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Abstract

Macrophages (M) are the major source of inflammatory cytokines and are target cells for dengue virus (DV)
replication. However, M¢ are heterogeneous and their phenotypic and functional diversities are influenced by
cytokines that regulate their differentiation, tissue distribution, and defense against invading pathogens. In vitro,
human primary macrophages are derived from peripheral blood CD14" monocytes in the presence of macrophage
colony-stimulating factor (M-CSF) or granulocyte macrophage colony-stimulating factor (GM-CSF). These are
essential for developing tissue/resting macrophages (M-M®) and inflammatory macrophages (GM-M@), respectively.
While IFN production is similar between M-M® and GM-M®, M-M® cannot produce IL-13 after DV infection. In
contrast, GM-M® is more susceptible to DV infection and DV triggers CLEC5A in GM-M® to activate NLRP3
inflammasomes, which in turn release IL-18 and IL-1{3 that are critical for Th17 activation and contribute to disease
severity. Thus, GM-M® is more representative than M-M@ for investigating inflammasome activation in dengue
infection, and is invaluable for revealing the molecular mechanism of pathogen-induced inflammatory reaction.
Distinct phenotypes of macrophage subsets under the influence of M-CSF and GM-CSF raise the question of
optimal conditions for culturing primary macrophages to study host-pathogen interaction.
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Introduction

Dengue virus (DV) is a positive-sense, single-stranded
RNA virus that belongs to the flavivirus genus of the
Flaviviridae family. It is transmitted among humans by
the Aedes mosquitoes and is prevalent in over 100 tropical
and sub-tropical countries, with about 2.5 billion people at
risk [1]. Infection causes a spectrum of illness ranging from
sub-clinical and mild febrile illness to classical dengue fever
(DF) to severe and sometimes fatal hemorrhagic disease
[1]. Classical DF is an acute febrile illness that usually
occurs in older children and adults and is often charac-
terized by fever, frontal headache, myalgia, arthralgia,
nausea, vomiting, and rash lasting 3—7 days [2]. While DF
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is self-limiting in most cases, it can progress into dengue
hemorrhagic fever (DHF) or dengue shock syndrome
(DSS). The signaling pathway leading to dengue infection
had been unclear until the myeloid Syk-coupled C-type
lectin CLEC5A was identified as the therapeutic target of
DF/DHEF [3].

Macrophages (M¢) are thought to originate from
hematopoietic stem cells (HSCs) during development
and reside in various tissues such as Kupffer cells in
the liver, microglia in the brain, alveolar macrophage
in the lungs, osteoclast in the bone, and in lymph
nodes and other tissues. Tissue macrophages play a
broad role in maintaining tissue homeostasis via clear-
ance of senescent cells and tissue remodeling and
repair. While macrophage colony-stimulating factor
(M-CSF) has been applied to induce monocyte differen-
tiation into macrophages for host-pathogen interaction,
recent studies reveal that granulocyte macrophage
colony-stimulating factor (GM-CSF) is influential in
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skewing macrophage differentiation into distinct phe-
notypes. Hamilton [4] proposed that a constant M-CSF
level is necessary to keep the M¢ population in a resting
and homeostatic situation (M-M¢ or resting macrophage),
while local GM-CSF elevation during infection triggers
M¢ into an inflammatory condition (GM-M¢ or inflam-
matory macrophage).

While GM-M¢ has condensed nuclei and relatively
abundant cytoplasm rich in mitochondria, M-M¢ has
relatively smaller nuclei and less cytoplasm filled with ly-
sosomes. Moreover, differential expression of Toll-like
receptors (TLRs), C-type lectin receptors (CLRs), and
cytosolic retinoid acid-inducible gene I (RIG-I)-like
receptors (RLRs) have been observed [5]. While M-M¢
is less sensitive to DV infection and do not produce
interleukin-1beta (IL-1p) and IL-18, GM-M¢ is highly
susceptible to DV infection, release higher levels of tumor
necrosis factor-alpha (TNF-a), and activate NLR family
PYD-containing protein 3 (NLRP3) inflammasome to se-
crete IL-1f and IL-18 and become pyroptosis [5].

Inflammasome is composed of three components:
the nucleotide-binding domain and leucine-rich repeat
containing (NLR) proteins or the pyrin and HIN domain
containing family member (PYHIN), apoptosis-associated
speck-like protein containing a CARD (Asc), and pro-
caspase-1. Activation of TLRs and CLRs results in the
assembling of inflammasome to activate caspase-1,
which further processes pro-IL-1$ and IL-18 into mature
forms and induces pyroptosis. Since inflammasomes play
critical roles in Th17 activation and tissue damage during
acute and chronic inflammation, GM-M¢ may be an ideal
in vitro model system to investigate the regulation of
inflammasome activation by pathogens [6].

In addition to DV, the influenza virus elicits differ-
ent responses from macrophage subsets, which is at-
tributed to the distinct culture conditions in vitro.
Cheung et al. demonstrated that H5N1 virus induced
higher levels of TNF-a and interferon beta (IFNf)
than HIN1 and H3N2 in human macrophages differ-
entiated by heat-inactivated autologous plasma [7].
However, Friesenhagen et al. suggested that induction
of pro-inflammatory cytokines and type I IFNs were
significantly abolished in H5N1-infected macrophages
differentiated by cultivating monocytes in Teflon bags
with RPMI-1640 medium, supplemented by 10% hu-
man AB serum than in H1N1-infected cells [8]. Thus,
contradicting results seem come from distinct differen-
tiation methods for macrophage subsets used in the
study of host-pathogen interaction.

To address this important issue, cytokines optimal for
macrophage differentiation is discussed and the current
strategy of using human M-CSF to drive monocyte differ-
entiation in vitro models to study host-pathogen inter-
action is re-visited.
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Signals for macrophage differentiation and activation
Macrophages can differentiate from either hematopoietic
progenitor cells (HPC) or circulating monocytes, and dis-
play distinct phenotypes in host-pathogen interaction
and the resolution of inflammatory reactions. Various cyto-
kines and stimulatory signals are involved in the process.
Monocytes differentiate into resting or inflammatory mac-
rophages under the influence of M-CSF and GM-CSE, re-
spectively [9], or into M1 and M2 by interferon-gamma
(IFN-y) and IL-4 priming, respectively [10-12]. Stimulation
of macrophage subsets by pathogen-associated molecular
patterns (PAMPs), damage-associated molecular patterns
(DAMPs), or distinct resolution signal like IL-10, TGF-f
and glucocorticoids, determine the consequence of host
immune responses [12,13].

The M1 macrophages are responsible for the high
levels of pro-inflammatory cytokines (i.e., TNF-a, IL-1p,
and IL-6), IL-12 and IL-23, chemokines (Chemokine
[C-C motif] ligand 5, CCL5, and C-X-C motif chemokine,
CXCL10), and low levels of IL-10. As a result, M1 macro-
phages express strong anti-microbial activity and contrib-
ute to Thl response. In contrast, M2 macrophages can be
further classified into three major groups: M2a (induced by
IL-4 or IL-13), M2b (induced by immune complexes and
agonists of IL-1 receptors or TLRs), and M2c (induced by
glucocorticoids or IL-10 or transforming growth factor
beta, TGF-B). The M2 macrophages are characterized by
low IL-12 and high IL-10 production. They are also re-
sponsible for resolving Th1 response and modulating tissue
repair and remodeling [10,11,13].

Role of M-CSF and GM-CSF in macrophage differentiation
The M-CSF controls the primary regulator of mononuclear
phagocyte production in vivo and plays an essential role in
the survival, proliferation, differentiation, and maturation
of the macrophage myeloid lineage [14]. Mutation of M-
CSF results in profound macrophage deficiency [15,16]
similar to that observed in M-CSF receptor knock-out
mice [17]. In contrast, disturbed hematopoiesis and defi-
cient macrophages are not observed in GM-CSF knockout
mice, even though GM-CSF-deficient mice develop ab-
normal lungs, including peri-brochovascular lymphocyte
infiltration and surfactant accumulation in the alveoli.
Moreover, opportunistic bacterial and fungal infections in
lung tissue are the significant features of GM-CSE-deficient
mice [18]. The GM-CSF~~ mice is less able to control
influenza virus infection than WT mice, and GM-CSF
over-expression in lung epithelial cells in GM-CSF~'~ mice
enhance mice survival after influenza virus infection [19].
This suggests that GM-CSF is necessary for host defense
against pathogen invasion, while M-CSF is essential for
driving monocyte differentiation into macrophage in vivo.
The M-CSF circulates at detectable levels in a steady
state (<60 pg/animal) in normal healthy individuals. It is
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constitutively produced in vitro by several cell types, in-
cluding fibroblasts, endothelial cells, stromal cells, mac-
rophages, smooth muscle cells, and osteoblasts [20]. On
the other hand, GM-CSF expression is spatially regu-
lated and dramatically up-regulated at inflammation or
infection sites [4], suggesting that macrophage differen-
tiation during inflammatory reactions is under the in-
fluence of GM-CSEF, which causes a massive increase in
the macrophage population of the spleen and liver to
induce hepato-splenomegaly [21]. Thus, the basal level
of M-CSF is required to maintain the homeostasis of
tissue macrophage through M-CSF signaling, while
the local and temporal increase in GM-CSF, which in-
hibits M-CSF signaling during inflammation, polarizes
monocytes to differentiate into inflammatory M¢ dur-
ing the inflammatory reaction and shift back to resting
macrophages after the infection-induced inflammation
is removed [4].

At present, inflammatory macrophages are considered
to contribute to pathogen clearance by releasing many
mediators like cytotoxic/pro-inflammatory/chemokine
molecules, to eliminate pathogen infection and regulate
other cell types while resting macrophages inhibit inflam-
mation and initiate wound repair. Furthermore, excessive
activation without resolution may result in tissue injury
and even multisystem organ failure and death. The persist-
ence of pro-inflammatory mediators may lead to the devel-
opment of chronic inflammation. Therefore, the final
outcome of the response of tissue injury or repair depends
on the balance between two opposing forces affecting mac-
rophages [4,13,22].

Differential response of murine “inflammatory M¢” and
“resting Md” to lipopolysaccharide (LPS)

Recently, Fleetwood et al. compared the different re-
sponses of murine bone marrow-derived macrophages
subsets GM-BM¢ and M-BM¢ to LPS stimulation. After
LPS stimulation, GM-BM¢ preferentially produced TNF-a,
IL-6, IL-12p70, and IL-23 whereas, while M-BM¢ gener-
ated more IL-10 and CCL2 under similar conditions. Inter-
estingly, phenotypes of GM-BM¢ and M-BM¢ adopt the
phenotype of other populations if pre-treated with M-CSF
and GM-CSE, respectively. This indicates the plasticity of
GM-BM¢ and M-BM¢p by M-CSF and GM-CSE and
further supports the argument that GM-BM¢ may be
the dominant macrophage subset during the inflamma-
tory reaction [23].

In addition to GM-CSF, type I IEN has crucial regula-
tory function in M-BM¢ and GM-BM¢. Compared to
GM-BM¢, M-BM¢ constitutively express higher levels
of IEN-f to enhance type I IFN signaling-dependent
gene expression, including Ccl5, Ccl12, Irf7, Statl, Stat2
and Cxcl10. The autocrine type I IFN signaling in GM-
BM¢ and M-BM¢ differentially regulates the production
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of M1 and M2 cytokines after LPS stimulation. These re-
sults indicate that endogenous and LPS-induced type I
IFNs participate in regulating the phenotype and func-
tions of M-BM¢ and GM-BM¢ [24].

Lacey et al. also revealed that IL-10”~ M-BM¢ pro-
duced higher amounts of TNF, IL-6, IL-12p70, and IL-
23p19 after LPS stimulation. Unlike M-BM¢p, GM-BM¢
has a similar response to LPS regardless of whether they
are derived from wild type or IL-107"~ mice [25]. Since
the phenotype of M-BM¢ reflects steady-state macro-
phages, the selective influence of IFN-f and IL-10 is
consistent with the concept that the micro-environment
can influence the polarization of macrophage differenti-
ation at the start of immune response, while GM-BM¢
in the inflammatory sites are resistant to the influence of
exogenous cytokines such as IFN-f and IL-10. This
partly explains the failure of IL-10 to suppress inflamma-
tory reaction in vivo, where most activated macrophages
behave as GM-BM¢ resistant to IL-10-mediated immuno-
suppression in mouse models.

Inflammasome activation and viral infections

Unlike other pro-inflammatory cytokines, the production
of IL-1p and IL-18 is tightly controlled by the activation of
inflammasome. External signals induce the assembling of
inflammasome to activate caspase-1, which further pro-
cesses pro-IL-1p and pro-IL-18 into mature cytokines and
induce pyroptosis [6]. Three inflammasomes of the NLR
family (NLRP1, NLR family CARD-containing protein
[NLRC4], and NLRP3) and one PYHIN family member
(absent in melanoma 2 [AIM2]) have been clearly identi-
fied to regulate IL-1p and IL-18 secretion in macrophages.
The NLRP1 inflammasome senses anthrax lethal toxin
while NLRC4 recognizes flagellin delivered through bac-
terial type III (T3SS) or type IV secretion systems (T4SS).
The AIM2 inflammasome responds to cytosolic double-
stranded DNA contributed by bacteria or virus. To
date, the NLRP3 inflammasome is the well-characterized
inflammasome that can sense many stimuli, including mi-
crobial stimuli (i.e., microbial lipopeptide, bacterial RNA,
dsRNA) and particular molecules (e.g., amyloid deposit, sil-
ica, and aluminum salts) [26].

A recent study indicates that inflammasome activa-
tion plays critical roles in virus infections. Compared
to the wild-type mice, IL-IRI”"~ mice have higher mortality
after influenza virus infection [27]. IL-1™~ mice also ex-
press decreased immune response and increased viral load
compared to wild-type mice after herpes simplex virus 1
(HSV-1) infection [28]. Like IL-1RI"'~ mice, IL-18~"~ mice
have increased viral load and mortality after influenza virus
infection compared to the wild-type mice [29]. In other
study, administration of IL-18 before HSV-1 infection
raises the survival rates of HSV-1-infected mice [30]. These
indicate that IL-1p and IL-18 supports immune control
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against the influenza virus and protects against HSV-
1-induced encephalitis.

To escape from host immunity, viruses also evolve dis-
tinct mechanisms to evade inflammasome activation, in-
cluding 1) inhibiting inflammasome assembly (i.e., Kaposi's
sarcoma-associated herpes virus and measles virus [MV]),
2) blocking caspase-1 function (e.g., orthopoxviruses and
influenza virus), and 3) neutralizing IL-1p and IL-18
(e.g., vaccinia virus and cytoplasmic polyhedrosis virus)
[31]. Thus, understanding of different activations of
inflammasome in macrophage subsets may help illustrate
the pathogenesis of dengue fever and dengue virus-
induced lethal diseases.

Distinct regulation of inflammasome activation by DV in
human “inflammatory M¢” and “resting M¢”
Human M-M¢ and dendritic cells (DCs) are the primary
targets of DV infections [32-35]. Unlike DCs, which
undergo apoptosis upon DV infection [35], human M-M¢
survive for at least 45 days after DV infection, suggesting
that M-M¢ may be regarded as major sources of pro-
inflammatory cytokines in vivo [32]. Chen et al. fur-
ther demonstrated that DV activates M-M¢ to secrete
pro-inflammatory cytokines via CLEC5A, a DNAX-
activating protein (DAP12)-associated C-type lectin,
that is expressed on human M-M¢. Furthermore, an-
tagonistic mAb against murine CLEC5A can prevent
DV-induced pro-inflammatory cytokine release and lethal
diseases in vivo [3]. This demonstrates that CLEC5A is
crucial for the onset of DF and DHF/DSS, and M-M¢ may
be the most important cell subset in dengue infection.
However, whether or not human inflammatory macro-
phage subsets display distinct reactions to dengue virus
infection has not been systemically addressed. In the
study by Wu et al. [5], GM-M¢ is more susceptible to
DV infection than M-M¢ (100-fold difference) and super-
natant from DV-infected GM-M¢ is more potent in in-
creasing the permeability of endothelia cells, HMEC-1.
While both cell types produce similar amounts of IFN-q,
both IL-1f and IL-18 are undetectable in DV-infected
M-M¢. In contrast, GM-M¢ produces much higher
amounts of TNF-a, IL-1p, and IL-18, and less IL-10. Fur-
thermore, DV-infected GM-M¢ can become pyroptosis
due to caspase-1 activation. It is interesting to note that
DV up-regulates NLRP3 expression without affecting
NLRC4 and NLRP1, whereas NLRP3 siRNA inhibits DV-
induced IL-1p and IL-18 secretion specifically in GM-M¢.
Since LPS-priming reportedly induce IL-1f transcription
and enhance IL-1f production, Wu et al. further compared
LPS-primed M-M¢ and GM-M¢ to DV infection. While
LPS-priming dramatically increased production of IL-1p
(25-fold), LPS-primed M-M¢ still failed to produce detect-
able IL-1p and IL-18. Since IL-1f and IL-18 production is
under the control of inflammasomes, this clearly shows the
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distinct regulation of inflammasomes in M-M¢ and GM-
M¢. Wu et al. further demonstrated that DV can trigger
CLEC5A on GM-M¢ to activate NLRP3 inflammasome,
leading to the secretion of IL-1f and IL-18 [5]. This obser-
vation further indicates CLEC5A may play a critical role in
DV-induced inflammasome activation.

Supernatants from DV-infected GM-M¢ are more po-
tent than that from DV-infected M-M¢ in increasing the
permeability change of endothelial cells. As such, GM-
M¢ seems more critical than M-M¢ in the pathogenesis
of dengue fever, dengue hemorrhagic fever, and dengue
shock syndrome. The DV-induced inflammasome activa-
tion pathways in GM-M¢ and M-M¢ are summarized in
Figures 1 and 2 [5].

In addition to different responses of human M-Md¢
and GM-M¢ to DV, Verreck et al. [36] cultured human
GM-M¢ and M-M¢ to study their distinct roles in
mycobacteria. They found that GM-M¢ secreted high
levels of IL-23 (p40/p19) but not IL-12 (p40/p35) after
mycobacterial infection, while a secondary signal, IFN-y,
induced IL-12p35 transcription and IL-12 production. In
contrast to GM-M¢, M-M¢ predominantly produced
IL-10, but not IL-12 and IL-23. Also, only GM-M¢, not
M-M¢, supported Thl response after mycobacterial in-
fection. These results indicate that IL-23, but not IL-12,
is the major type 1 cytokine produced by mycobacteria-
stimulated GM-M¢, and that GM-M¢ and M-M¢ also
play essential roles in anti-mycobacterial immunity.

Differential expression of innate immunity receptors and
inflammasomes in human macrophage subsets

Recently, a comprehensive study was conducted to shed
light on the expression of TLRs, CLRs, and inflammasome
components involved in recognizing DV in human M-M¢
and GM-M¢. Before incubation with DV, baseline levels of
TLRs (TLR 3, 7, and 8), Dendritic Cell-Specific Inter-
cellular adhesion molecule-3-Grabbing Non-integrin
(DC-SIGN), and most of the inflammasomes receptors
(except AIM-2 and NLRP12) were higher in M-M¢.
Higher expression levels of CLEC5A and MR were found
in GM-M¢ (Figure 3).

Infection with DV up-regulated the expression levels
of pro-inflammatory cytokines, chemokines, TLRs, and
most members of NLRs. In contrast, the expressions of
CLEC5A, MR, ASC, mitochondrial antiviral signaling pro-
tein (MAVS), and members of NLRs (including NLRP1,
NLRP12, NLRC4, and the NLR family member X1
[NLRX1]) were down-regulated in both M-M¢ and
GM-M¢ (Figures 4 and 5).

Although the expression profiling of CLRs, TLRs,
inflammasomes, pro-inflammatory cytokines, and chemo-
kines modulated by DV is similar, the relative expression
levels of genes between M-M¢ and GM-M¢ are enormous
after DV infection (Figure 6). The expressions of CLEC5A,



Wu et al. Journal of Biomedical Science 2013, 20:36 Page 5 of 9
http://www.jbiomedsci.com/content/20/1/36

-

= [ ) &
Ta, 9 A,
Q!Yer' . 4&:
CLECSA P CLEC5A P2X7
.T. receptor .<~V. receptor
.. K* @«

! DAP12 ! DAP12

| * aep,e
— Cathepsin B

pyroptosis pyroptosis
£ x

Figure 1 Activation of NLRP3 inflammasome in DV-infected GM-M¢. GM-M¢ is infected with DV directly (A), or after LPS priming

(B). DV binding to CLEC5A recruits DAP12, which is phosphorylated by Src, and then activates Syk. Activated Syk induces the transcription of
IL-1B, IL-18, and NLRP3 to activate inflammasome and caspase-1, leading to cell death (pyroptosis) and cleavage of pro-IL-13 and pro-IL-18.
Secondary signaling, potassium efflux, and lysosome cathepsin B are also involved in NLRP3 inflammasome activation and the release of
IL-13 and-IL-18 from DV-infected GM-M@. LPS priming further enhances the transcription of IL-1B (significantly), IL-18 (slightly), and NLRP3
(slightly), and further increases the secretion of IL-13. DV, dengue virus; NLRP, NLR family PYD-containing protein; LPS, lipopolysaccharides;
IL-1B, interleukin -1beta.

MR, NLRP1, and NLRC4 in GM-M¢ are also higher (2- to  in M-M¢ (Figure 6), DV infection induces NLRP3 gene
20-fold) than in M-M¢. It is surprising that NLRP12  up-regulation (Figure 4). This effect is not observed in
expression is much higher (30-fold) in GM-M¢ than M-M¢ (Figure 5).

in M-M¢. In addition, although NLRP3 gene expres- In contrast, expressions of TLR8, melanoma differ-
sion in DV-infected GM-M¢ is slightly higher than entiation-associated antigen 5 (MDA5), NLPRP6, NLRP10,
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Figure 2 Activation of NLRP3 inflammasome in DV-infected M-Md. M-M@ is incubated with DV directly (A), or after LPS priming (B). DV
activates Syk via CLEC5A to up-regulate the transcription of IL-1B (slightly) and IL-18 (significantly), but is unable to induce NLRP3 transcription.
LPS priming further up-regulates the transcription of IL-1(3, but down-regulates IL-18 transcription. LPS priming cannot enhance the transcription
of NLRP3. NLRP3 inflammasome is not activated in DV-infected M-M®, and thus, is unable to activate caspase-1 to process pro- IL.-13 and pro-IL-18. NLRP,
NLR family PYD-containing protein; DV, dengue virus; LPS, lipopolysaccharides; IL-16, interleukin -1beta.
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Figure 4 Expression levels of TLRs, CLRs, and inflammasome
components in GM-M¢ after DV infection. After incubation with
DV for 24 hours, the expression levels of each gene were determined
by real-time PCR. The difference in expression levels between mock and
DV is indicated in color: blue (<2 fold), green (2-5 fold), blue (6-20 fold),
brown (21-50 fold), and red (>50 fold). TLR, Toll-like receptor;
CLR, C-type lectin receptor; DV, dengue virus.

IL-18, IL-25, and CXCL10 (Interferon gamma-induced
protein 10, IP-10) is higher (2- to 20-fold) in M-M¢ than
in GM-M¢. It is interesting to note that expressions of
TLR7, DC-SIGN, IL-6, and CCL2 (monocyte chemotactic
protein-1, MCP-1) are up-regulated by more than 30-fold
in DV-infected M-M¢ (Figure 6). The IL-18 mRNA ex-
pression is higher in DV-infected M-M¢, but IL-18 is still
not detectable in DV-infected M-M¢ supernatant. This
suggests the presence of a negative regulator controlling
NLRP3 activation in DV-infected M-M¢. The different
expression profiling of cytokines and innate immunity
receptors/sensors between M-M¢ and GM-M¢ further
supports the notion that these two subsets have distinct
functions in DV infection.

Aside from mediating immune response to pathogen
infection, IL-1p and IL-18 play an important role in
driving adaptive immunity during infection. The collab-
oration of IL-1f, IL-18, and IL-23 triggers the secretion
of IL-17 from Th17 cells and IL-17-secreting y0 T cells.
As a result, regulation for the synthesis and production
of IL-1B and IL-18 is the key point for modulating
IL-17-associated diseases. Recent studies have shown that
IL-1pB can induce the expression of IL-23 and the secretion
of IL-6, which is essential for Th17 cells differentiation
[37-39]. The potential role of IL-1p and IL-18 released
from DV-infected GM-M¢ in the Th17 differentiation is
shown in Figure 7.
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Conclusions
IL-1p is the most potent endogenous pyrogen [40,41] and
is essential for the differentiation of Th17 and other cell

Recent studies further demonstrates that serum IL-1( and
IL-18 levels correlate with susceptibility to dengue [44,45].
Thus, GM-M¢ seems to be crucial in understanding the

pathogenesis of DV-induced lethal diseases. In our recent

subsets to fight pathogens [42]. IL-18 serum level corre-
study [5], we observed the differential responses of M-M¢

lates with thrombocytopenia and dengue hemorrhage [43].

IL-1B

IL-18

IL-23

Host immunity against
DV infection

Figure 7 The combination of NLRP3 inflammasome-processed cytokines and IL-23 during DV infection induced the production of IL-17
from Th17/y8 Tcells. Stimulation of TLRs in GM-M@® with DV can induce the activation of NF-kB and MAPK, which promotes the transcription of
a range of pro-inflammatory cytokines. NLRP3 inflammasome-activated caspase-1 further processes the pro-IL-13 and pro-IL-18 into their mature
cytokine form, IL-13 and IL-18. IL-13 can also enhance the production of IL-23 and IL-6. The released IL-16, IL-18, and IL-23 induce Th17/45 T cells
to produce pro-inflammatory cytokines which are responsible for host immune responses against DV infection.
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and GM-M¢ to DV, such as infection rate, and the poten-
tial ability for IL-1f and IL-18 production. The differential
expression level of MR may determine the differential in-
fection rate because of its strong binding to DV, while the
distinct regulation of inflammasome activation in M-M¢
and GM-M¢ contribute to the differential production of
IL-1B and IL-18. In GM-M¢, activation of Syk-coupled
CLEC5A induces the transcription of pro-IL-1f and
NLRP3 as well as the activation of caspase-1 during DV in-
fection. Moreover, LPS priming further enhances IL-1p
production by increasing pro-IL-1f transcription and
translation (Figure 1). In contrast, transcription of pro-
IL-1B, NLRP3 and caspase-1 activation are not observed in
M-M¢, thus fails to produce mature IL-1p/IL-18 even with
LPS priming (Figure 2).

In contrast, avian influenza virus (HPAIV)-infected
macrophages can escape inflammasome activation and
IL-1p production because of the lack of viral M2 protein
required for NLRP3 inflammasome activation in other
influenza virus stains [8,46]. This escape mechanism for
HPAIV may affect the immune response of human mac-
rophages and enhance the possibility for HPAIV causing
systemic infection and a cytokine storm in the later stage
of infection.

Aside from DV and the influenza virus, intracellular
bacteria (like Mycobacterium, Salmonella, and Listeria
monocytogenes) and fungi (such as Candida albicans
and Aspergillus fumigatus) also invade and replicate in
macrophages [26]. However, most studies incubate path-
ogens with M-M¢ in vitro and do not compare the dif-
ferent responses of GM-M¢ and M-M¢. Whether the
phenomenon observed in vitro reflects event in vivo
need to be re-evaluated.

Inflammasome activation is crucial for starting innate
immunity and controlling host immune response to
PAMPs and DAMPs [47]. GM-M¢ is invaluable for
the identification of novel genes involved in regulat-
ing inflammasome activation. By comparing the gene
expression profiling in GM-M¢ and M-M¢ using micro-
array, it becomes possible to find positive and negative reg-
ulators to control inflammasome activation and inhibition,
and help identify novel therapeutic targets for treating hu-
man diseases due to exaggerated activation or inhibition in
the future.
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