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Zerumbone suppresses IKKα, Akt, and FOXO1
activation, resulting in apoptosis of
GBM 8401 cells
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Abstract

Background: Zerumbone, a sesquiterpene compound isolated from subtropical ginger, Zingiber zerumbet Smith,
has been documented to exert antitumoral and anti- inflammatory activities. In this study, we demonstrate that
zerumbone induces apoptosis in human glioblastoma multiforme (GBM8401) cells and investigate the
apoptotic mechanism.

Methods: We added a caspase inhibitor and transfected wild-type (WT) IKK and Akt into GBM 8401 cells, and
measured cell viability and apoptosis by MTT assay and flow cytometry. By western blotting, we evaluated
activation of caspase-3, dephosphorylation of IKK, Akt, FOXO1 with time, and change of IKK, Akt, and FOXO1
phosphorylation after transfection of WT IKK and Akt.

Results: Zerumbone (10∽50 μM) induced death of GBM8401 cells in a dose-dependent manner. Flow cytometry
studies showed that zerumbone increased the percentage of apoptotic GBM cells. Zerumbone also caused caspase-3
activation and poly (ADP-ribose) polymerase (PARP) production. N-benzyloxycarbonyl -Val-Ala-Asp- fluoromethylketone
(zVAD-fmk), a broad-spectrum caspase inhibitor, hindered zerumbone-induced cell death. Transfection of GBM 8401
cells with WT IKKα inhibited zerumbone-induced apoptosis, and zerumbone significantly decreased IKKα
phosphorylation levels in a time-dependent manner. Similarly, transfection of GBM8401 cells with Akt suppressed
zerumbone-induced apoptosis, and zerumbone also diminished Akt phosphorylation levels remarkably and
time-dependently. Moreover, transfection of GBM8401 cells with WT IKKα reduced the zerumbone-induced
decrease in Akt and FOXO1 phosphorylation. However, transfection with WT Akt decreased FOXO1, but not
IKKα, phosphorylation.
Conclusion: The results suggest that inactivation of IKKα, followed by Akt and FOXO1 phosphorylation and caspase-3
activation, contributes to zerumbone-induced GBM cell apoptosis.
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Background
Zerumbone (2,6,9,9- tetramethyl- [2E,6E,10E]- cycloundeca-
2,6,10-trien- 1-one) is a sesquiterpenoid compound
extracted from the rhizomes of wild ginger, Zingiber
zerumbet Smith, which is widely distributed in Southeast
Asia [1]. Several recent studies revealed that zerumbone
can inhibit tumor initiation and proliferation. This com-
pound inhibits the proliferation of colon [2,3] and
breast cancers [3], with minimal effects on normal
cells [2]. Zerumbone was also shown to suppress skin
tumor initiation and promotion [4], inhibit inducible ni-
tric oxide synthase (iNOS) and cyclooxygenase (COX)-2
expression, suppress free radical generation, and inhibit
tumor necrosis factor (TNF)-α release in activated leuko-
cytes. Moreover, zerumbone suppresses the activation of
nuclear factor kappa- light- chain- enhancer of activated
B cells (NF-κB) and NF-κB-related gene expression
induced by carcinogens in several different kinds of
cells [5].
NF-κB is a transcription factor that regulates various

cellular processes such as cellular growth, development,
immune and inflammatory responses, and apoptosis [6-8].
In most cells, NF-κB is retained in the cytoplasm because
IκB proteins mask the nuclear localization sequence of
NF-κB. Activated- IκB kinase (IKK) induces the phos-
phorylation and rapid ubiquitin-dependent degradation
of IκB. The cytosolic NF-κB is then released and translo-
cated to the nucleus, where it modifies gene transcription
[9,10]. IKKs are formed by a high-molecular-weight com-
plex containing at least 2 catalytic subunits, IKKα and
IKKβ, and the associated regulatory subunit IKKγ
(NEMO) [6,10,11]. In most circumstances, the IKKα and
IKKβ kinases both have separate upstream signaling
pathways and downstream targets [12,13]. The IKKβ
kinase principally involves the innate immunity responses
as well as cancer signals; however, IKKα regulates differ-
entiation and growth responses [14].
Several studies have demonstrated that the

phosphoinositide-3-OH-kinase (PI3K)/Akt pathway acti-
vates the NF-κB system [15,16]. PI3K is often involved in
survival pathways stimulated by various growth factors,
and it protects cells from apoptotic cell death [17,18].
Akt, a serine/threonine kinase, mediates many PI3K-
regulated biological responses including glucose uptake,
protein synthesis, and inhibition of apoptosis [18-21].
Overexpression of Akt, especially constitutively active
Akt, protects cells against apoptosis, and even promotes
malignant transformation, whereas inhibition of Akt
activity stimulates apoptosis in certain mammalian cells
[22]. Activated Akt can enhance cell survival by phos-
phorylating several downstream targets, including the
Bcl-2 family member BAD (Bcl-2-associated death pro-
moter), IΚΚ, caspase family member caspase-9, and the
forkhead family transcription factor FKHRL1 [21,23-28].
Some studies reported that IKK can induce phosphor-
ylation, ubiquitination, and degradation of forkhead box,
class O (FOXO) factors, and promote cell proliferation
and tumorigenesis [29]. Therefore, it is possible that the
IKK pathway may be involved in regulating the transacti-
vation activities of FOXO members. The FOXO factors,
which include FKHR (FOXO1), FKHRL1 (FOXO3a) and
AFX (FOXO4), share DNA-binding specificity to a core
consensus site [30]. The FOXO members are down-
stream targets of PI3K/Akt signaling. Phosphorylation
of the FOXO members by Akt inhibits their transcrip-
tional activity. FOXO1 is phosphorylated on 3 sites
(Thr-24, Ser-256, and Ser-319) in a PI3K-dependent
manner [31], and phosphorylation on all or a subset of
these sites contributes to the inactivation of its tran-
scriptional activity [32].
In adults, glioblastoma multiforme (GBM) is the most

common primary malignant brain tumor. The median
survival duration of GBM patients is usually less than
1 year from the time of diagnosis [33,34]. The standard
treatment for the tumor includes surgical resection to
the maximal and safest extent, radiotherapy and sys-
temic chemotherapy. Even with the most aggressive
treatment and the most up-to-date chemotherapy, the
median survival time is less than 15 months [35]. There-
fore, it is necessary to continue the development of more
effective chemotherapeutic agents to improve the sur-
vival rate of GBM patients.
In this study, we investigate the roles of IKK, Akt,

and FOXO1 in zerumbone-induced apoptosis of human
GBM8401 cells. Our data demonstrate that zerumbone
induces GBM cell apoptosis, which is mediated by in-
activation of IKK, followed by inactivation of Akt-
FOXO1 cascade and activation of caspase-3.
Methods
Materials
Zerumbone was kindly provided by Dr. Ching-Chung
Wang (Graduate Institute of Pharmacognosy, College of
Pharmacy, Taipei Medical University, Taiwan). Dulbecco’s
modified Eagle’s medium (DMEM), fetal calf serum
(FCS), penicillin/streptomycin, OptiMEM, and Lipofecta-
mine plusTM reagent were purchased from Invitrogen
(Carlsbad, CA, USA). Antibodies specific for Bcl-2, Bax,
Bcl-XL, Akt and procaspase-3 were purchased from Santa
Cruz Biotechnology (Santa Cruz, CA, USA). Akt and
horseradish peroxidase-conjugated anti-mouse and anti-
rabbit antibodies were also purchased from Santa Cruz
Biotechnology. Wild-type (WT)-IKKα and WT-IKKβ
constructs were kindly provided by Dr. Michael Karin
(Department of Pharmacology, School of Medicine, Uni-
versity of California-San Diego, San Diego, CA, USA).
Antibodies specific for phospho-Akt (Ser473), phospho-
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IKK (Ser 180/181) and phospho-FOXO1 (ser 319) were
purchased from Cell Signaling Technology (Beverly,
MA, USA). The enhanced chemiluminescence detection
agent was purchased from PerkinElmer Life Sciences
(Boston, MA, USA). All materials for sodium dodecyl-
sulfate polyacrylamide gel electrophoresis (SDS-PAGE)
were obtained from Hoefer (Holliston, MA, USA). The
pUSEamp-Akt1 complementary(c)DNA (WT-Akt) was
purchased from Upstate Biotechnology (Lake Placid, NY,
USA). Propidium iodide (PI), N- benzyloxycarbonyl- Val-
Ala- Asp- fluoromethylketone (zVAD-fmk), dithiothreitol
(DTT), phenylmethylsulphonyl fluoride (PMSF), pepstatin
A, leupeptin, SDS, 3-(4,5-dimethyl-thiazol-2-yl) -2,5-
diphenyltetrazolium (MTT), and other chemicals were
obtained from Sigma (St. Louis, MO, USA).

Cell culture
GBM8401 cells, kindly given by Professor Yen-Chou
Chen (Graduate Institute of Medical Sciences, Taipei
Medical University, Taiwan), and U87MG cells, obtained
from the American Type Culture Collection, are both
permanent human brain glioblastoma cell lines and
were cultured in DMEM with 10% FCS and antibiotics
(100 U/ml penicillin and 100 μg/ml streptomycin).

Cell viability assay
Cell viability was measured by a previously described
colorimetric MTT assay [20,36]. Briefly, cells (105 cells/
well) were cultured in 12-well plates and incubated with
dimethyl sulfoxide (DMSO) or various concentrations
(10 μM, 30 μM, or 50 μM) of zerumbone for 24 h. After
various treatments, 5 mg/ml MTT was added to the cul-
ture plates and the plates were incubated at 37°C for
an additional 4 h. The cells were then lysed in 500 μl
of DMSO. The absorbance at 550 nm was measured
on a microplate reader. Samples were plated and assayed
in triplicate and the experiment was repeated at least
3 times.

Flow cytometric analysis
GBM8401 cells were cultured in 10-cm Petri dishes.
After reaching confluence, cells were treated with
DMSO or 10 μM, 30 μM, or 50 μM of zerumbone for
24 h. After treatment, cells were harvested and washed
twice with phosphate-buffered saline (PBS: 137 mM
NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4, and 1.5 mM
KH2PO4; pH 7.4), and re-suspended in ice-cold 70%
ethanol at -20°C overnight. Cells were washed for 5 min
with 0.4 ml phosphate-citric acid buffer (pH 7.8) con-
taining 50 mM Na2HPO4, 25 mM citric acid, and 0.1%
Triton X-100 and subsequently stained with 1.5 ml PI
staining buffer containing 0.5% Triton X-100, 10 mM
PIPES, 100 mM NaCl, 2 mM MgCl2, 0.1 U/ml RNase A,
and 25 μg/ml PI for 30 min in the dark before the flow
cytometric analysis. Samples were analyzed by FACScan
using the CellQuest software (Becton Dickinson, San
Jose, CA, USA).
Immunoblot analysis
To determine the levels of procaspase-3, PARP, Bcl-2,
Bax, Bcl-XL, α-tubulin, phospho-Akt (Ser473), phospho-
IKK(ser180/181), and phospho-FOXOI (ser319) in
GBM8401 cells, the proteins were extracted as described
previously [37], with modifications. Briefly, GBM8401
cells were cultured in 6-cm dishes. After the cells
reached confluence, they were treated with DMSO or
50 μM zerumbone for different time periods. After in-
cubation, cells were washed twice with ice-cold PBS
and solubilized in extraction buffer containing 10 mM
Tris (pH 7.0), 140 mM NaCl, 3 mM MgCl2, 2 mM
PMSF, 5 mM DTT, 0.5% NP-40, 0.01 mg/ml aprotinin,
0.01 mg/ml leupeptin, 1 mM benzamidine, and 1 mM
Na3VO4. Protein concentrations of thecell lysates were
determined by the Bradford protein assay (Hoefer). An
equal amount of protein (30 μg) in each sample was boiled
in SDS sample loading buffer, and then fractionated on
SDS-PAGE before blotting onto a polyvinylidene difluor-
ide (PVDF) membrane. Blots were then incubated in
150 mM NaCl, 20 mM Tris, and 0.02% Tween (pH 7.4)
containing 5% non-fat milk. Proteins were visualized by
specific primary antibodies and then incubated with alka-
line phosphatase- or horseradish peroxidase-conjugated
second antibodies. After washing with PBS, blots were
developed using NBT/BCIP or an enhanced chemilumin-
escence kit according to the manufacturer’s instructions
before exposure to photographic films.
Plasmid DNA transfection
GBM8401 cells were seeded at a density of 105 cells/ml
into 12-well plates. On the following days, cells were
transfected with Lipofectamine plusTM reagent containing
1 μg/well of pUSEamp (mock), pUSEamp-Akt1 (WT-Akt),
and pUSEamp-IKK α/β (WT-IKK) for 24 h. At the end of
the transfection, the medium was aspirated and replaced
with fresh culture medium for 24 h. Cells were treated
with 50 μM zerumbone for another 24 h before
harvesting.
Statistical analysis
Results are presented as the mean ± standard error of the
mean (S.E.M.) from at least 3 independent experiments.
One-way analysis of variance (ANOVA), followed by
Dunnet’s test when appropriate, was used to determine
the statistical significance of the difference between the
means. A p value of less than 0.05 was considered statis-
tically significant.
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Figure 1 Zerumbone induced GBM cell death. (A) U87MG and GBM 8401 cells were treated with DMSO or zerumbone at indicated
concentrations for 24 h. Cell viability was then determined by the MTT assay. We used GBM8401 cells for further studies, since zerumbone had a
greater effect on cell viability in GBM8401 cells. * p< 0.05, compared with the control group. (B) Cells were treated with DMSO, or zerumbone at
indicated concentrations, for 24 h. After treatment, the percentage of sub-G0/G1 contentetric analysis of PI-stained cells as described in Materials
and methods. Each column represents the mean ± S.E.M. of at least 3 independent experiments. * p< 0.05, compared with the control group.

Figure 2 Zerumbone evoked caspase-3 activation in GBM cells.
(A) GBM8401 cells were pretreated with DMSO or zVAD-fmk (50 or
100 μM) for 30 min before the addition of zerumbone (50 μM) for
another 24 h. Cell viability was then determined by the MTT assay.
*p< 0.05, compared with the group treated with zerumbone alone.
Cells were treated with DMSO or zerumbone (50 μM) for indicated
time intervals. Protein levels of procaspase-3 and caspase-3 (B) and
PARP (C) were then determined by immunoblotting. Typical traces,
representive of data from 3 independent experiments with similar
results, are shown.
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Results
Zerumbone induces GBM cell apoptosis
Treatment of GBM8401 cells with 10, 30, and 50 μM
erumbone for 24 h reduced cell viability in a
concentration-dependent manner. Zerumbone at the con-
centration of 30 and 50 μM significantly decreased the via-
bility of GBM8401 cells (up to 45.2± 2.5% and 52.9 ± 1.9%,
respectively) (n = 3). Zerumbone also decreased cell via-
bility of U87MG cells, another human glioblastoma multi-
forme cell line. Zerumbone at the concentration of 30 and
50 μM significantly decreased the viability of U87MG cells
(up to 26.0 ± 3.6% and 34.8 ± 4.9%, respectively) (n=3). We
used GBM8401 cells for further studies. A flow cytometric
analysis of PI-stained cells was then performed to investi-
gate whether zerumbone induces cell death by apoptosis.
As shown in Figure 1B, in cells exposed to zerumbone, the
percentage of PI-stained cells in the apoptotic region (Apo,
sub-G0/G1 peak) increased in in a concentration-
dependent manner. The proportion of apoptotic cells
increased remarkably from 7.9±1.0% (vehicle-treated con-
trol) to 23.9 ± 3.0% after exposure to 50 μM zerumbone.

Zerumbone triggers caspase activation and PARP
cleavage
Caspase-3 has been reported to be downstream of the
apoptotic signaling pathway, irrespective of whether
intrinsic- or extrinsic signaling mediates the apoptosis
[38,39]. Therefore, we sought to determine whether
zerumbone-induced GBM8401 cell apoptosis was accom-
panied by caspase-3 activation. As shown in Figure 2A,
zVAD-fmk, a broad-spectrum caspase inhibitor, markedly
attenuated the zerumbone-induced decrease in cell viabil-
ity. Zerumbone (50 μM) induced procaspase-3 degrad-
ation and gradual increase of caspase-3 level in GBM cells
in a time-dependent manner, within 24 h of exposure to
zerumbone (Figure 2B). A selective caspase-3 substrate,
PARP, was then used to confirm whether zerumbone-
mediated caspase-3 activation resulted in PARP cleavage
[38,40,41]. As shown in Figure 2C, zerumbone induced
PARP cleavage from a 115- to an 85-kDa fragment. These
results suggest that caspase-3 is involved, at least in part,
in zerumbone-induced GBM8401 cell apoptosis.

Zerumbone induces IKK inactivation in GBM8401
cell apoptosis
Since some recent studies reported that zerumbone inhi-
bits the activation of NFκB and NFκB-related gene
expression [5,42]. We then tested whether the IKK-
NFκB signaling cascade is involved in zerumbone-
induced apoptosis of GBM8401 cells. As shown in
Figure 3A, transfection of GBM8401 cells with WT-
IKKαrestored the zerumbone-induced decrease in cell via-
bility by 38.7± 9.1% (n= 3). However, WT-IKKβ only
slightly influenced the effects of zerumbone on the cell
viability of GBM 8401 cells. HA level of IKKα and IKKβ
both increased after transfection of IKKα and IKKβ.
Moreover, transfection of IKKα and IKKβ also augmen-
ted phosphorylation level of IKKα and IKKβ respectively.



Figure 3 Zerumbone suppressed IKKα phosphorylation in
GBM8401 cells. (A) Cells were transiently transfected with pcDNA
(control vector), IKKα or IKKβ and HA for 24 h and then were treated
with zerumbone (50 μM) for another 24 h before harvesting. Cell
viability was then determined by the MTT assay and western
blotting. * p< 0.05, compared with the pc DNA-transfected group in
the presence of zerumbone. (B) Cells were treated with 50 μM
zerumbone for the indicated time intervals. IKKα/βphosphorylation
was then determined by immunoblotting. Each column represents
the mean ± S.E.M. of at least three independent experiments.
*p< 0.05, compared with the control group.

Figure 4 Akt in zerumbone-induced GBM cell apoptosis. (A)
Cells were transfected with empty vector (mock) or wild-type Akt
(WT-Akt) for 24 h. Following transfection, cells were treated with
vehicle or 50 μM zerumbone for 24 h. Cell viability was then
determined by the MTT assay and immunoblotting. Under
overexpression of Akt, the phosphorylation level of Akt also
increased compared to the mock group, suggesting Akt is functional
in GBM8401 cells. Each column represents the mean ± S.E.M. of at
least 3 independent experiments. *p< 0.05, compared with the
group with trasfected with the empty vector, in the presence of
zerumbone. (B) Cells were treated with vehicle or zerumbone
(50 μM) for indicated time intervals. Phosphorylation status of Akt
was then determined by immunoblotting. Each of the columns
represents the mean± S.E.M. of at least three independent
experiments. * p< 0.05, compared with the control group.
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Both of the above documented that IKKα and IKKβ were
indeed functional in GBM8401 cells after transfection. In
addition, dephosphorylation of both IKKα and IKKβ was
observedafter exposure to zerumbone for 60 min
(Figure 3B).

Akt inactivation is involved in the zerumbone-induced
cell apoptosis
Many studies documented that the PI3K-Akt signaling
cascade protects cells from undergoing apoptotic cell
death [17,18]. In addition, inhibition of Akt leads to
apoptosis in some mammalian cells [22]. To elucidate
whether Akt inactivation contributes to zerumbone-
induced cell apoptosis, we transfected GBM8401 cells
with empty (mock) or WT-Akt prior to zerumbone
(50 μM) treatment for 24 h. As shown in Figure 4A,
transfection with WT-Akt significantly restored the
zerumbone-induced decrease in cell viability. Under
overexpression of Akt, Akt phosphorylation level also
increased compared to the mock group, suggesting Akt
is functional in GBM8401 cells. We then determined



Figure 5 The link between IKK and Akt in zerumbone-induced
apoptosis. (A) Cells were transfected with pcDNA or IKKα forκ 48 h.
After transfection, cells were treated with vehicle or 50 μM
zerumbone for another 1 h. The phosphorylation of Akt was then
determined by immunoblotting. Each column represents the
mean± S.E.M. of at least 3 independent experiments. *p< 0.05,
compared with the group trasfected with pcDNA, in the presence of
zerumbone. (B) GBM cells then were transfected with WT Akt for
48 h. Then the cells were treated with zerumbone for 1 h and the
phosphorylation of IKKα and IKKβwas measured by immunoblotting.
There was no significant difference of phosphorylation of IKKα and
IKKβ between cells transfected with empty vector or with WT Akt
before treatment with zerumbone.
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whether the extent of Akt phosphorylation is altered by
zerumbone. Treatment of cells with zerumbone decreased
Akt phosphorylation significantly, as early as 60 min, and
this decrease was sustained up to 120 min after zerum-
bone exposure (Figure 4B).

The link between IKK and Akt signaling in zerumbone-
induced apoptosis
To ascertain the link between IKK and Akt signaling
downstream of zerumbone, we examined the Akt phos-
phorylation status in cells transfected with pcDNA
(mock) or WT-IKKα in the presence of zerumbone. As
shown in Figure 5A, the zerumbone-induced decrease in
Akt phosphorylation was significantly restored in cells
transfected with WT-IKKα. These results suggest that
IKKα may lie upstream of Akt in the apoptotic signaling
cascade elicited by zerumbone in GBM8401 cells. In
Figure 5B, zerumbone-induced dephosphorylation of
IKKα and IKKβ was not reduced remarkably by transfec-
tion of GBM cells with WT-Akt. These data suggest that
Akt is downstream of IKKα in the zerumbone-induced
apoptotic pathway.

Zerumbone promotes FOXO1 dephophorylation in
GBM8401 cell apoptosis
We next investigated whether zerumbone-decreased Akt
phosphorylation was accompanied by the dephosphoryla-
tion of FOXO1, a downstream target of Akt [43]. As
shown in Figure 6A, treatment of GBM8401 cells with
zerumbone caused FOXO1 dephosphorylation within
120 min. In addition, transfection of cells with WT-
IKKα significantly restored the zerumbone-mediated de-
crease in FOXO1 phosphorylation (Figure 6B). Moreover,
as shown in Figure 6C, the phosphorylation of FOXO1
was significantly restored by transfection of GBM cells
with WT-Akt. Taken together, these results suggest that
FOXO1 takes part in the GBM8401 cells apoptosis
induced by zerumbone; and IKKα and Akt both lie up-
stream of FOXO1 in the apoptotic signaling cascade.

Discussion and conclusion
Plant extracts have been used to relieve illness or dis-
eases for several centuries, and anti-cancer properties of
specific plant extracts have been the subject of extensive
research. Zerumbone, a sesquiterpenoid, is abundant in
the rhizomes of the subtropical ginger plant Zingiber
zerumbet Smith. Some of the dietary terpenoids have
exhibited anti-carcinogenic activities in a variety of
experiments [44]. Zerumbone was reported to inhibit
the proliferation of colon [2] and breast cancers [3], sup-
press skin tumors in mice [36], and block TNF-induced
NF-κB activation in H1299 (lung adenocarcinoma),
KBM-5 (human myeloid), A293 (human embryonic
kidney), and FaDu (human squamous cell carcinoma)
cells [5]. In this study, we demonstrated for the first
time that zerumbone can induce human GBM cell apop-
tosis via inhibition of the IKKα-Akt-FOXO1cascade.



Figure 6 Zerumbone- induced FOXO1 dephosphorylation in
GBM cells. (A) Cells were treated with 50 μM zerumbone for
indicated time intervals. FOXO1 phosphorylation status was then
evaluated by immunoblotting. Each column represents the mean ±
S.E.M. of at least 3 independent experiments. *p <0.05, compared
with the control group. (B) Cells were transfected with pcDNA or
WT IKK for 48 h. After transfection, cells were treated with vehicle or
50 μM zerumbone for 1 h. The phosphorylation status of FOXO1
was then determined by immunoblotting. Each column represents
the mean ± S.E.M. of at least three independent experiments.
*p< 0.05, compared with the group tranfected with pcDNA, in the
presence of zerumbone. (C) Cells were transfected with empty
vector (mock) and WT Akt. Then cells were treated with vehicle or
50 μM zerumbone and FOXO1 phosphorylation level was measured
by immunoblotting. Each column represents the mean ± S.E.M. of at
least 3 independent experiments. *p< 0.05, compared with empty
vector, in the presence of zerumbone.
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Zerumbone was shown to inhibit TNF- induced NF-κB
and IKK activation, and NF-κB- dependent reporter gene
expression, in a previous study [5]. In most circum-
stances, IKK activation triggers phosphorylation, ubiqui-
tination, and degradation of IκB, and then induces
nuclear translocation of NF-κB and modification of tran-
scription. However, in our study, overexpression of IKKα
suppressed the inactivation of Akt and the dephosphory-
lation of FOXO1. IKK was also shown previously to
phosphorylate FOXO members and induce proteolysis of
FOXO members via the ubiquitin-dependent proteasome
pathway [29]. Zerumbone may induce apoptosis of GBM
cells via an alternative pathway, through the IKK-FOXO
cascade. One possible mechanism we cannot rule out is
that when NF-κB is overexpressed in GBM cells, phos-
phorylation of IκB by IKK is inhibited, and abundant IKK
may cause phosphorylation and degradation of FOXO1.
The link between NF-κB and FOXO1-mediated cell death
pathways downstream of IKKα remains to be established.
Peng et al. have demonstrated that the FOXO3 protein
can suppress NF-κB, either directly or indirectly, by regu-
lating the expression of IκBβ and IκBE proteins [45]. Lee
et al. reported that the activation of FOXO3a can induce
the expression of κB-ras1, a potent inhibitor of NF-κB
signaling, and inhibit the NF-κB pathway [46].
Even though the activation of IKKα and IKKβ mainly

initiates NF-κB-mediated transcriptional activation, both
IKKα and IKKβ have recently been reported to function
independently of each other [29,47]. A number of studies
have reported that the Akt kinase activates IKKα rather
than IKKβ, especially by phosphorylating the Thr23 resi-
due in IKKα [27,48,49]. These observations explain, at
least in part, why zerumbone decreased only IKKα phos-
phorylation, and the apoptotic actions of zerumbone were
restored only in cells transfected with IKKα. The signaling
events before IKKα dephosphorylation have not been deli-
neated, but they are likely to involve zerumbone-mediated



Figure 7 Schematic summary of apoptotic pathway invoked in
zerumbone-induced apoptosis of GBM8401 cell. Zerumbone-
induced inactivation of IKKα leads to FOXO1 dephosphorylation, via
Akt dephosphorylation or not, then causing caspase-3 activation,
and subsequent cell apoptosis.
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activation of protein phosphatase or nuclear factor κB- in-
ducing kinase (NIK). Additional studies are needed to
characterize the apoptotic signaling cascade triggered by
zerumbone, including the involvement of selective protein
phosphatases or NIK in zerumbone-induced IKKα depho-
sphorylation and GBM cell apoptosis.
FOXO members are a group of tumor suppressor pro-

teins with the ability to arrest the cell cycle and to pro-
mote apoptosis of tumor cells. Akt can phosphorylate
FOXO members, resulting in nuclear export, cytoplas-
mic retention, and inhibition of transcriptional activity
of FOXOs. In this study, we found that IKKα mediates
zerumbone-induced decrease in Akt and FOXO1 phos-
phorylation. These findings suggest that zerumbone may
decrease FOXO1 phosphorylation via at least 2 differ-
ent mechanisms: one, through IKKα-Akt signaling and
another, through IKKα directly. The mechanisms by which
zerumbone mediates dephosphorylation of FOXO1 re-
main to be elucidated.
With the balance of the anti- and pro-apoptotic mem-

bers arbitrating life-or-death decisions, Bcl-2 family pro-
teins may regulate mitochondria-dependent apoptosis
[50,51]. Activated Bad, an essential initiator of the apop-
totic cascade, is able to form heterodimers with the anti-
apoptotic mitochondrial proteins, Bcl-2 and Bcl-xL, to
antagonize their antiapoptotic activity and promote the
proapoptotic activity of Bax [52,53]. In our study, how-
ever, zerumbone did not significantly alter Bcl-2, Bax, or
Bcl-xL levels in GBM cells (data not shown). Further in-
vestigation may be needed to clarify whether zerumbone
affects other Bcl-2 family members such as BH3-only
proteins, leading to cell apoptosis in GBM8401 cells.
The half maximal inhibitory concentration (IC50) is the

concentration of a compound needed to inhibit a given
biological process by half. It is commonly used as a meas-
ure of antagonist drug potency in pharmacological
research. We calculated the IC50 of zerumbone in
GBM8401 and U87MG cells were 47.24 μM and 71.92 μM
respectively. Moreover, we reviewed the reported IC50 in
other types of cancer cells: colon cancer cells (HT-29):
9.83 μM, breast cancer cells (MCF-7): 10.13 μM [3], cervix
cancer cells (HeLa): 20.30 μM [54], and liver cancer cells
(Hep G2): 3.45 μM [55]. Among these IC50 of cancer cells,
the IC50s of GBM cells (including U87MG and GBM
8401 cells) are higher than cervix and colon cancer cells,
and the IC50 of liver cancer cells is relatively low. GBM
cells seem more difficultly to be killed than other different
kinds of cancer cells. Some people may be worried how to
reach such a high level of drugs in brain with contact
blood-brain-barrier (BBB). However, there may be some
new local delivery methods able to solve the problem, such
as biodegradable wafers, convection-enhanced delivery.
Other local delivery methods under investigation for ma-
lignant gliomas include intracavity administration of
radioiodinated TM-601, stereotactic radiotherapy, gene
therapy, and tumor-associated radiolabled monoclonal
antibodies [56].
The treatment of GBM includes surgery, radiotherapy

and adjuvant chemotherapy, Temozolomide is the most
update and efficient adjuvant chemotherapy, and the
addition of temozolomide improved the median, 2- and
5- year survival significantly compared to radiotherapy
alone. Nevertheless, temozolomide can only prolong the
median survival of glioblastoma to 14.6 months [35].
Zerumbone can induce dephosphorylation of IKKα, then
via Akt dephosphorylation or not, decrease phosphoryl-
ation of FOXO1, causing nuclear transport and enhancing
transcriptional activity of FOXO1 and triggering GBM cell
apoptosis. Therefore, we infer that zerumbone may treat
GBM by way of inhibiting its apoptosis resistance.
In conclusion, the results from this study demonstrated

for the first time that zerumbone induces apoptosis of
GBM cells by suppressing the IKKα-Akt-FKHR signaling
cascade (Figure 7).
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