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Abstract

Background: Based on an experimental brain stem death model, we demonstrated previously that activation of
the mitogen-activated protein kinase kinase 1/2 (MEK1/2)/extracellular signal-regulated kinase 1/2 (ERK1/2)/
mitogen-activated protein kinase signal-interacting kinase 1/2 (MNK1/2) cascade plays a pro-life role in the rostral
ventrolateral medulla (RVLM), the origin of a life-and-death signal detected from systemic arterial pressure, which
sequentially increases (pro-life) and decreases (pro-death) to reflect progressive dysfunction of central cardiovascular
regulation during the advancement towards brain stem death in critically ill patients. The present study assessed
the hypothesis that, in addition to ERK1/2, c-Jun NH2-terminal kinase (JNK) and p38 mitogen-activated protein
kinase (p38MAPK), the other two mammalian members of MAPKs that are originally identified as stress-activated
protein kinases, are activated specifically by MAPK kinase 4 (MAP2K4) or MAP2K6 and play a pro-life role in RVLM
during experimental brain stem death. We further delineated the participation of phosphorylating activating
transcriptional factor-2 (ATF-2) and c-Jun, the classical transcription factor activated by JNK or p38MAPK; in this
process.

Results: An experimental model of brain stem death that employed microinjection of the organophosphate
insecticide mevinphos (Mev; 10 nmol) bilaterally into RVLM of Sprague-Dawley rats was used, alongside
cardiovascular, pharmacological and biochemical evaluations. Results from ELISA showed that whereas the total
INK, p38MAPK, MAP2K4 and MAP2K6 were not affected, augmented phosphorylation of JNK at Thr183 and Tyr185
and p38MAPK at Thr180 and Tyr182, accompanied by phosphorylation of their upstream activators MAP2K4 at
Ser257 and Thr261 and MAP2K6 at Ser207 and Thr211 in RVLM occurred preferentially during the pro-life phase of
experimental brain stem death. Moreover, the activity of transcription factors ATF-2 at Thr71 and c-Jun at Ser73,
rather than Elk-1 at Ser383 in RVLM were also augmented during the pro-life phase. Furthermore, pretreatment by
microinjection into the bilateral RVLM of specific JNK inhibitors, JNK inhibitor | (100 pmol) or SP600125 (5 pmol),
or specific p38MAPK inhibitors, p38MAPK inhibitor IIl (500 pmol) or SB203580 (2 nmol), exacerbated the depressor
effect and blunted the augmented life-and-death signal exhibited during the pro-life phase. On the other hand,
pretreatment with the negative control for JNK or p38MAPK inhibitor, JNK inhibitor | negative control (100 pmol)
or SB202474 (2 nmol), was ineffective in the vehicle-controls and Mev-treatment groups.

Conclusions: Our results demonstrated that activation of JNK or p38MAPK in RVLM by their upstream activators
MAP2K4 or MAP2K6 plays a preferential pro-life role by sustaining the central cardiovascular regulatory machinery
during experimental brain stem death via phosphorylation and activation of nuclear transcription factor ATF-2

or ¢c-Jun.
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Background

Whereas brain stem death is the legal definition of death
in the United States of American [1], United Kingdom
[2], European [3], Taiwan and many other countries
[1,4], the detailed cellular and molecular mechanisms
underlying this phenomenon of prime medical import-
ance are only begun to emerge. Since asystole invariably
occurs within hours or days after the diagnosis of brain
stem death [5], it is strongly suggested that permanent
impairment of the brain stem cardiovascular regulatory
machinery precedes death [6]. Further understanding of
the mechanisms of this aspect of cardiovascular regula-
tory dysfunction should therefore enrich the dearth of
information currently available on brain stem death.

Mitogen-activated protein kinases (MAPKs) are
serine/threonine-specific protein kinases that regulate
proliferation, gene expression, differentiation, cell sur-
vival and apoptosis [7]. Three most widely characterized
MAPK subfamilies are extracellular signal-regulated kin-
ase 1/2 (ERK1/2), c-Jun NH2-terminal kinase (JNK) and
p38MAPK [8]. Activation of MAPKSs requires phosphor-
ylation of its regulatory loop by upstream activators.
Thus, each of these subfamilies is composed of MAPK
kinase kinase (MAP3K) that, on activation, phosphory-
lates a MAPK kinase (MAP2K), then a MAPK. The
phosphorylated MAPK interacts with its cellular sub-
strates, which translocate to the nucleus to modulate
transcription factors that results in a diverse range of
biological responses.

Based on a clinically relevant animal model of brain
stem death [6,9] in conjunction with toxicity elicited by
the organophosphate insecticide mevinphos (3-(dimetho-
xyphosphinyloxyl)-2-butenoic acid methyl ester (Mev), a
US Environmental Protection Agency Toxicity Category I
pesticide, we demonstrated previously that the rostral
ventrolateral medulla (RVLM) is a suitable neural sub-
strate for mechanistic evaluation of this fatal phenomenon
[6], because it is the origin of a life-and-death signal
[10] that reflects failure of the central cardiovascular
regulatory machinery during brain stem death [11-13]
and is a brain stem site via which Mev acts to elicit
cardiovascular toxicity [9]. Of interest is that the waxing
and waning of the life-and-death signal, which mirrors
the fluctuation of neuronal functionality in RVLM, pre-
sents itself as the low-frequency (LF) component in the
systemic arterial pressure (SAP) spectrum of comatose
patients [11-13]. More importantly, the distinct phases
of augmentation followed by reduction of the LF power
exhibited during Mev intoxication [14-17] can be desig-
nated the pro-life and pro-death phase of central car-
diovascular regulation in this model of brain stem
death [6]. Based on this model, our laboratory has pre-
viously demonstrated that activation of MAPK kinase
1/2 (MEK1/2) in RVLM, followed by ERK1/2 and MAPK
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signal-interacting kinase 1/2 (MNK1/2) activation, is re-
sponsible for the pro-life phase by sustaining the central
cardiovascular regulatory machinery during brain stem
death [18,19].

Of the three MAPKs characterized in mammals, JNK
and p38MAPK are originally identified as a stress-
activated protein kinase (SAPK) that primarily mediates
inflammatory response [20,21] and promotes cell death
[22-24]. However, recent studies further suggest that
JNK and p38MAPK may also participate in cell survival
[25-27], proliferation [28] or pressor response [29]. With
particular relevance to the present study, simultaneous
inhibition of JNK and p38MAPK increases cell death in
the heart of rats induced by ischemia/reperfusion injury
[30]. Moreover, activation of p38MAPK signaling path-
way in RVLM underlies the pressor response to angio-
tensin II (Ang II) in rats [29].

As death represents the end of existence for an indi-
vidual, we proposed previously [6] that multiple pro-life
and pro-death programs must be activated in RVLM
during the progression toward brain stem death. Fur-
thermore, we previously demonstrated that ERK1/2 in
RVLM plays a pro-life role in experimental brain stem
death [18,19]. In our continual search for the cellular
and molecular underpinning of brain stem death, the
next logical direction is to evaluate the contribution of
the other two family members of MAPKs, JNK or
p38MAPK in RVLM to this fatal phenomenon.

Based on our Mev intoxication model [6], the present
study evaluated the hypothesis that JNK and p38MAPK in
RVLM play a pro-life role during brain stem death. We
further delineated the upstream participation of MAPK
kinase 4 (MAP2K4) and MAPK kinase 6 (MAP2K6) and
downstream participation of transcription factors activating
transcriptional factor-2 (ATF-2) and c-Jun, the nuclear
substrates of JNK or p38MAPK [31] in this process. Our
results demonstrated that activation of JNK and p38MAPK
in RVLM plays a preferential pro-life role by sustaining
central cardiovascular regulatory functions during brain
stem death. We further found that the signaling cascade
for the pro-life process includes upstream phosphorylation
of MAP2K4 or MAP2K6, and downstream activation of
transcription factors ATF-2 or c-Jun.

Methods

Adult male Sprague—Dawley rats (275-350 g, n=129)
purchased from the Experimental Animal Center of the
National Science Council, Taiwan, Republic of China
were used. They were housed in our Association for As-
sessment and Accreditation of Laboratory Animal Care
(AAALAC)-International accredited Center for Labora-
tory Animals. All animal care and experimental proce-
dures carried out in this study have been approved by
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the Institutional Animal Care and Use Committee of the
Kaohsiung Chang Gung Memorial Hospital, and were in
compliance with the guidelines of this Committee. Ani-
mals were housed in groups of two to three in individu-
ally ventilated cages, in a temperature-controlled room
(22 £ 2°C) with 12 h light/12 h dark cycles (lights on at
07:00 h), with free access to rat chow and water. All
efforts were made to minimize animal suffering and to
reduce the number of animal used.

General preparation

After application of an induction dose of pentobarbital
sodium (50 mg/kg, i.p.), preparatory surgery, including
cannulation of a femoral artery and a femoral vein, to-
gether with tracheal intubation, was carried out. During
the recording session, which routinely commenced
60 min after the administration of pentobarbital sodium,
anesthesia was maintained by intravenous infusion of
propofol (Zeneca, Macclesfield, UK) at 20-25 mg/kg/h.
We have demonstrated previously [32] that this scheme
provided satisfactory anesthetic maintenance while pre-
serving the capacity of central cardiovascular regulation.
Rats were allowed to breathe spontaneously with room
air and body temperature of rats was maintained at 37°C
with a heating pad.

Animal model of brain stem death

The Mev intoxication model of brain stem death [6] that
we established previously was used. Since Mev induces
comparable cardiovascular responses on given systemic-
ally or directly to RVLM [9], we routinely microinjected
Mev bilaterally into RVLM to elicit site-specific effects
[9,14-17]. SAP signals recorded from the femoral artery
were simultaneously subject to on-line power spectral
analysis (SPA10a; Notocord, Croissy-Sur-Seine, France)
[9,14-17,33]. We were particularly interested in the LF
component (0.25-0.8 Hz) in the SAP spectrum because
its power density mirrors the prevalence of baroreflex-
mediated sympathetic neurogenic vasomotor discharges
that emanate from this brain stem site [33]. More import-
antly, our laboratory demonstrated previously [14-17] that
the power density of this spectral signal exhibits biphasic
changes that reflect the pro-life and pro-death phases seen
during the progression towards brain stem death in
patients who succumbed to organophosphate poisoning
[13]. Heart rate (HR) was derived instantaneously from
SAP signals. Temporal changes in the power density of
the LF component, pulsatile SAP, mean SAP (MSAP) and
HR were routinely followed for 180 min after Mev admin-
istration in an on-line and real-time manner.

Microinjection of test agents
Microinjection bilaterally of test agents into RVLM, each
at a volume of 50 nl, was carried out stereotaxically and
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sequentially [9,14-17] via a glass micropipette connected
to a 0.5-pl Hamilton (Reno, NV, USA) microsyringe.
The coordinates used were: 4.5-5 mm posterior to
lambda, 1.8-2.1 mm lateral to midline, and 8.1-8.4 mm
below the dorsal surface of cerebellum. These coordi-
nates were selected to cover the ventrolateral medulla at
which functionally identified sympathetic premotor neu-
rons reside [34]. Test agents used included Mev (kindly
provided by Huikwang Corporation, Tainan, Taiwan),
two specific JNK inhibitors, JNK inhibitor I (Calbiochem,
San Diego, CA, USA) [35] and JNK inhibitor II (SP600125,
Calbiochem) [36]; two specific p38MAPK inhibitors, p38
MAPK inhibitor III (Calbiochem) [37] and SB203580 (Cal-
biochem) [38]; and negative controls, JNK inhibitor I nega-
tive control (Calbiochem) [35] or SB202474 (Calbiochem)
[38]. All test agents used for pretreatment were given
30 min before the administration of Mev. The doses were
adopted from previous reports [35-38] that used those test
agents for the same purpose as in this study. Application
of the same amount of artificial cerebrospinal fluid (aCSF)
controlled for possible volume or solvent effect. The com-
position of aCSF was (mmol/L): NaCl 117, NaHCOj3 25,
glucose 11, KCI 4.7, CaCl, 2.5, MgCl, 1.2 and NaH,PO,
1.2. To avoid the confounding effects of drug interactions,
each animal was subject routinely to only one pharmaco-
logical treatment scheme.

Collection of tissue samples from ventrolateral medulla
As in previous studies [14-17], we routinely collected tis-
sue samples for subsequent biochemical evaluations dur-
ing the peak of the pro-life phase and pro-death phase
(Mev group), or 30 or 180 min after microinjection of
aCSF into RVLM (vehicle control group). Animals were
killed with an overdose of pentobarbital sodium and tis-
sues from both sides of the ventrolateral medulla, at the
level of RVLM (0.5—-1.5 mm rostral to the obex), were
collected by micropunches made with a 1 mm (i.d.)
stainless-steel bore to cover the anatomical boundaries
of RVLM. Medullary tissues collected from anesthetized
animals without any treatment served as the sham-con-
trols. The concentration of total proteins extracted from
tissue samples was determined by the BCA protein assay
(Pierce, Rockford, IL, USA).

ELISA for protein level of JNK, p38MAPK, MAP2K4,
MAP2K6 or their phosphorylated forms

Cell lysate from ventrolateral medulla was subject to a
commercial kit for enzyme-linked immunosorbent assay
(ELISA) according to the manufacturer’s protocol to de-
tect the levels of JNK1/2/3 (eBioscience, San Diego, CA,
USA), phosphorylated JNK1/2/3 at Thr183/Tyr185
(eBioscience), p38MAPK (eBioscience), phosphorylated
p38MAPK at Thr180/Tyr182 (eBioscience), MAP2K4
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(Antibodies-online, Atlanta, GA, USA), phosphorylated
MAP2K4 at Ser257/Thr261 (TGR BioSciences, The-
barton, Australia), MAP2K6 (MyBioSource, San Diego,
CA, USA) or phosphorylated MAP2K6 at Ser207/
Thr211 (R and D Systems, Minneapolis, MN, USA).
The final absorbance of reaction solution at 450 nm
was determined by spectrophotometry using an ELISA
microtiter plate reader (Anthros Labtec, Salzburg,
Austria), and was expressed as fold changes against base-
line-controls.

Nuclear extract from ventrolateral medulla

In some experiments, proteins from the nuclear fraction
of the medullary samples were extracted using a com-
mercial kit (Active Motif, Carlsbad, CA, USA). The con-
centration of protein in the nuclear extracts was again
estimated by the BCA Protein Assay (Pierce).

ELISA for activity of transcription factors ATF-2, c-Jun

or Elk-1

Nuclear extract from ventrolateral medulla was subject
to a sensitive and specific commercial kit (Active Motif)
for ELISA according to the manufacturer’s protocol to
detect the levels of phosphorylated c-Jun at Ser73, phos-
phorylated E twenty-six-like transcription factor 1 (Elk-1)
at Ser383 or phosphorylated ATF-2 at Thr71. The final
absorbance of the reaction solution at 450 nm was deter-
mined by spectrophotometry using an ELISA microtiter
plate reader (Anthros Labtec), and expressed as fold
changes against baseline-controls.

Histology

In some animals that were not used for biochemical ana-
lysis, the brain stem was removed at the end of the
physiological experiment and fixed in 30% sucrose in
10% formaldehyde-saline solution for at least 72 h. Fro-
zen 25-um sections of the medulla oblongata stained
with neural red were used for histological verification of
the microinjection sites.

Statistical analysis

All values are expressed as mean + SEM. The averaged
value of MSAP or HR calculated every 20 min after the
administration of test agents or aCSF, the sum total of
power density for the LF component in the SAP
spectrum over 20 min, or the level or activity of protein
or transcriptional factor in RVLM during each phase of
experimental brain stem death, were used for statistical
analysis. One-way or two-way ANOVA with repeated
measures was used, as appropriate, to assess group
means. This was followed by the Scheffé multiple-range
test for post hoc assessment of individual means. P <0.05
was considered to be statistically significant.
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Results

Mev intoxication model of brain stem death

We demonstrated previously that co-microinjection bi-
laterally of Mev (10 nmol) and aCSF into RVLM elicited
a progressive depressor effect that became significant
100 min after application, accompanied by indiscernible
alterations in HR. Concurrent changes in the power
density of the LF component of SAP signals revealed
two distinct phases [14-17]. The pro-life Phase I (MI)
entailed a significantly augmented LF power that
endured 80-100 min to reflect sustained brain stem car-
diovascular regulatory functions. The pro-death Phase II
(MII), which lasted the remainder of our 180-min obser-
vation period, exhibited further and significant reduction
in the power density of this spectral component to
below baseline, which signifies failure of central cardio-
vascular regulation that precedes brain stem death [6].

Preferential activation of JNK in RVLM during the

pro-life phase

We first evaluated the fundamental premise that JNK in
RVLM is activated during experimental brain stem
death. Quantification by ELISA revealed that total JNK
and its upstream activator MAP2K4 in ventrolateral me-
dulla were not affected by microinjection of Mev into
the bilateral RVLM (Figure 1). Interestingly, phosphory-
lated JNK (p-JNK) at Thr183 and Tyr185 in RVLM was
significantly and preferentially augmented (Figure 1)
during the pro-life phase of experimental brain stem
death, which returned to baseline during the pro-death
phase. However, phosphorylated MAP2K4 (p-MAP2K4)
at Ser257/Thr261 was significantly increased (Figure 1)
during both the pro-life and pro-death phases. The
levels of JNK, MAP2K4 and phosphorylated JNK or
MAP2K4 in ventrolateral medulla of vehicle groups
30 min (AI) or 180 min (AII) after aCSF application
were comparable to sham-controls.

Preferential activation of p38MAPK in RVLM during the
pro-life phase

We further evaluated whether p38MAPK in RVLM is
also activated during experimental brain stem death.
Quantification by ELISA again revealed that total
p38MAPK and its upstream activator MAP2K6 in
ventrolateral medulla were not affected by microinjec-
tion of Mev into the bilateral RVLM (Figure 2). Further-
more, both phosphorylated p38MAPK (p-p38MAPK) at
Thr180/Tyr182 and phosphorylated MAP2K6 at Ser207/
Thr211 in RVLM were significantly augmented (Figure 2)
during both pro-life and pro-death phase. The levels of
p38MAPK, MAP2K6 and phosphorylated p38MAPK or
MAP2KG6 in ventrolateral medulla of vehicle groups after
aCSF application were comparable to sham-controls.
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Figure 1 Activation of JNK and MAP2K4 in RVLM during the pro-life phase of experimental brain stem death. Changes in levels of total

or phosphorylated JNK at Thr183 and Tyr185 and changes in levels of total or phosphorylated MAP2K4 at Ser257/Thr261 in folds relative to sham-
control (SC), detected in ventrolateral medulla during the pro-life Phase | (MI) or pro-death Phase Il (MIl) during experimental brain stem death or
during comparable time points after treatment with aCSF (Al or All). Values are presented as mean + SEM of triplicate analyses on tissue samples
pooled from 5-7 animals in each experimental group. *P < 0.05 versus corresponding aCSF group in the post hoc Scheffé multiple-range analysis. )
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Figure 2 Activation of p38MAPK and MAP2K6 in RVLM during the pro-life phase of experimental brain stem death. Changes in levels of
total or phosphorylated p38MAPK at Thr180 and Tyr182 and changes in levels of total or phosphorylated MAP2K6 at Ser207/Thr211 in folds
relative to sham-control (SC), detected in ventrolateral medulla during the pro-life (MI) or pro-death (MIl) phase of experimental brain stem death
or during comparable time points in aCSF-controls (Al or All). Values are presented as mean + SEM of triplicate analyses on tissue samples pooled
from 5-7 animals in each experimental group. *P < 0.05 versus corresponding aCSF group in the post hoc Scheffé multiple-range analysis.
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Figure 3 Activation of transcription factor ATF-2, c-Jun, rather

than Elk-1 in RVLM during the pro-life phase of experimental
brain stem death. Changes in the activity of ATF-2, c-Jun or Elk-1
represented by phosphorylation respectively at Thr71, Ser73 or
Ser383, in folds relative to sham-control (SC), detected in
ventrolateral medulla during the pro-life (Ml) or pro-death (MIl)
phase of experimental brain stem death or during comparable time
points in aCSF-controls (Al or All). Values are presented as mean +
SEM of triplicate analyses on tissue samples pooled from 5-7 animals
in each experimental group. *P < 0.05 versus corresponding aCSF
group in the post hoc Scheffé multiple-range analysis.

Preferential activation of transcription factors c-Jun, ATF-2,

rather than Elk-1 in RVLM during the pro-life phase

We next determined the activity of transcription factors
c-Jun, ATF-2 and Elk-1 in RVLM, which are activated by
phosphorylated JNK or p38MAPK [39-41], during ex-
perimental brain stem death. Results from ELISA
showed that significantly increased ATF-2 activity via
phosphorylation at Thr71 in ventrolateral medulla was
observed only during the pro-life phase (Figure 3). Simi-
lar results were obtained for augmented c-Jun activity
via phosphorylation at Ser73, but not for Elk-1 activity
as indicated by insignificant phosphorylation at Ser383.
On the other hand, the activity of ATF-2, c-Jun or Elk-1
in ventrolateral medulla of aCSF-treatment group was
comparable to sham-controls.

Activation of JNK in RVLM sustains central cardiovascular

regulation during experimental brain stem death

Based on the stipulation that the magnitude and dur-
ation of the LF component of SAP signals during experi-
mental brain stem death reflect the prevalence of the
life-and-death signal [6], we next employed pharmaco-
logical blockade to evaluate whether a causal relation-
ship exists between activation of JNK in RVLM and
central cardiovascular regulation during brain stem
death. Pretreatment with microinjection into the bilateral
RVLM of JNK inhibitor I (100 pmol), a cell-permeable
biological active peptide that binds specifically to JNK to
inhibit phosphorylation of the activation domain of JNK
and to prevent the activation of the downstream transcrip-
tion factor c-Jun [35], exacerbated significantly the depres-
sor effect and blunted the augmented power density of the
LF component of SAP signals during the pro-life phase
(Figure 4), without affecting HR. Similar results were
obtained on local application bilaterally into RVLM of
SP600125 (5 pmol), a cell-permeable, selective and revers-
ible inhibitor of JNK [36] (Figure 4). Those pretreatments
also significantly shortened the pro-life phase to 35-
40 min by shifting the prevailing phase of the 180-min ob-
servation period toward the pro-death phase (Figure 4).
On the other hand, microinjection of JNK inhibitor I
negative control (100 pmol) [35] into the bilateral RVLM
did not significantly affect the increase in LF power during
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the pro-life phase nor the depressor effect and decrease in
LF power already exhibited during the pro-death phase.
Furthermore, pretreatments with aCSF or JNK inhibitor I
negative control exerted no significant effects on the min-
imal cardiovascular responses in the aCSF-control group.

Activation of p38MAPK in RVLM also sustains central
cardiovascular regulation during experimental brain stem
death

We further applied the same experimental scheme to
evaluate whether a causal relationship similarly exists
between activation of p38MAPK in RVLM and central
cardiovascular regulation during experimental brain
stem death. Pretreatment with microinjection into the
bilateral RVLM of p38MAPK inhibitor IIT (500 pmol), a
potent, selective and ATP competitive p38MAPK inhibi-
tor [37], also exacerbated significantly the depressor ef-
fect and blunted the augmented power density of the LF
component of SAP signals during the pro-life phase
(Figure 5), without affecting HR. Similar results were
obtained from SB203580 (2 nmol), a cell-permeable in-
hibitor of p38MAPK [38] (Figure 5). Those pretreat-
ments also significantly shortened the pro-life phase
to 60 min by shifting the prevailing phase of the 180-
min observation period toward the pro-death phase
(Figure 5). On the other hand, pretreatment with the
negative control, SB202474 (2 nmol) was ineffective
against the phasic cardiovascular responses in the aCSF-
control group or Mev-experimental group.

Discussion and conclusions

Based on a clinically relevant experimental model [6],
the present study provided novel demonstrations that
activation of both JNK and p38MAPK in RVLM sus-
tains central cardiovascular regulation during the pro-
gression towards brain stem death. We further showed
that mechanistically, phosphorylation of MAP2K4 or
MAP2K®6 is upstream to activation of JNK or p38MAPK
during the pro-life phase, with nuclear activation of
transcription factors ATF-2 or c-Jun as the downstream
signals (Figure 6).

The present study identified a novel pro-life role for
MAP2K4/JNK/ATE-2 or c-Jun signaling cascade, rather
than Elk-1, in RVLM during experimental brain stem
death. JNK is a critical determinant for survival of cardi-
omyocytes from hypoxia-induced apoptosis [30,42]. Ac-
tivation of JNK and its downstream transcription factor
c-Jun, rather than ERK pathway, also plays a critical role
in the survival and proliferation of pulmonary artery
endothelial cells induced by epoxyeicosatrienoic acid
[43]. Phosphorylation of JNK at Thr183 and Tyr185 by
upstream MAP2Ks, MAP2K4 or MAP2K7, is important
for the activation of JNK pathway [44,45]. Activation of
JNK1/2 by MAP2K4 is responsible for cell survival in
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primary human umbilical vein endothelial cells mediated
by vascular endothelial growth factor receptor-3 [46].

The present study also identified a novel a pro-life role
for MAP2K6/p38MAPK/ATE-2 or c-Jun signaling cas-
cade in RVLM during experimental brain stem death.
The p38MAPK-dependent signaling cascade mediates
critical cellular survival response to stress [47]. Upregu-
lation of p38MAPK plays an important role in survival
from cecal ligation and puncture-induced sepsis in mice
[48], and inhibits apoptosis or proinflammatory response
to lipopolysaccharide in microglial BV-2 cells [26] or in
macrophages RAW 264.7 cells [48] or tumor necrosis
factor alpha (TNFa) in murine fibrosarcoma 1929 cells
[49]. On the other hand, a decrease in the expression of
phosphorylated p38MAPK is accompanied by cell death
in TNFa-treated 1929 cells [49]. Constitutive expression
of MKKG®6 (the alternative name for MAP2K6) phosphor-
ylates p38 MAPK and enhances the survival of osteo-
clasts [50]. Activation of ATF-2 by p38MAPK prevents
accumulation of reactive oxygen species and cell death
in mouse embryo fibroblast [27].

We demonstrated previously the engagement of
hypoxia-inducible factor 1a (HIF-1a)/heme oxygenase 1/
heat shock protein 70 (HSP70) signaling pathway
induced by hypoxia and tropomyocine receptor kinase B
(Trk B)/Ras/Raf signaling pathways activated by brain-
derived neurotrophic factor (BDNF) in RVLM during
the pro-life phase of experimental brain stem death. Of
interest is that a potential role for JNK to serve as a sur-
vival factor by phosphorylation of a number of cellular
molecules, including c-Jun, AP-1 or Bcl-2, is suggested
for myocytes against hypoxia-reoxygenation injury [51].
Decreased JNK phosphorylation induced by inhibition of
Ras or Raf mediates cell apoptosis [52]; and inhibition of
Ras and p38MAPK reduces BDNF-induced survival of gan-
glion neurons [53]. Activation of the p38MAPK pathway is
also an early response to hypoxia for cell survival because
p38MAPK inhibition abolishes cell survival from hypoxia
in rat neonatal cardiac myocytes [54] or LNCaP cells [55]
and phosphorylation of p38MAPK induced by hypoxia-
preconditioning mediates the protection of cardiomyocyte
from ischemic injury [56]. It follows that JNK or p38MAPK
may participate in the pro-life phase of experimental brain
stem death as a consequence of hypoxia or BDNF activa-
tion in RVLM. Further studies are required to delineate
these implied signaling cascades.

The transcription factor c-Jun is one of the most con-
sistent markers for neuronal fate and is determined by a
transcriptional network comprising c-Jun, ATF-2 and
JNKs [57]. Overexpression of c-Jun in rat pheochromo-
cytoma PC12 cells renders them to be more resistant to
apoptosis induced by okadaic acid [58] or serum-
deprivation [59]. High levels of c-Jun mRNA and pro-
teins even function as a neuronal survival or neurite
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outgrowth signal for PC12 cell [58]. Mechanistically, it is
most likely that ATF-2 or c-Jun in RVLM participates in
the pro-life process by regulating its target proteins tran-
scriptionally. Some of the known candidate proteins

include HIF-1a [60,61], HSP70 [62,63], anti-apoptotic
Bcl-XL [64] and neuronal nitric oxide synthase [65]. In
addition to transcriptional regulation, c-Jun also med-
iates posttranscriptional modification on HIF-la by
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Figure 5 Activation of p38MAPK in RVLM sustained central cardiovascular regulation associated with experimental brain stem death.
Temporal changes in MSAP, HR or power density of the LF component of SAP signals in rats that received pretreatment by microinjection
bilaterally into RVLM of aCSF (vehicle), p38MAPK inhibitor Il (p38MAPK inhibitor), SB203580 (p38MAPK inhibitor) or SB202474 (negative control for
p38MAPK inhibitors), 30 min before local application (at arrow) of aCSF or Mev (10 nmol) to the bilateral RVLM. Values are mean + SEM, n = 5-7
animals per experimental group. *P < 0.05 versus aCSF+aCSF group, and P < 0.05 versus aCSF+Mev group at corresponding time-points in the

post hoc Scheffé multiple-range test.
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protecting it from proteasomal degradation [66]. Inter-
estingly, all these proteins have been found to play a
pro-life role in RVLM in our experimental model of
brain stem death [16,67-71]. Fischer et al., [72] reported
that marked increases in JNK and p38MAPK activity,
coincident with an increase in phosphorylation of c-Jun
and ATF-2, can be detected as early as 15-30 min after
rapid changes in hemodynamic load in Wistar rats. This
time-course befits an active role for c-Jun and ATF-2 in

RVLM during the pro-life phase of experimental brain
stem death.

In conclusion, the present study demonstrated that
the MAP2K4/JNK or MAP2K6/p38MAPK signaling
cascade in RVLM plays a pro-life role during experi-
mental brain stem death by sustaining the central car-
diovascular regulatory machinery via activating the
transcription factors ATF-2 or c-Jun. This information
provides further insights into the cellular mechanisms
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Figure 6 Schematic summary of the pro-life role of JNK and p38MAPK at RVLM during experimental brain stem death. Phosphorylation
of MAP2K4 or MAP2K6, leading to activation of JNK or p38MAPK, and followed by nuclear activation of transcription factors ATF-2 or c-Jun, but
not Elk-1, take place in RVLM preferentially during the pro-life phase of experimental brain stem death. Proteins that are downstream to these
signaling cascades in turn sustain central cardiovascular regulation during the progression towards brain stem death. Abbreviation: ATF-2,
activating transcriptional factor-2; JNK, c-Jun NH2-terminal kinase; CV, cardiovascular; MAPK, mitogen-activated protein kinase; MAP2K4, MAPK
kinase 4; MAP2K6, MAPK kinase 6; Mev, mevinphos; p38MAPK, p38 mitogen-activated protein kinase; RVLM, rostral ventrolateral medulla.

of brain stem death, and offers new targets for the de-
velopment of therapeutic interventions against this fatal
phenomenon.
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