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Absract

Background: Daidzein, a phytoestrogen found in isoflavone, is known to exert neurotrophic and neuroprotective
effects on the nervous system. Using primary rat dorsal root ganglion (DRG) neuronal cultures, we have examined
the potential neurite outgrowth effect of daidzein.

Methods: Dissociated dorsal root ganglia (DRG) cultures were used to study the signaling mechanism of daidzein-
induced neuritogenesis by immunocytochemistry and Western blotting.

Results: In response to daidzein treatment, DRG neurons showed a significant increase in total neurite length and
in tip number per neuron. The neuritogenic effect of daidzein was significantly hampered by specific blockers for
Src, protein kinase C delta (PKCS) and mitogen-activated protein kinase/extracellular signal-regulated kinase kinases
(MEK/ERK), but not by those for estrogen receptor (ER). Moreover, daidzein induced phosphorylation of Src, PKCS
and ERK. The activation of PKCS by daidzein was attenuated in the presence of a Src kinase inhibitor, and that of

signaling pathway.

ERK by daidzein was diminished in the presence of either a Src or PKCS inhibitor.
Conclusion: Daidzein may stimulate neurite outgrowth of DRG neurons depending on Src kinase, PKCS and ERK
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Background

Daidzein, found mainly in soy food products and herbs like
red clover [1,2], is one of the most studied and most potent
phytoestrogens. Phytoestrogens are estrogenic compounds
of plant origin, and have structures and functions similar
to the mammalian endogenous hormone estrogen [3]. Both
estrogen and phytoestrogens can bind to intracellular es-
trogen receptors (ERs) to trigger downstream signal trans-
duction pathways and achieve various biological functions
[4]. Phytoestrogen acts mainly as an ER agonist. It may also
function as an antagonist, by inhibition of aromatase activ-
ity in breast cancer cells, and blockage of estrogen uptake
by uterine cells [5]. This mixed ER agonist/antagonist
property probably explains the potential benefit of phyto-
estrogen in breast cancer prevention [6-8].
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In response to ligand binding, ERs can signal through
both genomic (classical) and non-genomic (non-classical)
pathways [9,10]. In the genomic pathway, upon binding to
estrogen, ERs dimerize and interact with the estrogen re-
sponsive element (ERE) in the regulatory regions of estrogen
responsive genes, thereby regulating the transcription of E2-
sensitive genes, e.g. c-fos, TGF-«, and angiotensinogen [9].
The non-genomic pathway involves the activation of other
signal transduction pathways that lead to rapid and diverse
physiological responses, including calcium and potassium
influxes through cell membrane, and activation of second
messenger systems such as cAMP/PKA, MAPK, PI3K/Akt,
and G protein [10,11]. The precise mechanisms of non-
genomic effects of estrogen are not clear and have been sug-
gested to be mediated by membrane-associated ERa, ERp,
or the orphan G-protein-coupled receptor 30 (GPR30)
[12,13]. Activation of non-nuclear ERaq, for example, can
stimulate endothelial cell proliferation via G protein, Src,
and eNOS activation [14]. In cultured osteoblastic cells,
daidzein has been suggested to activate a non-classical
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Figure 1 Induction of neurite outgrowth of cultured rat DRG neurons by daidzein and NGF. DRG neuronal cultures were treated for 24 h
with (A) DMSO, (B-H) various concentration of daidzein, or (F) NGF (100 ng/ml), then fixed and immunostained for NF-L. A-F, large neurons. G-H,

small neurons. Scale Bar =30 um.
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Figure 2 Quantitative analysis of total neurite length and tip number of neurite branches per neuron following various treatments
with DMSO, daidzein, or NGF. Significant neurite lengthening and branching were observed in both large (A and B) and small DRG neurons
(C) treated with 30 pM daidzein or 100 nM NGF. Three independent experiments were performed. Ten neurons were chosen from each group in
one representative experiment for analysis. *, p < 0.05 vs DMSO controls. **, p < 0.01 vs DMSO controls.

membrane ER-B pathway that involves phospholipase C-2
(PLC-B2)/PKC and PI3K/cSrc [15].

Emerging evidence, however, indicates that for some of
the phytoestrogen effects, ER activation may not be
required. For instance, genistein, a rich phytoestrogen in
soybeans, was shown to exert growth inhibitory effects
in ER-negative breast cancer cells [16-18]. Compared to
17-B estradiol, the most biologically active estrogen in
mammals, daidzein has a significantly lower affinity for
both ER-a and ER-P [19]. Moreover, daidzein could in-
duce anti anti-proliferative effects in both ER-positive
and ER-negative pancreatic cells [20]. Together these
observations raise the possibility that daidzein may also
exert its pharmacological effect via an ER-independent
signaling pathway.

Daidzein is known to exert significant neuronal protection
and neuritogenic effects for a variety of cultured neuronal
cells, e.g. hippocampal neurons, cortical neurons, dorsal root
ganglion (DRG) neurons, and PC12 cells [21-24]. In hippo-
campal neuron, the neuritogenic mechanism involves
ERB-PKCa-GAP43 signaling. To further understand
the diversity of the intracellular signaling mechanisms of
daidzein, in the current study we focused on daidzein-
induced neurite outgrowth in cultured DRG neurons. DRG
culture is a well-characterized system for investigating the
mechanism of neuritogenesis [25-27], and for screening
neuroprotective drugs for peripheral neuropathies [28].
Studies using DRG cultures have shed light on the patho-
genic mechanisms of peripheral nervous system diseases
and the regeneration of spinal cord injury [29-31]. Here we
showed that in cultured DRG neurons daidzein induced
notable neuritogenesis via an ER-independent signaling
pathway. In addition, we presented several lines of evidence
suggesting that daidzein-induced neurite outgrowth in
DRG neurons may be primarily mediated by the Src kinase,
PKCd and ERK signaling pathway.

Methods

Drugs

Daidzein was purchased from the Pharmaceutical Industry
Technology and Development Center (New Taipei City,
Taiwan). Nerve growth factor (NGF) was purchased from
R&D Systems (Minneapolis, MN, USA). Dimethyl sulfoxide
(DMSO), antibodies for neurofilament light chain (NF-L)
were purchased from Sigma Chemical Co. (St. Louis, MO,
USA). L-15 Leibovitz medium was purchased from Gibco
(Grand Island, NY, USA). ER antagonists ICI182780,

tamoxifen and G-protein coupled receptor 30 (GPR-30) an-
tagonist G15 were obtained from TOCRIS (TOCRIS Cook-
son Inc, Bristol, UK). Src kinase inhibitor PP2, MEK
inhibitor U0126, PKC inhibitor staurosporin, and PKCS in-
hibitor rottlerin were purchased from Biomol Research La-
boratory Inc. (Plymouth meeting, PA, USA).

Animals

Postnatal day 2 Wistar rat pups were purchased from the Fa-
cility for Animal Research of the National Taiwan University.
All procedures were in accordance with the Guidelines for
the Care and Use of Mammals in Neuroscience and Behav-
ioral Research (National Research Council 2003) and
approved by the Institutional Animal Care and Use Commit-
tee (IACUC) of National Taiwan University, College of
Medicine.

Cell culture

DRG cultures were prepared as described previously [25].
Briefly, P2 rat pups were put on ice and then decapitated to
harvest DRG. DRG were then dissected out under micro-
scope and dissociated with 0.25% trypsin and 0.05% collage-
nase (Sigma) in HBSS solution, for 30 min at 37°C. These
ganglia were then dispersed by mechanically trituration
with glass pipettes. The pellet from low-speed centrifuga-
tion was re-suspended in phenol-red free L-15 Leibovitz
media, supplemented with 1.2 g/L of NaHCO3, 5% fetal bo-
vine serum, 100 IU/mL of penicillin, and streptomycin
(Gibco). Cells were plated on collagen-coated coverslips for
immunocytochemistry, and on 35 mm uncoated culture
dishes for protein quantification by Western blot. The
medium was changed to serum free L-15 for day in vitro
(DIV) 2 cultured DRG cells. Cultures were maintained at
37°C in an atmosphere of 95% air and 5% CO,.

Cell survival assay

The MTT assay, a colorimetric assay for measuring the ac-
tivity of mitochondrial enzymes, was used to examine
whether cell viability was affected by treatmen [32]. In each
well of 24-well culture plates, 2 x 10* cells were plated and
were treated with 0.1% DMSO, different concentration of
daidzein or different kinase inhibitors for 24 h. After treat-
ments, cells were washed with phosphate-buffered saline
(PBS; 137 mM NaCl, 2.7 mM KCl, 1.5 mM KH,PO,,
8 mM Na,HPO,, pH 7.4), and incubated in 0.5 mg/ml
of 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium
bromide (MTT) solution for 4 h to allow the conversion of
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Figure 3 Effect of different inhibitors on cell viability and neuritogenesis. DRG neurons were treated with 0.1% DMSO, 30 uM diadzein, 10
pM PP2, 10 uM U0126, 10 uM tamoxifen, 1 uM IC1182780 or 100 nM G15 for 24 h. They were then assayed by the MTT test (A), or
immunostained for NF-L and analyzed for total neurite length (B) and tip numbers (C).
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DMSO group; ##, p < 0.01 vs daidzein group. N=10.

Figure 4 Blockage of daidzein-induced neuritogensis by kinase inhibitors of Src and MEK, but not by ER antagonists. (A) DRG neuronal
cultures were treated for 24 h with (a) DMSO, or (b) 30 uM daidzein. Inhibitor assay was conducted by pretreatment of DRG neuronal cultures for
30 min with (c) ER antagonist IC1182780 at 1 pM, (d) GPR-30 antagonist G15 at 100 nM, (e) Src kinase inhibitor PP2 at 10 uM, or (f) MEK inhibitor
U0126 at 10 uM, followed by 30 uM daidzein for 24 h. The neurons were fixed and immunostained for NF-L. Scale Bar =30 pm. (B) Analysis of
total neurite length and tip number revealed that PP2 and U0126 significantly blocked the neuritogenesis induced by daidzein. **, p < 0.01 vs

MTT into the purple formazan product by mitochondrial
dehydrogenases. The reaction medium was then removed
and the cells were lysed with DMSO for 5 min. The ab-
sorbance was read at 590 nm with a spectrophotometer
(Beckman Coulter Inc., Fullerton, CA).

Drug treatment

DIV 3 cultured DRG cells received either daidzein at a
concentration of 10 uM, 30 uM, 50 pM, or 100 uM, vehicle
solution DMSO (final concentration of 0.1%), or NGF of
100 ng/mL, in order to study the effect of daidzein on
neurite outgrowth.

For inhibitor assay, one of following inhibitors was reacted
30 min before the addition of daidzein: estrogen receptor
antagonists ICI182780 at 1 pM and tamoxifen at 10 puM;
GPR-30 inhibitor G15 at 100 nM; Src kinase inhibitor PP2
at 10 uM; PKC inhibitor staurosporin at 100 nM; PKC o/
inhibitor G66976 at 1 uM; PKCe inhibitor eV1-2 at 2 uM;
PKCS inhibitor rottlerin at 2 uM; MEK inhibitor U0126 at
10 pM.

Immunocytochemistry

After 24 h of DMSO or daidzein treatment, DRG neurons
on cover glasses were fixed for 10 min with 10% formalin
in PBS. After washed with PBS, cells were then permeabi-
lized and blocked with 0.15% Triton X-100 and 5% non-fat
milk in PBS for 1 h. DRG neurons were then incubated in
mouse anti-NF-L antibody overnight at 4°C. After PBS
wash, cells were incubated in biotin-conjugated goat anti-
mouse IgG (Vector, Burlingame, CA, USA) at 1:50 dilution
for 1 h at room temperature, washed with PBS, then
reacted with avidin-biotinylated enzyme complex (Vector)
for one hour at room temperature. Following PBS wash,
staining was done with peroxidase-chromogen reaction
(SG substrate kit, Vector), which was stopped by Tris-
buffered saline (TBS: 50 mM Tris-Base, 150 mM NaCl,
pH 8.2). Coverslips were then dehydrated by ethanol and
xylene, and mounted with Permount (Fisher Scientific,
NH, USA). Images were taken on a light microscope,
equipped with a Nikon DIX digital camera (Nikon, Tokyo,
Japan).

Western blotting
After various treatment, the cultured DRG neurons
were homogenized in ice-cold lysis buffer solution

(10 mM EGTA, 2 mM MgCl,, 0.15% Triton X-100,
60 mM PIPES, 25 mM HEPES, pH 6.9, containing 1 pM
phenylmethylsulfonyl fluoride, 1 pM NaF, 10 pg/ml of
leupeptin and 1 pg/ml pepstatin) and sonicated. A 3-
fold volume of 4X reducing SDS sample buffer was
added to each lysate and boiled at 95°C for 5 min. Fifty
microgram of protein from each sample (protein con-
centration determined by Bio-Rad protein Kit, Bio-Rad
Lab, CA, USA) were separated by 10% polyacrylamide-
SDS gel electrophoresis, electrotransferred to nitrocel-
lulose membrane (Schleicher and Schuell, Keene, NH,
USA), blocked by TBS containing 5% non-fat milk and
0.1% Tween-20, and then incubated overnight at 4°C
with the following primary antibodies: rabbit anti-
pTyr527-Src (Cell Signaling) at 1: 500 dilution; rabbit
anti-pThr505 PKCS§ (Epitomics, Burlingame, CA, USA)
at 1:500 dilution and rabbit anti-PKC§ (Santa Cruz,
Santa Cruz, CA, U.S.A.) at 1:500 dilution; mouse anti-
pThr and anti-pTyr ERK (Sigma) at 1:1000 dilution and
rabbit anti-ERK1/2 (Santa Cruz) at 1:500 dilution;
mouse anti-cSrc (Millipore, Billerica, MA, USA) at
1:300 dilution. Following washes with TBS containing
0.1% Tween-20, alkaline phosphatase conjugated sec-
ondary antibodies at 1:7500 dilution (Promega, Madi-
son, WI, USA) were added for an hour at room
temperature, and the bound antibodies visualized using
enzyme-substrate reaction (substrate: 3.3 mg/ml nitro
blue tetrazolium and 1.65 mg/ml 5-bromo-4-chloro-3-
indolyl phosphate in 100 mM NaCl, 5 mM MgCl,,
100 mM Tris-base, pH 9.5).

Quantification

Immunostained neurons were photographed at 20x or
40x (for morphological demonstration) magnification,
and the images transformed into 256 gray scale images.
The fields were chosen to locate individual neuron with
discernible neurites from nearby neurons. Generally, an
average of 2—4 neurons could be seen in a micrograph
taken at 20x magnification. The total neurite length
was then measured from the somata using a PC-based
image analyzer software Image Pro 3.0 Plus (Media
Cybernetics, Silver Spring, MD, USA). The signal inten-
sity of bands stained on immunoblot was quantified
with Gel pro 3.1 (Media Cybernetics). Student’s ¢-test
was used for evaluating statistical differences between
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Figure 5 Blockage of daidzein-induced neuritogenesis by kinase inhibitors of PKCS. (A) DRG neuronal cultures were treated for 24 h with
(@) DMSO, (b) 30 uM daidzein or (d) 2 uM PKCS inhibitor rotterlin. Inhibitor assay was conducted by pretreatment of DRG neuronal cultures for
30 min with (c) 2 uM rottlerin, followed by 30 uM daidzein for 24 h. The neurons were fixed and immunostained for NF-L. Scale Bar=30 pum.

Analysis of total neurite length (B) and tip number (C) revealed that rottlerin significantly blocked the neuritogenesis induced by daidzein.
** p<001 vs DMSO; #, p < 0.05 vs daidzein, ##, p<0.01 vs daidzein. N=10.

the means of different groups, with p value of less than
0.05 considered significant.

Results

Daidzein enhances neuritogenesis in cultured DRG
neurons

We first studied the effect of daidzein on neurite out-
growth in primary rat DRG neuronal cultures. DRG neu-
rons were classified into large (diameter > 40 pm) and
small (diameter < 40 pm) according to the criteria
described by Gavazzi [33]. Based on cell diameter, small-
sized unmyelinated neurons that are responsible for pain
sensation, and large-sized myelinated that are for proprio-
ception. DIV 3 neurons were incubated with different con-
centrations of daidzein, DMSO (negative control), or NGF

(positive control) for 24 h. Compared to DMSO-treated
control cultures, daidzen treatment significantly enhanced
neurite extension and branching of large DRG neurons
(Figures 1, 2A-B). Quantitative analysis of total neurite
length and tip numbers per neuron indicated that the
minimal effective concentration of daidzein in promoting
neurite outgrowth was 30 uM (length, 4180 + 246 pm; tip
number, 15.0 + 1.4; DMSO, 2323 + 128 pm; tip number,
7.8 + 0.2; p<0.01, n=10), which had an effect similar to
that of 100 ng/ml NGF (Figure 2) and was thus used for
further study of the compound. The effect of daidzein-
induced neuritogenesis was observed similarly in both
small-sized and large-sized DRG neurons (Figures 1G-H,
2C). Furthermore, to examine whether daidzen was toxic
to DRG neurons, double staining of cells with DAPI and
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PI was performed to identify apoptotic and necrotic cells,
respectively [34]. No apparent cell death was observed at
30 uM by MT'T assay (Figure 3A).

Src and ERK inhibitors block neuritogenic effect of daidzein

To investigate the signaling mechanism underlying the
neuritogenic effect of daidzein, various inhibitors were ap-
plied to DRG neuronal cultures before and during daidzein
treatment. Daidzein is structurally similar to estrogen and
can activate ER in other cell culture systems [15,22]. Thus,
we first examined this possibility. Treatment alone with

Figure 6 Activation of Src and PKCS by daidzein treatment and
suppression of the PKCS activation by the specific Src inhibitor
PP2. (A) Phosphorylation of Src following daidzein treatment was
analyzed by Western blot analysis. DRG neuronal cultures were treated
with 30 uM daidzein for 0, 15, 30, or 60 min, then the cell homogenate
was analyzed for phosphorylated Src (pSrc416) and total Src. Upper
panel showed a representative blot from one experiment. Lower panel
showed optical densities of the densitometric scans of the pSrc416
bands. Basal levels of phosphorylation in non-stimulated cells (DMSO)
were taken as 100% for each individual treatment. *, p < 0.05 vs 0 min,
n=4. (B) Phosphorylation of PKCS was analyzed by Western blot
analysis. DRG neuronal cultures were given DMSO, 30 uM daidzein (Dz)
for 30 min, 10 uM the Src inhibitor PP2 for 30 min followed by 30 uM
daidzein for 30 min (Dz+ PP2), or 10 uM PP2 for 60 min (PP2). The cell
homogenate was analyzed for phosphorylated and total PKCS. Upper
panel showed a representative blot from one experiment. Lower panel
showed optical densities of the densitometric scans of the PKCS bands.
PP2 treatment reduced both basal and. daidzein-induced PKCS

phosphorylation. *, p <0.05 vs DMSO; #, p < 0.05 vs daidzein. n=4.

inhibitors for ER-a/B, GPR-30, Src, or MEK had no effect
on total neurite length and tip numbers (Figure 3B, C). Nei-
ther the ER-a/p inhibitor ICI 182780 (length, 3778 + 101
pm, tip number, 10.9 + 0.9 pum; daidzein, length, 4145.8 +
255.5 pum, tip number, 12.9 + 0.8; DMSO, length, 2363.2 +
128.5 pm, tip number, 9.3 + 0.9, n=10) nor the GPR-30
antagonist G15 (length, 3721 + 141 pm; tip number, 11.3
+ 0.9, n=6) blocked the daidzein-induced neurite length-
ening or branching in our cultured DRG neurons
(Figure 4). Another ER antagonist tamoxifen also did not
inhibit daidzein-induced neuritogenesis (length, 2256.6 +
580 pum, n =10; DMSO, 2629.4 + 436 pum; daidzein, 3632.7
+ 560 pm). On the other hand, both the Src inhibitor PP2
(length, 1971 + 101 pm, tip number, 6.7 + 04, n = 10,
p < 0.01 daidzein, length 4145.8 + 255.5 pm, tip number
12.9 + 0.8 control, length 2363.2 + 128.5 um, tip number,
9.3 + 0.9), and the MEK inhibitor U0126 (length, 2031 +
126 tip number, 10.0 + 0.7, n=10, p<0.01) significantly
reduced daidzein-induced neuritogenesis (Figure 4). Treat-
ment with PP2 or U0126 alone had no effect on cell
survival, total neurite length, or tip numbers (Figure 3B, C).

Blocking of the neuritogenic effect of daidzein by PKCS
inhibitor
To examine whether PKC involved in the daidzein-
induced neuritogenesis, we treated DRG neurons with a
pan-PKC activator PMA in the presence of the src kinase
inhibitor PP2. The result showed that activation of PKC by
PMA could reverse the PP2-induced decrease in total
neurite length (PMA + PP2 + daidzein, length, 1999 + 85
um; DMSO, 1768 + 77 pm; PP2 + daidzein, 1401 + 72 um,
p<0.05n=5).

To further investigate the signaling mechanism invol-
ved in the neuritogenic effect of daidzein, various PKC
inhibitors were applied to DRG neuronal cultures. Neither
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J

PKCa inhibitor G66976 (length and tip number, 3853 +
673 pm and 174 + 0.6; daidzein, 3382 + 340 pm and
18.0 + 1.0, DMSO, 1982 + 512 pm and 10.8 + 0.7, n=10)
nor PKCe inhibitor €V1-2 (length and tip number, 3424 +
482 pym and 16.1 + 1.0, n=10) had any effect on the
daidzein-induced neuritogenesis. Only the PKC$ inhibitor
rottlerin (length, 1705 + 247 um, n=10, p<0.01) signifi-
cantly block daidzein’s neuritogenic effect (length, daidzein
3770 + 252 pm; DMSO; 2291 + 193 pm, n = 10) (Figure 5).
Treatment with G66976, €V1-2 (data not shown) or rottle-
rin (Figure 5) did not affect total neurite length and tip
numbers.

Daidzein treatment activates Src, PKC§, and ERK
We next examined whether daidzein could activate the Src,
PKC9, or the ERK signaling pathway. By using Western
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blotting with antibodies directed against phosphotyrosine-
416 of active Src (pSrc416), we found that the pSrc416
level was significantly increased by daidzein treatment
(Figure 6A). Interestingly, pPKCS levels were also up-
regulated in the presence of daidzein treatment, and the
Src kinase inhibitor PP2 significantly inhibited this activa-
tion of pPKCS by daidzein (Figure 6B). Moreover, ERK1
and ERK2 were activated by daidzein, and this effect was
suppressed by both the Src kinase inhibitor PP2 and the
PKCS$ inhibitor rottlerin (Figure 7). Interestingly, a dose-
dependent study of daidzein showed that a maximal activa-
tion of Src kinase and ERK was found at 30 pM daidzein
(Figure 8). This data correlates well with the previous ob-
servation that the optimal concentration of daidzein to
achieve effective neurotigenic activity is 30 pM.

Discussion

Previously, in cultured osteoblastic cells, daidzein was shown
to bind to cell membrane ER- to activate the phospholipase
C B2 (PLC-B2)/PKC and PI3K/cSrc pathways, leading to the
expression of several groups of genes for cell differentiation,
proliferation, and migration [15]. Similarly, in macrophage,
daidzein inhibited the activation of STAT-1 and NF-kB pro-
teins, thereby decreased the expression of iNOS and the
production of NO [35]. Moreover, in hippocampal neurons,
daidzein was demonstrated to promote neurite outgrowth
via ER-f, which in turn may increase the phosphorylation of
PKCa and growth associated protein 43 (GAP-43) [22]. In
contrast to these ER-dependent signaling systems, here our
results revealed that the neuritogenic effects of daidzein in
DRG neurons did not mediate through ER o/p or GPR-30
(the third kind of ER receptor), as pretreatment of DRG
neurons with specific estrogen receptor antagonists, ICI
182780, tamoxifen, or G-15, did not block the daidzein-
induced neuritogenesis.

Most importantly, our studies showed that daidzein
treatment increased the phosphorylation of Src kinase and
ERK1/ERK2 in cultured DRG neurons. Src kinase, which is
activated by various molecules like NGF, laminin, artemin,
and anti-Thy-1 antibody, has been shown to be an import-
ant signaling pathway involved in the process of DRG neur-
ite outgrowth [27,36,37]. Downstream signaling of Src
includes MEK/ERK and PI3K/Akt pathways, which can be
activated by NGF to induce neurite extension and branching
of DRG neurons [38]. While inhibition of Src kinase by PP2
and suppression of ERK1/2 by U0126 abolished the neurito-
genic effect of daidzein, inhibition of Akt by LY294002 had
no effect (unpublished observation). Thus, the current study
did not support the role of PI3K/Akt pathway in daidzein-
induced neuritogenesis. The increased phosphorylation of
ERK and daidzein-induced neuritogenesis was blocked by
the Src kinase inhibitor PP2, indicating that promotion of
neurite outgrowth by daidzein required Src kinase and ERK.
As phosphorylated ERK could activate CREB, Cdk5, GAP-
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43 and other neuritogenesis-related genes [39-41], it is pos-
sible that daidzein-induced neurite outgrowth is mediated
by the Src-ERK pathway. Interestingly, PKC8 has been
shown to be phosphorylated and activated by Src kinases in
salivary and PC12 cells [42]. Consistent with this notion, we
also found that daidzein increased the phosphorylation of
PKCS9, and that inhibition of PKCS by a selective PKC$ in-
hibitor rottlerin resulted in the suppression of neurite out-
growth, suggesting that PKCS may also play a role in the
signaling cascade induced by daidzein. Different PKC iso-
zymes, including PKC9, have been found to be activated by
neurotrophic agents. For examples, in PC12 cells the activa-
tion of ERK by neuritogenic agents, fibroblast growth factor
(FGF) and NGF, was dependent on the activation of PKCS
[43]. In diabetic rats, over-expression of PKCS could ameli-
orate the retarded neurite outgrowth of DRG neurons [44].
Additional studies are therefore required to elucidate the
mechanistic link between daidzein-induced activation of the
Src-PKCS-ERK  pathway and the downstream signaling
pathways that eventually lead to neuritogenesis.

As mentioned above, we have shown that daidzein-
induced neuritogenesis in hippocampal and DRG neurons
are mediated by ER-dependent [22] and ER-independent
mechanisms, respectively. The precise reasons underlying
this striking difference remain unclear. Intrinsic signaling
pathways regulating neurite outgrowth could drastically vary
among different types of neuronal cells [45,46]. For example,
activation and inhibition of the small GTPase Racl promotes
neurite outgrowths in hippocampal and DRG neurons, re-
spectively [47,48]. Further experiments will be required to
determine if the neuritogenic effect of daidzein is also differ-
entially regulated in various regions of the nervous system.

In cultured rat hippocampal neurons, a low concentra-
tion of daidzein had neuroprotective action (at 3.9 pM),
but it could not promote neuritogenesis or enhance neur-
onal survival [24]. Using relative affinity binding assay of
cellular extracts, the affinity of daidzein for estrogen recep-
tor was estimated to be several hundred times lower than
estrogen [19]. Therefore, adequate amount of daidzein is
required to achieve biological activities through the estro-
gen receptor pathways. Studies using daidzein at much
higher concentrations (30 to 40 uM) in cultured hippo-
campal neurons indicate that daidzein can promote neurite
extension and protect neurons from glutamate-induced
cell death [22,24]. We demonstrated that daidzein at
30 uM increased neurite lengthening and branching for
DRG neurons, which was in accordance with the results of
previously published reports. In addition, we found 30 uM
daidzein had a neuritogenic effect similar to that of NGE,
indicating that daidzein had a robust neuritogenic prop-
erty. Meanwhile, daidzein did not affect DRG neuronal sur-
vival at 30 uM. When daidzein was used at a concentration
higher than 30 uM, the neuritogenesis was decreased. This
finding is in agreement with the observed fact that both
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Src and ERK achieve the highest levels of phosphorylation
at 30 uM daidzein.

Our finding that daidzein facilitates neurite outgrowth of
DRG and hippocampal neurons has important implications
for the potential facilitation of neural regeneration [49,50].
Preliminary study using daidzein for the treatment of optic
nerve injury in rats have shown promising results [23].
Neurite outgrowth is a fundamental step in the establish-
ment of neural connections during development and fol-
lowing injury. It would be interesting to see if daidzein
could improve sensory and cognitive function in various
animal disease models, e.g. injuries of peripheral nerves,
brachial plexus, and spinal cord, as well as Alzheimer’s dis-
ease. On the other hands, the signaling mechanism of daid-
zein warrants further investigation. It has been shown that
daidzein did not activate Src kinase via ERs, so other up-
stream regulators of Src could be the potential targets of
daidzein. Many downstream effectors of ERK are associated
with neurite outgrowth, and daidzein may preferentially ac-
tivate some of those. Future research will be directed to
tackle these questions.

Conclusion

Daidzein enhances neurite outgrowth of cultured rat DRG
neurons which is mediated by cooperative action of Src
kinase, PKC9, and MEK.
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