51 miRNAs showed
significantly down-regulated expression in the lung, liver,
spleen and blood sample, respectively. No miRNA
showed upregulated expression in the brain. Among the
miRNAs with down-regulated expression levels in the
whole blood, miR-690, miR-34b-3p, and miR-34b-3p
also showed low expression in the liver, lung, and spleen,
respectively. Besides, miR-466d-5p showed low expression
in both lung and spleen. Most of the down-regulated
miRNAs in the whole blood did not have similar low ex-
pression levels in the tissues of lung, brain, liver, and
spleen.

Expression profiles of miRNAs
Considering the signaling pathway which induces the
miRNA transcription directly upon LPS stimulation and
suitable number of miRNA targets for biomarkers, ex-
pression of miRNAs in whole blood following LPS injec-
tion was quantified using real-time RT-PCR to verify
selected up-regulated, but not down-regulated, miRNA
targets with at least 4-fold increase in expression (let-7d,
miR-15b, miR-16, miR-25, miR-92a, miR-103, miR-107,
and miR-451). The above-mentioned 8 miRNAs showed
approximately 5- to 12-fold increase in expression 6 h



Figure 1 Hierarchical cluster analysis of significant expression of miRNA in lung, brain, liver, spleen, and whole blood of C567BL/6
mice 6 h after 100-μg LPS injection. The indicated miRNA name by the corresponding gene probe in Phalanx array could be found in:
http://www.phalanx.com.tw/Products/MRmiOA_Probe.php.
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after 100 and 1000 μg LPS (L3755) injection (Figure 2A).
Following injection with 10 μg of LPS, increased expres-
sion was observed in the 8 miRNAs, but expression
levels of only let-7d, miR-16, and miR-103 were signifi-
cantly higher than the control (Figure 2A). In contrast,
upon 100 ug and 1000 ug of LPS injection, all these 8

http://www.phalanx.com.tw/Products/MRmiOA_Probe.php


Table 1 Up-regulated miRNA targets (more than double of those of the control) in samples from lung, brain, liver,
spleen, and whole blood of experimental mice 6 h following 100-μg LPS (L3755) injection

Lung Fold (log2) Brain Fold (log2) Liver Fold (log2) Spleen Fold (log2) Blood Fold (log2)

miR-223 2.65 nil miR-292-5p 1.07 miR-155 1.76 miR-15b 3.65

miR-155 2.07 miR-21* 1.60 miR-451 3.63

miR-21 1.38 miR-101a 1.03 miR-16 3.43

miR-21* 1.32 miR-103 2.74

miR-667 1.20 miR-107 2.28

let-7a 1.18 let-7d 2.23

miR-146a 1.12 miR-92a 2.07

miR-107 1.12 miR-25 2.05

miR-34b-5p 1.08 let-7b 1.98

miR-146b 1.07 let-7a 1.97

miR-133a 1.07 let-7c 1.80

miR-15a 1.04 let-7i 1.69

miR-191 1.03 miR-652 1.62

miR-103 1.02 miR-92b 1.60

miR-16 1.01 miR-590-5p 1.17

miRNA microRNA; LPS lipopolysaccharide.
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miRNAs (let-7d, miR-15b, miR-16, miR-25, miR-92a,
miR-103, miR-107, and miR-451) had a significant ex-
pression than the control (Figure 2A). Therefore, 100 ug
of LPS was chosen for injection in the subsequent ex-
periment and we found the induction of the above-
mentioned 8 miRNAs was evident as early as 2 h and
persisted for at least 6 h following injection with 100 ug
of LPS (Figure 2B). At 24 h, only miR-25 and miR-92a
continued to be significantly expressed in the blood. No
up-regulation of these 8 miRNA targets was detected 72
h after LPS injection. Additionally, no significant differ-
ence was observed between groups 6 h after exposure to
100 μg LPS (Figure 3).

miRNA expression in Tlr4 knockout mice
To investigate the role of the TLR4 receptor in inducing
expression of the miRNA targets, expression of let-7d,
miR-15b, miR-16, miR-25, miR-92a, miR-103, miR-107,
and miR-451 in the whole blood of Tlr4−/− mice 6 h
after intraperitoneal injection of 100 μg LPS (L3755) was
measured against that from the whole blood of Tlr4−/−

mice injected with PBS. In TLR4 receptor knockout
mice, significantly lower expression of let-7d, miR-25,
miR-92a, miR-103 and miR-107 was observed following
LPS treatment (Figure 4). The expression of these 8
miRNAs was not significantly different between control
C57BL/6 and Tlr4−/− mice.

miRNA expression after LTA injection
To investigate that whether lipoteichoic acid (LTA) ori-
ginating from gram-positive bacteria induces expression
of let-7d, miR-15b, miR-16, miR-25, miR-92a, miR-103,
miR-107, and miR-451, whole blood was drawn at 6 h
following intraperitoneal injections of 10, 100, or 1000
μg LTA from S. aureus for real-time PCR. The results
showed that LTA only moderately induced miR-451 ex-
pression at concentrations of 100 and 1000 μg. Notably,
LTA did not up-regulate the expression of the other 7
miRNA targets, and decreased the expression levels of
let-7d, miR-15b, miR-16, miR-103, and miR-107 at the
various concentrations tested (Figure 5).

Discussion
In humans and other mammals, innate immunity gener-
ally preserves host integrity with respect to the molecu-
lar components of invading microbial pathogens
through pattern recognition receptors (PRRs). PRRs are
germ line-encoded receptors that sense specific
pathogen-associated molecular patterns (PAMPs), such
as LPS, and activate responses in cells against the patho-
gens. While TLR4 recognizes LPS, TLR2, in association
with TLR1 or TLR6, recognizes LTA originating from
gram-positive bacteria [19]. LPS and LTA induce similar
inflammatory responses, and their activation results in
either symptoms of sepsis or shock. However, while
there are similarities between these responses, signaling
and sensing of LPS and LTA differ significantly. Bacterial
LPS consists of a hydrophobic lipid A domain, an oligo-
saccharide core, and a distal polysaccharide (the O anti-
gen) [20]. The lipid A moiety alone is sufficient for
activating the innate immune response; adaptive (anti-
body) responses are generated against the O antigen



Table 2 Down-regulated miRNA targets (more than double of those of the control) in samples from lung, brain, liver,
spleen, and whole blood of experimental mice 6 h following 100-μg LPS (L3755) injection

Lung Fold (log2) Brain Fold (log2) Liver Fold (log2) Spleen Fold (log2) Blood Fold (log2)

miR-698 −2.12 nil miR-130a −2.92 miR-468 −1.35 miR-1195 −3.05

miR-467b* −1.78 miR-126-3p −2.75 miR-672 −1.27 miR-667 −2.38

miR-466b-3-3p −1.69 miR-193 −2.55 miR-214* −1.21 miR-690 −2.31

miR-376a −1.61 miR-690 −2.06 miR-466d-5p −1.17 miR-880 −2.30

miR-211 −1.53 miR-805 −1.92 miR-466b-5p −1.10 miR-34b-3p −2.10

miR-466a-3p −1.50 miR-221 −1.34 miR-18b −1.08 miR-709 −1.96

miR-471 −1.49 miR-29b −1.33 miR-16* −1.04 miR-468 −1.79

miR-875-3p −1.46 miR-146a −1.27 miR-669e −1.00 miR-1186 −1.68

miR-493 −1.45 miR-17 −1.21 miR-710 −1.67

miR-694 −1.41 miR-22 −1.16 miR-1897-5p −1.65

miR-704 −1.39 miR-466j −1.63

miR-574-3p −1.26 miR-155 −1.59

miR-485* −1.25 miR-294* −1.58

miR-470 −1.23 miR-1898 −1.55

miR-466d-5p −1.21 miR-380-3p −1.54

let-7a* −1.19 miR-703 −1.52

miR-34b-3p −1.17 miR-342-3p −1.51

miR-293 −1.14 miR-466d-5p −1.51

miR-1902 −1.13 miR-206 −1.48

miR-494 −1.09 miR-678 −1.47

miR-467f −1.08 miR-691 −1.44

miR-204 −1.07 miR-532-5p −1.44

miR-294 −1.06 miR-685 −1.43

miR-1188 −1.42

miR-466f-5p −1.38

miR-483 −1.37

miR-326 −1.37

miR-380-5p −1.36

miR-495 −1.35

miR-680 −1.33

miR-141* −1.32

miR-467e* −1.32

miR-1896 −1.32

miR-193b −1.31

miR-99b* −1.31

miR-673-5p −1.30

miR-882 −1.30

miR-1895 −1.27

miR-133b −1.26

miR-491 −1.26

miR-214 −1.24

miR-339-5p −1.23

miR-467h −1.23
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Table 2 Down-regulated miRNA targets (more than double of those of the control) in samples from lung, brain, liver,
spleen, and whole blood of experimental mice 6 h following 100-μg LPS (L3755) injection (Continued)

miR-134 −1.22

miR-466h −1.21

miR-370 −1.20

miR-878-5p −1.20

miR-196a* −1.20

miR-150 −1.20

miR-133a −1.18

miR-186 −1.17

miRNA microRNA; LPS lipopolysaccharide.

Figure 2 (A) Dose- and (B) time-dependent upregulation of miRNA expression. Expression of representative up-regulated miRNAs (let-7d,
miR-15b, miR-16, miR-25, miR-92a, miR-103, miR-107, and miR-451) identified using miRNA microarray of whole blood using real-time RT-PCR.
Whole blood was drawn following injection of 10, 100, 1000 μg LPS; mice were killed at the indicated survival times (2, 6, 24, and 72 h). Bars
represent means ± SEM of 6 experiments; *, P< 0.05 vs. control; **, P< 0.01 vs. control.
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Figure 3 Expression of let-7d, miR-15b, miR-16, miR-25, miR-92a, miR-103, miR-107, and miR-451 from whole blood of C57BL/6 mice
based on real-time RT-PCR experiments 6 h after exposure to 100 μg LPS originating from different bacteria, including Escherichia coli
serotype 026:B6, Klebsiella pneumonia, Pseudomonas aeruginosa, Salmonella enterica, serotype Enteritidis, and Serratia marcescens.
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polysaccharide later during infection [1]. Lipid A con-
sists of a diglucosamine diphosphate head group substi-
tuted with 4–8 acyl chains in different bacterial species.
Nevertheless, many bacteria produce lipid A species that
are similar to E. coli lipid A, which contains a diglucosa-
mine diphosphate head group and 6 acyl chains, and are
powerful immunostimulants [1]. In this study, we
demonstrated that expression of multiple miRNAs (let-
7d, miR-15b, miR-16, miR-25, miR-92a, miR-103, miR-
107, and miR-451) is significantly altered in the whole
blood of mice after exposure to LPS in a dose- and
time-dependent fashion. LPS from different gram-
negative bacteria, including E. coli, K. pneumonia, P. aer-
uginosa, S. enterica, and S. marcescens, induced similar
up-regulation of all the miRNAs examined. miRNA
Figure 4 Expression of let-7d, miR-15b, miR-16, miR-25,
miR-92a, miR-103, miR-107, and miR-451 of whole blood from
C57BL/6 and Tlr4−/− (C57BL/10ScNJ) mice from real-time
RT-PCR experiments 6 h after exposure to 100 μg LPS; **,
P< 0.01 vs. control.
profiles from whole blood may be detectable during very
early stages following exposure to LPS, including as early
as 2 h after treatment. Additionally, miRNA targets were
not up-regulated following treatment with LTA. Thus,
this miRNAs expression signature may be useful in dif-
ferentiating infections caused by gram-negative and
gram-positive bacteria.
Despite accumulating evidence of miRNAs in the

blood and body fluids, the origin, and particularly, the
function of these circulating extracellular miRNAs
remains poorly understood [21]. Most circulating miR-
NAs are part of larger lipid or lipoprotein complexes,
such as apoptotic bodies, microvesicles, or exosomes,
and are highly stable [15,17,21]. Currently, little is
known regarding the biologic roles of these molecules at
distant sites in the body [22]. Extracellular miRNAs may
be mediators of cell–cell communication [23,24]. Previ-
ous studies have shown that circulating miRNAs in body
fluids and extracellular fluid compartments show
hormone-like effects, leading to widespread responses
within cells at some distance away from the secreting
cell [25]. Expression of circulating miRNAs is thought to
reflect extrusion of miRNAs from relevant remote tis-
sues or organs or disease processes [16]. However, it is
likely that peripheral blood miRNAs do not only reflect
miRNAs expressed in remote tissues [26]. Studies have
also demonstrated that nearly 30% of the released miR-
NAs in vitro and in vivo do not reflect the expression
profile found in donor cells, suggesting that specific
miRNAs are selected to be intracellularly retained or
released by exosomes [27]. Indeed, the result of this
study showed that miRNAs are differentially expressed
in blood and various tissues. Only 3 miRNAs with upre-
gulated expression (miR-16, miR-103, and miR-107) in
whole blood showed high expression in the lung, and no



Figure 5 Expression of let-7d, miR-15b, miR-16, miR-25, miR-92a, miR-103, miR-107, and miR-451 of whole blood from C57BL/6 mice
using real-time RT-PCR experiment 6 h after exposure to 10, 100, and 1000 μg LTA originating from Staphylococcus aureus; *, P< 0.05
vs. control; **, P<0.01 vs. control.
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miRNA in whole blood showed high expression in other
tissues, including brain, liver, or spleen. Additionally, fol-
lowing exposure to LPS, expression of only 5 miRNAs
(let-7d, miR-25, miR-92a, miR-103, and miR-107) was
significantly lower in TLR4 receptor knockout mice.
Among them, only miR-107 had been reported to be
associated with TLR4 upon LPS stimulation in the litera-
ture [28]. Let-7 family has been shown to function as a
tumor suppressor through regulating multiple oncogenic
signaling [29]. Knockdown of let-7d promote epithelial-
mesenchymal transition (EMT) traits and migratory/in-
vasive capabilities in oral squamous cell carcinoma cells
[29]. miR-25 were significantly upregulated in the serum
of patients with hepatitis B virus (HBV)-positive hepato-
cellular carcinoma [30]. MiR-92a appears to target
mRNAs corresponding to several proangiogenic proteins
and controls angiogenesis and functional recovery of is-
chemic tissues [31]. Overexpression of miR-92a
decreased the expression of the transcription factor
Krüppel-like factor 2 (KLF2), which is crucial for main-
taining endothelial function, and the KLF2-regulated
endothelial nitric oxide synthase and thrombomodulin
[31]. In a maternal and fetal liver of hepatitis B virus
(HBV) transgenic mouse model, expression of miR-92a
increased by more than 6-fold in the fetal livers and
implicated in HBV intrauterine infection [32]. The miR-
103 and miR-107 in the circulation have a crucial role in
regulating insulin and glucose homeostasis [33]. High
expression of miR-103 and miR-107 (miR-103/107) was
found in the presence of hypoxia, thereby potentiating
metastasis suppressors death-associated protein kinase
(DAPK) and Krüppel-like factor 4 (KLF4) downregula-
tion and hypoxia-induced motility and invasiveness of
colorectal cancer cell lines [34]. Serum miR-103 can also
serve as a potential diagnostic marker for breast
cancer [35]. Recently, TLR4 has been shown to in-
crease cyclin-dependent kinase 6 (CDK6) expression by
down-regulating miR-107 in macrophages [28], that ob-
servation seemed to be different from our study showing
an up-regulated miR-107 via TLR4 upon LPS treatment.
We speculated that the expression of miR-107 may be
contributed by other cells. However, the source of circu-
lating miRNAs is far from understood and yet to be
clarified. In addition, following exposure to LPS, expres-
sion of 3 miRNAs (miR-15b, miR-16, and miR-451) was
not significantly lower in TLR4 receptor knockout mice.
Notably, the levels of miR-16 and miR-451, both present
in significant levels in red blood cells, were the major
source of variation in miR-16 and miR-451 levels mea-
sured in the circulation [36]. Although a few articles
have suggested a TLR4-independent upon LPS stimula-
tion in the interleukin 1 (IL-1) signaling [37,38], given
the multiple systemic responses following in vivo admin-
istration of LPS, so far it is unclear whether this
observed up-regulation of miRNA expression is the
direct result of TLR4 signaling or events secondary to
systemic TLR4 activation. Whether there is a direct
TLR4-independent signal pathway in the induction of
miRNA expression upon LPS stimulation required fur-
ther investigation and validation.
Normalization of circulating miRNAs is critical for ob-

jectively evaluating their expression levels; however,
there are currently no known standard extracellular
housekeeping miRNAs that can be used for
normalization [21]. Although previous studies have
reported the use of miR-16 and miR-142-3p, which show
relatively stable expression in the serum, as endogenous
controls [39,40], it is unknown whether they are stable
in the circulation. In our study, miR-16 expression was
upregulated by approximately 5-fold following LPS
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treatment, preventing its use as an internal control.
Genes typically used for reference, such as RNU6B and
5S ribosomal RNA, were found to have less stable ex-
pression in serum samples. In contrast, expression of
whole blood–derived miRNAs was more stable and con-
sistent. Profiles of miRNAs from whole blood have been
examined previously [41-43]. Addition of synthetic miR-
NAs from other organisms such as Caenorhabditis ele-
gans in serum may be a useful approach for endogenous
control during qRT-PCR. However, additional studies
are necessary to develop an accurate normalization
protocol and empirical validation method for stable en-
dogenous control of miRNAs for each type of body
fluid [25].
Early diagnosis of bacterial infection is critical for pre-

venting further complications. Although microbiological
culture is the standard method for identifying infective
bacterial species, this technique is time-consuming,
which can delay treatment. Potential biomarkers include
acute phase protein, cytokines, and chemokines, which
are not sufficiently specific to differentiate between
gram-negative and gram-positive bacterial infection,
which is compounded by overlap with other inflamma-
tory diseases [44]. We identified whole blood–derived
miRNAs following LPS exposure as promising biomar-
kers; however, future studies should be performed to
clarify the origin and physiological role of circulating
miRNAs. Further investigation is required to understand
the expression of miRNAs in gram-negative or gram-
positive bacterial infection. Additionally, studies examin-
ing miRNA expression levels at different stages of infection
and intervention using antibiotic treatments are also
necessary.
Conclusion
We identified a specific whole blood–derived miRNA
signature in mice exposed to LPS, but not to LTA, from
different gram-negative bacteria.With a dose- and time-
dependentupregulated expression of the miRNA targets
(let-7d, miR-15b, miR-16, miR-25, miR-92a, miR-103,
miR-107 and miR-451) following LPS injection, these
whole blood-derived miRNAs are promising as biomar-
kers for LPS exposure.
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