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Abstract

Background: MicroRNAs (miRNAs), a class of highly conserved small non-coding RNA molecules, are known to play
essential roles in central nervous system (CNS) by causing post-transcriptional gene silencing. There is much
evidence that miRNAs have specific temporal and spatial expression patterns in the mammal brain, but little is
known about the role of the region specificity for the gene regulatory networks of the brain. This study represents
the first attempt to perform a profiling analysis of the differential expression of miRNAs between hippocampus and
the Marginal division (MrD) of the neostriatum in the rat brain.

Results: Microarray was used to detect the expression of 357 miRNAs in hippocampus and the MrD from three rats.
A short-list of the most dysregulated 30 miRNAs per rat was generated for data analysis, and the miRNAs that were
represented in two or three short-lists were then further analyzed. Quantitative real-time reverse transcription-
polymerase chain reaction (RT-PCR) was employed to validate the aberrantly expressed miRNAs obtained from the
miRNA microarray analysis. A family of 11 miRNAs demonstrated differential expression between the MrD and
hippocampus in more than one rat. Amongst these, miR-383 was differentially expressed in all three rats and up-
regulated to the largest degree in rat one, and the ten other miRNAs, let-7d*, miR-181b, miR-187, miR-195, miR-214,
miR-382, miR-411, miR-466b, miR-592 and miR-1224 were differentially expressed in at least two rats. Of these ten,
besides miR-382 and miR-411 which were up-regulated in one rat and down-regulated in another, the other eight
miRNAs retained a uniform direction of regulation (up-regulation or down-regulation) between different specimens.
When further examined by RT-PCR, the aberrantly expressed miRNAs, except miR-383 and let-7d*, demonstrated
differential expression that significantly correlated with the microarray findings.

Conclusion: This study reported that the miRNA expression patterns in MrD was distinct from that of Hip,
suggesting the role of miRNAs in the learning and memory function of the MrD probably different from
hippocampus.
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Background
In 1993, Lee etc. firstly found miRNAs in the nematode
C. elegans to be key regulators of developmental
transitions [1], and since then miRNAs have been identi-
fied in species ranging from plants to humans [2,3]. It
has been shown that miRNAs regulate expression of
30% or more of animal genes [4]. The first form of
MiRNAs were long primary transcripts (pri-miRNAs),
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which are spilt into approximately 70 nt stem-loop
precursors (pre-miRNAs) and then further processed
to mature miRNAs in the cytoplasm by the RNaseIII
Dicer [5]. MiRNAs, which are approximately 19–23
nucleotides in length, are post-transcriptional regulators
that bind to complementary sequences in 30-UTRs
(Untranslated regions) of target mRNA transcripts, usu-
ally resulting in gene silencing [6,7]. Upon miRNA bind-
ing, mRNAs are then localized to the processing bodies
(P-bodies), where they are either deadenylated and
degraded or translationally inhibited [8]. The extent of
complementarity between miRNAs and their targets
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Table 1 The information of samples and RNA quality
check

Sample Description Source OD260/280 RIN*

LZ1 Hip 1 hippocampus (Rat 1) 1.99 8.6

LZ2 MrD 1 Marginal division (Rat 1) 1.99 7.8

LZ3 Hip 2 hippocampus (Rat 2) 2.08 8.7

LZ4 MrD 2 Marginal division (Rat 2) 1.93 8.4

LZ5 Hip 3 hippocampus (Rat 3) 2.02 8.8

LZ6 MrD 3 Marginal division (Rat3) 1.96 8.4

*RIN: RNA integrity number.

Shu et al. Journal of Biomedical Science 2013, 20:9 Page 2 of 8
http://www.jbiomedsci.com/content/20/1/9
may influence whether transcripts are degraded [3].
MiRNAs are expressed in a number of cell types at
differing levels, and are especially abundant in the cen-
tral nervous system, suggesting that they might be par-
ticularly important there [9].
The function of miRNAs in nervous system develop-

ment has been identified initially through classical for-
ward genetic approaches [10]. Recent evidence points to
a widespread role for neural miRNAs at various stages
of synaptic development, including dendritogenesis, syn-
apse formation and synapse maturation [11]. It is well
known that synapses mediate communication between
nerve cells, and contribute to learning and memory. Be-
sides synaptic function, the proposed roles of miRNAs
in the vertebrate CNS may include neurogenesis [12],
regulation of morphogenesis [13], dendrite formation
[14], and silencing of non-neural mRNAs [15]. In
another paper, miRNAs were shown to be involved
in memory [16]. Furthermore, a number of studies
indicated that miRNAs might contribute to the control
of synapse function and plasticity in the adult [17]. All
of these functions of miRNAs indicated that it plays an
important role in mediating regulation of mRNA expres-
sion and function by changes in neuronal activity.
Dendritogenesis, synapse formation and new protein
synthesis have long been recognized critical for forma-
tion of long-term memories (LTMs) [18]. Additionally,
miRNAs were found as biomarkers for cancer and other
disorders [19], and are involved in the etiology of several
brain disorders, including Parkinson’s disease [20],
Alzheimer’s disease [21], and depression [22].
The MrD is a pan-shaped subdivision in the caudal

border of the neostriatum surrounding the rostral edge
of the globus pallidus [23]. The MrD was first discovered
in the brains of rat, and then it was verified that it is a
universal structure in the neostriatum of the mammalian
rain, including rat, cat, monkey and humans [24]. The
MrD consists of spindle-shaped neurons, with high level
expression of certain neuropeptides, monoamines and
their receptors, such as substance P, dynorphin B,
neurokinin 1 receptor in the fibers, terminals and neur-
onal somata in the MrD by immunohistochemical and
patch clamp methods [25-27]. The MrD was found to be
involved in learning and memory by double-blind stud-
ies of Y-maze learning and long-term potentiation in rats
[28]. The MrD is a new component of the limbic system
and is a key linking region between the limbic system
and the basal nucleus of Meynert. Functional magnetic
resonance image (fMRI) studies illustrated that the MrD
and the prefrontal cortex are involved in digital working
memory in the human brain [29]. The MrD has been
shown to contribute to associative learning and declara-
tive memory by behavioral study in rats and by fMRI
study in humans. Lesions in the MrD influenced the
learning and memory function of the basal nucleus of
Meynert and attenuated hippocampal long-term potenti-
ation [30].
The hippocampus is a well established learning and

memory-related area of brain, that by comparison to the
MrD, has distinct biological functions. However some
associations between the hip and the MrD are also found
in many papers. Although the functional consequences of
region-special expression of miRNAs is not yet known, we
believe that the region-specific expression pattern may
contribute to functional differences between the brain
regions. The purpose of the current work is to investigate
the miRNA expression in the MrD by comparison to that
of in hippocampus by using microarray technology. The
results of this study may be valuable to explain the
mechanisms of learning and memory function of the MrD,
and regulatory neural networks and will enable novel func-
tional genomic analyses in the rat.

Methods
Animals and total RNA extraction
Adult male Sprague-Dawley rats (N=3), weighing about
220 g, were used in this study. Food and water was avail-
able ad libitum, and rats were kept on a 12-h lightdark
schedule (light period 6 am-6 pm). The rats were deeply
anesthetized with 10% chloral hydrate (3.5 ml/kg, i.p.)
and then perfused, via the aorta, with 0.9% saline solu-
tion followed by cold 4% paraformaldehyde. The brains
were removed in 4°C 0.9% saline solution. The tissue
samples of Hip and MrD in brain were cut about 1 mm3

respectively (Table 1). Total RNA populations were
extracted from brain tissue using the miRNeasy Mini Kit
(Qiagen GmbH, Hilden, Germany) and were subjected
to undergone a quality analysis to determine the quality
and the quantity of the sample RNA (Table 1). The quality
control was carried out with the Agilent 2100 Bioalyzer,
using the RNA 6000 Nano Kit according the manufacturer’s
recommendations. Within the resulting electropherogram,
high quality RNA were characterized by two distinct bands,
representing the 18 and 28 s rRNA (Figure 1:The electro-
phoretic patterns of RNA samples). All the samples were
stored at -70°C for detecting miRNA expression profile.



Figure 1 The electropherogram of the samples.
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All studies conducted on animals were approved by the
Institutional Animal Care and Use Committee(Southern
medical university, Guangzhou,P.R. China).

miRNA microarray screening
Febits biochip “Geniom Biochip MPEA rattus norvegicus”
was used for this analysis. These probes are designed as
the reverse complements of all major mature miRNAs
and the mature sequences as published in the current
Sanger miRBase release (version 14.0 September 2009,
see http://microran.sanger.ac.uk/seqences/index.shtml) [31]
for rattus norvegicus.
Additional nucleotides are bound on the 50end of each

capture oligonucleotide necessary for the enzymatic
extention in the labeling procedure. The probes are
synthesized with intra-array replicates to increase the
statistical confidence and to compensate for potential
positional effects. As a result the raw data files contain a
total of 7 data points for each miRNA. The intensities of
blank probes which consist only of one single “T” nu-
cleotide are used for background corrections. Spike-in
controls for the labeling efficiency are also present. In
order to correctly control the hybridization process as
well as positioning features, additional hybridization
controls are added to the array template. Blank, labeling
control and hybridization control probes are not
included in the data analysis.
The light-activated in-situ oligonucleotide synthesis

using a digital micromirror device was performed within
the Geniom One instrument on an activated three-
dimensional reaction carrier consisting of a glass-silicon
-glass sandwich. Using standard DNA synthesis reagents
and 30-phosphoramidites carrying a 50-photolabile pro-
tective group, oligonucleotides were synthesized in par-
allel in eight individual microchannels of one biochip.
Prior to synthesis, the glass surface was activated by
coating with a spacer to facilitate probe-target inter-
action and to avoid probe-probe interference [32].
For each array the RNA was suspended in Febit’s pro-

prietary miRNA Hybridization Buffer (25ul per array).
Hybridization was carried out automatically for 16 h at
42°C using the Geniom RT-Analyzer. In the next step
the biochip was given a stringent wash. Following the la-
beling procedure, the microfluidic-based primer exten-
sion assay was applied [33]. This assay utilizes the bound
miRNAs as a primer for an enzymatic elongation with
labeled nucleotides. The elongation was carried out
with Klenow Fragment and biotinylated nucleotides at
37°C for 15 minutes. Finally, the biochip was washed
automatically.

http://microran.sanger.ac.uk/seqences/index.shtml


Table 2 Summary on raw data of miRNA array

LZ1 LZ2 LZ3 LZ4 LZ5 LZ6

Mean intensity 720 612 530 749 599 1168

sd intensity 1572 1398 811 759 1085 3182

Mean bg. int. 256 240 288 512 352 248

sd bg. int. 57 40 69 117 74 54

Present calls 2462 2380 1345 856 1036 3395

Present calls% 42 40 23 14 17 58

Flagged 88 130 322 63 180 14
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For maximum sensitivity, biotin was used and detected
with streptavidin-phycoerythrin (SAPE), in combination
with febit’s consecutive Signal Enhancement (CSE) pro-
cedure (Febit). For a more detailed description please
the read febit protocol 010 from Febit (reference). The
feature recognition (using Cy3 filter set) and signal cal-
culation were done automatically within milliseconds.
The Geniom Technology showed accurate detection of
miRNA profiles. The data correlated well with qPCR
data. There was no photo bleaching which enabled
repeated measurements and multiple detection of each
Biochip.

Bioinformatics analysis
The bioinformatics analysis starts with a summary of the
measured data. Thereafter, spatial effects on the chip are
investigated and corrected. Then, the intensity value dis-
tribution of raw data is analyzed and normalized. To
evaluate the distribution of signal on the biochips, we
computed a spatial distribution plot. Such plots show
the reactivity of each transcript of the 8 arrays at the
current position of each transcript. To account for vari-
ation between the hybridized arrays normalization is
essential. For miRNAs, the VSN (variance stabilizing
normalization) may outperform other approaches such as
the quantile normalization. Applying quantile normalization,
it is assumed that all arrays should show exactly the same
distribution. However, especially in the case of miRNA,
the underlying assumptions may not hold. In contrast,
VSN is derived from a model of the variance-versus-mean
dependence. While the variance of transcripts should be
independent of their mean, measured data often show a
quadratic dependency. This quadratic dependency can
also be detected in the measured data.
Higher-level bioinformatics analyses, including correlation

analysis, scatter plots, cluster analysis, venn diagrams, MA
plots, principal component analysis, variance-related boxplots
and so on, are executed. These analyses may help enhance
our understanding to understand the principles of the ap-
plied approaches and may facilitate the interpretation of
the results.

RT-PCR
The RNA were extracted from 5 adult male Sprague-
Dawley rats, we got the tissue samples of Hip and MrD
in brain using the same way showed as above. A quanti-
tative PCR was performed using a miScript SYBR-Green
PCR Kit (Qiagen) following the manufacturer’s protocol.
All qRT-PCR assays were done in triplicate for each
sample. Briefly, for each miRNA to be assayed, 20 ng of
total RNA was converted to cDNA using the miRNA-
specific Taqman primer. The resulting cDNA was
diluted 1:2 prior to performing qRT-PCR. The small nu-
clear RNA U6 was used as the normalization control.
The 11 aberrantly expressed miRNA expression level
was calculated with the CT method using the ABI 7300
Sequence Detection System (Applied Biosystems, Foster
City, CA, USA).

Statistical analysis
Results are presented as the mean ± standard deviation.
Statistical analyses were carried out using spss13.0 soft-
ware. The comparison of miRNA expression examed by
RT-PCR between hippocampus and the Marginal div-
ision (MrD) was carried out using independent t-test.
P<0.05 was considered statistically significant.

Results
miRNA array data
The miRNA expression profiles derived from different
brain tissues were analyzed using oligo-microarray. For
the detection of differentially regulated miRNAs, we fo-
cused on the following comparisons: LZ1 vs. LZ2, LZ3
vs. LZ4 and LZ5 vs. LZ6. Properties of the raw data are
presented in Table 2. As the tables show, we have only
about 0.04% flagged values. The mean background var-
ied between the Biochips indicating that a background
correction of the data is appropriate (details on the
background correction are not shown).

miRNA differential expression between Hip and MrD
To investigate the differential expression of miRNAs,
array-based miRNA profiling of rat Hip and the MrD
was performed. In each specimen (rat1, rat2 and rat3),
we generated a short-list of the miRNAs showing
greatest up- or down-regulation. The following table
shows the 30 probes with the largest changes in expres-
sion (detected by highest absolute value of log fold
changes) for the above comparisons (Additional file 1:
Table S3).
In these most deregulated expression of miRNAs, we

identified eleven miRNAs which occurred high differential
expression in more than one rat simultaneously (gray lines
in Additional file 1: Table S3). Hence, miR-383 was differ-
entially expressed in three rats, and let-7d*, miR-181b,
miR-187, miR-195, miR-214, miR-382, miR-411, miR-
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466b, miR-592, miR-1224 were differentially expressed in
two rats at least (Additional file 2: Table S4). Beside miR-
382 and miR-411 which were up-regulated in one rat and
down-regulated in another, the other nine miRNAs kept
the uniform regulated direction (up or down) between dif-
ferent rats (Additional file 2: Table S4).

RT-PCR
To validate the miRNA microarray results, 11 differently
expressed miRNAs was analyzed by real-time RT-PCR.
Every miRNA has 3 CT values, the mean CT values were
showed in the Table 3. We found that except miR-383
and let-7d*, the other 9 miRNAs were significantly
higher expressed in the MrD. The RT-PCR results were
partly in concordance with the miRNA microarray ana-
lysis results.

Discussion
The MrD of the neostriatum is a flat, pan-shaped structure
consisting of dorsoventral spindle-shaped neurons arranged
in a parallel formation, located at the caudomedial margin
of the neostriatum and surrounding the dostrolateral
border of the globus pallidus (GP), and distinct from other
parts of the striatum in the mammalian brains. Lesion and
Y-maze tests and assessment of c-Fos expression and Patch
clamp analysis showed that the MrD contributes to the
learning and memory function[23-30]. FMRI investigations
and clinical case reports verified the contribution of the
MrD to digital working and mathematical calculating mem-
ory in the human brain[34-36]. All these early experiments
indicate that MrD is likely to be an important subcortical
center of learning and memory based on its position, its
advanced development in higher mammalian brains, its
abundant blood supply and the diverse connections with
other memory-related structures. Moreover, miRNAs are
Table 3 The results of RT-PCR of 11 aberrantly expressed
miRNAs

The mean CT
value of Hip

The mean CT
value of MrD

p-value

rno-let-7d* 19.16±0.05 19.23±0.14 0.63

rno-miR-181b 16.68±0.05 17.62±0.19 0.00

rno-miR-187 25.31±0.08 26.84±0.19 0.00

rno-miR-195 23.11±0.08 24.34±0.14 0.00

rno-miR-214 22.47±0.10 23.49±0.20 0.00

rno-miR-382 24.88±0.18 26.04±0.17 0.00

rno-miR-383 24.06±0.03 24.36±0.14 0.06

rno-miR-411 23.94±0.21 26.39±0.33 0.00

rno-miR-466b 18.96±0.08 19.50±0.08 0.00

rno-miR-592 24.38±0.10 25.45±0.08 0.00

rno-miR-1224 21.97±0.21 22.94±0.24 0.01
particularly abundant in neurons, and together with the fact
that a given miRNA usually regulates the expression of
hundreds of target mRNAs, neuronal miRNA pathways
create an extremely powerful mechanism for dynamically
adjusting the protein content of neuronal compartments
without the need for new gene transcription. MiRNAs
likely have a big impact on higher cognitive function in-
cluding learning and memory [10,37,38]. It has been
speculated that miRNA expression differing from brain re-
gion to region, may reflect brain region-specific miRNA ex-
pression patterns with a corresponding role in each brain
area [39]. Recently, Juhila et al. compared miRNA expres-
sion between hippocampus and frontal cortex, and
confirmed this hypothesis finding that miRNA expression
in the hippocampus was extremely different from that of
frontal cortex [40]. Based on the above discoveries, this re-
search was aimed at finding those miRNAs that were differ-
entially expressed between MrD and Hip, the well
established memory related structures in the brain.
Although miRNAs have been implicated in several

important biological functions in the CNS including
neurogenesis [41], dendrite formation [42], brain mor-
phogenesis [43], neural plasticity [44], and silencing of
non-neuronal transcripts [45,46], far less information is
available on miRNA expression patterns of neostriatum
in anatomically regional differences. In this study, a
miRNA array with 357 known rodent miRNA probes
(15 replicates per array) was applied to sample the differ-
ential expression of miRNAs in Hip and the MrD of the
rat brain. In the results, the most dysregulated 30 probes
were identified in each rat. A total of 78 miRNAs were
listed in Additional file 1: Table S3 and 11 miRNAs were
differentially expressed in more than one rat (gray line
in Additional file 1: Table S3). Although the most
upregulated miRNAs in three rats were miR-383, miR-
451 and miR-219-5p (with logs [FC]: -2.15, -2.21, -2.60)
respectively, we wanted to focus on miRNAs that were
altered in different rats simultaneously. Notably, miR-
383 was not only most upregulated in rat1, but was also
high in rat2 and rat3. The other ten miRNAs, up-
regulated or down-regulated, were found to be high dif-
ferentially affected in two different sample rats
(Additional file 2: Table S4).
The importance of miRNAs in the nervous system was

first described in Danio rerio (zebrafish) in which a mutation
in dicer1 led to failure to produce mature miRNAs and
resulted in gross morphological defects in the nervous sys-
tem [47]. Effects involving regulation of specific miRNAs in
neurons have been found in a number of organisms includ-
ing mammals. For example, during neurogenesis, the levels
of both miR-124 and miR-9 are greatly increased, and both
of them were indicated involving in neuronal differentiation
in vitro experiments [44,48]. Deep sequencing of miRNAs
derived from tissues and cell lines have revealed these and



Shu et al. Journal of Biomedical Science 2013, 20:9 Page 6 of 8
http://www.jbiomedsci.com/content/20/1/9
other miRNAs are restricted to the CNS [46]. Definitive
proof of the role of miR-124 in neurogenesis has now been
achieved in vivo, revealing its critical role in the differenti-
ation of neurons from neural precursors [49]. In addition to
differentiation of neurons, miRNAs have been shown to
affect crucial aspects of neurons. For example, neurite out-
growth is regulated by miR-132 [50]. Furthermore, one cru-
cial functional aspect of neurons, the synapse, is under
miRNAs control. In the hippocampus, miR-134 regulates
the size of dendritic spines, sites of synaptic transmission
[42]. Further linking of miRNAs to synaptic changes and the
implications of such in brain development and plasticity was
the recent demonstration that miR-138 controls dendritic
spine morphogenesis [51]. The expression of miRNAs
mentioned above was not significantly deregulated in our
study, though they were verified to be more important in
development, differentiation and function of CNS.
Rno-miR-383, the most interesting one of these

miRNAs, is significantly up-regulated in Hip in all three
rats. Its precursor possesses 73nt stem loop construction,
and the mature sequence is 50-cagaucagaaggugacugugg-30.
After bioinformatics analysis, there are 770 predicted tar-
get sites in rattus norvegicu genome (http://mirnamap.
mbc.nctu.edu.tw/index.php). There are 17 members from
different species that have been sequenced in the mir-383
family, including: bta, cfa, eca, gga, hsa, mdo, mml, mmu,
oan, ppy, ptr, rno, ssc, tgu, xtr, aca, sha (http://www.mirbase.
org/cgi-bin/mirna_summary.pl?fam=MIPF0000137). Experi-
mentally, Lian et al [52] have reported that the expres-
sion of hsa-miR-383 is altered in testicular itssues of
human patients, and they consider that a potential target
of miR-383 may be GADD45G. GADD45G can induce
apoptosis and inhibit cell growth in response to stress
shock. Abnormal expressions of these proteins may have
a significant impact on male infertility [53,54]. However,
no evidence demonstrates how rno-miR-383 is involved
into complicated regulatory net-works in CNS, especially
in MrD.
Beside rno-miR-383, there are also 10 miRNAs differ-

entially expressed in only two rats in this study. In these
10 deregulated miRNAs, seven (let-7d*, miR-181b, miR-
187, miR-214, miR-466b, miR-592, miR-1224) are
up-regulated in two rats, and one (miR-195) is down-
regulated. The last two investigated, miR-382 and miR-
411, were up-regulated in one rat and down-regulated in
another. It is possible to speculate that non tissue-
specific expression may be a reason for this unexpected
expression pattern of some miRNAs, and meanwhile
they were also expressed in many different tissues in
random manner. The other reasons may be the intrinsic
variability of these miRNAs in this brain region or the
effect correlate with some behavioral variability. Except
for let-7d*, the RT-PCR results showed the same trend
with that of microarray, which means that it validated
the expression patterns we found in our microarray
experiments.
Our previous study has shown that the MrD-NBM-

hippocampus circuit may play an important role in
modulating learning and memory [23-30]. Tissue-specific
miRNAs expression patterns as determined in this study
can make important contributions to understanding regu-
latory expression networks. Although difficult for small
RNAs, there is no substitute for in situ hybridization stud-
ies to follow up on various experimental findings in order
to assess the regions and cell types responsible for distinct
miRNA expression patterns. Meanwhile, differential ex-
pression of identified miRNAs can be then assessed in
models of disease or in diseased tissue itself. In summary,
the study on miRNAs, their mRNA targets, and resulting
changes in protein products will continue to be an excit-
ing field of research, leading to a greater understanding of
the regulatory effects of the miRNA.

Conclusion
This is the first evidence for the comparison of miRNA
expression profiles between hippocampus and the MrD
of the striatum in rat brain. In dysregulated miRNAs,
let-7d*, miR-181b, miR-187, miR-214, miR-383, miR-
466b, miR-592, miR-1224 are significantly overexpressed
in MrD compared to hippocampus, and miR-195 is
downexpressed. More study is required to clarify the
precise contributions of miRNAs in the MrD and the
hippocampal circuit.

Additional files

Additional file 1: Table S3. Differentially regulated miRNAs expression
between Hip and MrD.

Additional file 2: Table S4. The details of different expression of 11
miRNAs mentioned above.
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