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Abstract

Background: Excessive saturated fatty acids have been considered to be one of major contributing factors for the
dysfunction of skeletal muscle cells as well as pancreatic beta cells, leading to the pathogenesis of type 2 diabetes.

Results: PA induced cell death in a dose dependent manner up to 1.5 mM, but AA protected substantially lipotoxicity

channeled into AA-driven TG droplets.

harmful PA into intracellular target molecules.

caused by PA at even low concentration of 62 uM, at which monounsaturated fatty acids including palmitoleic

acid (POA) and oleic acid (OA) did not protect as much as AA did. Induction of cell death by PA was resulted from
mitochondrial membrane potential loss, and AA effectively blocked the progression of apoptosis. Furthermore, AA
rescued significantly PA-impaired glucose uptake and -signal transduction of Akt in response to insulin.

Based on the observations that polyunsaturated AA generated competently cellular droplets at low concentration
within the cytosol of myotubes compared with other monounsaturated fatty acids, and AA-driven lipid droplets were
also enhanced in the presence of PA, we hypothesized that incorporation of harmful PA into inert triglyceride (TG) may
be responsible for the protective effects of AA against PA-induced lipotoxicity. To address this assumption, C2C12
myotubes were incubated with fluorescent probed-PA analogue 4, 4-difluoro-5, 7-dimethyl-4-boro-3a,4a-diaza-s-indacene-
3-hexadecanoic acid (BODIPY FL C16) in the presence of AA and their subsequent lipid profiles were analyzed.
The analyses of lipids on thin layer chromatograpy (TLC) showed that fluorescent PA analogue was rapidly

Conclusion: Taken together, it is proposed that AA diverts PA into inert TG, therefore reducing the availability of
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Background

Type 2 diabetes is a clinical disease characterized by dis-
ruption in the metabolism of glucose and lipids, and
consequential failure in the production of insulin as well
as insulin resistance [1,2]. These dysfunctions are as-
cribed partly to a reduced disposal of blood glucose by
peripheral tissues such as fat and muscle tissue. In
addition, individual with type 2 diabetes shows abnormal
lipid dynamics, which seem to be an early events in the
development of diabetes [3,4]. The dyslipidemia associ-
ated with diabetes is characterized by a high plasma tri-
glyceride concentration, low high-density lipoprotein
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(HDL)-cholesterol concentration and increased concen-
tration of low-density lipoprotein (LDL)-cholesterol par-
ticles [5]. The lipid changes are caused by increased free
fatty acid flux secondary to insulin resistance. Therefore,
clinical trial of multiple lipid-lowering drugs and supple-
ments provides patients with new strategies to reduce
lipid levels [6].

Especially, chronic elevation in plasma free fatty acids
(FFAs) levels is commonly associated with impaired
insulin-mediated glucose uptake in skeletal muscles al-
though the precise mechanism by which FFAs are in-
volved in the development of muscle insulin resistance
remains unknown yet. At first, Randle and his co-
workers proposed the mechanism for fat-induced insulin
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resistance, demonstrating that increased fat oxidation is
responsible for the insulin resistance associated with
obesity [7]. Later, Shulman and colleagues challenged the
conventional Randle hypothesis [8]. It has been suggested
that the drop in muscle glycogen synthesis is preceded by
a decrease in intramuscular glucose-6-phosphate, advising
that a surge in the plasma fatty acid concentrations in-
duces insulin resistance by inhibiting glucose uptake or
phosphorylation activity. Thereafter, a unifying hypothesis
for insulin resistance has been proposed as follows.
Namely, an increase in the intracellular fatty acid metabo-
lites lead to initial activation of serine/threonine kinase
cascade, followed by phosphorylation of serine/threonine
sites on insulin receptor substrates (IRS) [9-12]. The phos-
phorylation on IRS, in turn, inhibits the recruitment and
activation of PI3-kinase, resulting in the decreased activa-
tion of glucose transport activity and other downstream
events [11]. In fact, the saturated fatty acids palmitate
(PA) and stearate (SA), but not their monounsaturated
counterparts oleate (OA) and palmitoleate (POA), blocks
insulin activation of Akt/PKB with concomitant accumu-
lation of ceramide and diacylglycerol (DAG) in C2C12
myotubes [13]. In contrast, unsaturated fatty acids have
distinctive roles in preventing development of fatty acid-
induced insulin resistance and diabetes [14]. Mechanistic-
ally, triacylglyceride (TG) accumulation by unsaturated
fatty acid oleic acid protects against PA-induced lipotoxi-
city in non-adipose cell Chinese hamster ovary (CHO)
[15]. Therefore, fatty acid compositions and their satur-
ation degree are considered to be critical in pathogenesis
of diabetes.

Here, we aimed at understanding the protective mech-
anism of polyunsaturated fatty acid (PUFA) arachidonic
acid (AA) against PA-mediated lipotoxicity. AA itself is
the precursor of a number of biologically active metabo-
lites formed by cyclooxygenase (COX) and lipoxygenase
(LOX) pathways [16]. The eicosanoids such as prostaglan-
dins (PGs) and leukotrienes(LTs), which are respectively
produced by COX and LOX activity, play important roles
in regulating many physiological processes and acute in-
flammatory responses [17]. Additionally, an esterified AA
is readily converted to phospholipids for membrane bi-
layer or triglycerides for storage of energy [18]. Thus, to
examine the preventive effect of polyunsaturated fatty acid
AA on saturated fatty acid-mediated lipotoxicity, skeletal
muscle cell C2C12 was supplemented with PA in the pres-
ence of AA. For reference, an AA non-metabolic analogue
eicosatetraynoic acid (ETYA) was also tested with respect
to cytotoxicity, DNA fragmentation and cellular response
to insulin to address whether AA metabolism is respon-
sible for its beneficial effects. In our results, AA but not
ETYA reversed completely the deleterious effects of PA
on C2C12 cells such as cell damage, impaired glucose up-
take and insulin signaling pathways.
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The preventive potency of AA against PA was not
affected by various inhibitors which can block possible
metabolic pathways of AA. The substantial ability of AA
to generate intracellular lipid droplets raised the possi-
bility that inert TG might be a reservoir of sequestrating
harmful saturated FA, limiting lipotoxic PA accessible to
cells. In fact, incubation of C2C12 in media supplemented
with PA and AA displayed more Nile-red (9-diethylamino-
5H-benzo[alpha]phenoxazine-5-one)-positive  cells than
that in media containing PA and monounsaturated fatty
acid. Accordingly, to verify the incorporation of PA
into TG, fluorescent PA analogue 4, 4-difluoro-5, 7-
dimethyl-4-boro-3a, 4a-diaza-s-indacene-3-hexadecanoic
acid (BODIPY FL C16) was employed to trace trafficking
of the PA. Fluorescent PA analogue was localized in AA-
driven intracellular lipid droplets, and was also found in
TG fraction resolved on thin layer chromatography
(TLC), indicating that PA can facilitate TG synthesis, and
be directly incorporated as fatty acid constituent of TG.

Taken together, we propose that AA protects PA-caused
lipotoxicity via distribution of it into inert TG, leading to
lowering of harmful free fatty acids accessible to cells.

Methods

Materials

C2C12 cells (mouse skeletal muscle cell lines: ATCC CRL-
1772) was obtained from the American Type Culture
Collection (Rockville, MD, USA). Dulbecco's Modified
Eagle's Medium (DMEM), Dulbecco’s phosphate buffered
saline (D-PBS), fetal bovine serum and antibiotics were
purchased from Gibco (Grand Island, NY, USA). 5, 5, 6, 6”-
tetrachloro-1, 1’, 3, 3’-tetraethylbenzimidazolcarbocyanine
iodide (JC-1) and BODIPY FL C16 fatty acid were from
Molecular Probes (Leiden, The Netherlands). 2-[1,2->H]-
deoxy-D-glucose was from Amersham Biosciences
(Piscataway, NJ. USA). Eicosatetraynoic acid (ETYA) was
from Calbiochem (San Diego, CA, USA). DNA purifica-
tion system and cytotoxicity detection kit (lactate
dehydrogenase, LDH) were available from Gentra
systems (Minneapolis, MN, USA) and Roche Diagnostics
(Indianapolis Mannheim, Germany), respectively. The anti-
phospho-Akt-ser473 and anti-Akt antibodies were from
Cell Signaling Technology (Beverly, MA, USA). Nile red,
lipid standards and all other chemicals were purchased
from Sigma (St. Louis, Mo, USA).

Cell culture

C2CI2 cells were grown and maintained in DMEM sup-
plemented with 10% fetal bovine serum and 1% antibiotics
(100 U/ml penicillin and 100 pg/ml streptomycin) in 5%
CO, environment, and then differentiated into myotubes
by shifting growth media into differentiation media con-
taining 2% horse serum and allowing to incubate for at
least 4 days. For all the cytotoxic assays, unless otherwise
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indicated, cells were plated into 96-well plates at 1 x 10%/
well and allowed to grow for 24 h at 37°C.

Preparation of fatty acid-BSA complex

The fatty acid-BSA complex used in these experiments
was prepared according to the literature [19]. In brief,
different kinds of fatty acids were dissolved in ethanol:
H,O (1:1, vol:vol) at 50°C at a final concentration of
150 mmol/l. Aliquots of stock solutions were complexed
with fatty acid-free BSA (10% solution in H,O) by stirring
for 1 h at 37°C and then diluted in culture media in order
to adjust the final molar ratio of fatty acid:BSA at 5:1 and
ethanol concentration at less than 0.33% (vol/vol).

Determination of LDH release for cell viability

To test whether FFAs have toxic effects on C2C12 cells,
we measured lactate dehydrogenase (LDH) activity in the
culture media. After exposure of myotubes to FFAs for
24 h, supernatant aliquots were obtained for quantifica-
tion of LDH released into the medium, using a colorimet-
ric end-point procedure. The absorbance was measured at
492 nm using a plate Reader. Reference controls for 0 and
100% cytolysis were BSA-containing medium alone or
medium containing 0.1% (v/v) Triton X-100, respectively.
All assays were carried out in triplicate.

DNA fragmentation

For quantitative determination of apoptotic DNA fragmen-
tation, total DNA was extracted from fatty acid-treated
cells using a DNA purification kit. The DNA fragmentation
induced by PA was analyzed on ethidium bromide (EtBr)-
stained 1.5% agarose gels.

Measurement of mitochondrial membrane potential

Mitochondrial membrane potential was determined by
JC-1 fluorescence. JC-1 is a cationic dye that exhibits
potential-dependent accumulation in mitochondria, as in-
dicated by a fluorescence emission shift from green
(~525 nm) to red (~590 nm), making it useful for ratio-
metric measurements. Once membrane potential changes
to =100 mV, JC-1 exists as green monomers with emission
peak around 525 nm whereas JC-1 forms aggregates and
its emission shifts towards 590 nm as the membrane is
hyperpolarized (-140 mV). To monitor the mitochondrial
potential caused by fatty acids, cells were incubated in D-
PBS containing 1 g/L glucose and 10 pM JC-1 for 10 min
at 37°C. Thereafter, cells were washed once, and intensities
were measured at paired excitation and emission wave-
lengths of 485/530 and 530/590 for green fluorescence
and red fluorescence, respectively, with a Synergy HT
(BioTek Instruments, Winooski, VT, USA) plate reader.
The ratio of red to green fluorescence was indicated for the
measurement of the mitochondrial membrane potential.
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All compounds were dissolved in DMSO stock solution so
that the final DMSO levels did not exceed 1%.

Effects of fatty acids on insulin-stimulated glucose uptake
and Akt phosphorylation

Terminally differentiated myotubes (C2C12) were ex-
posed to increasing concentrations of PA or PA along
with either AA or ETYA for 24 h. FAs-exposed cells
were rinsed and subjected to glucose uptake assay in
response to 100 nM insulin in Krebs Ringer phosphate
(KRP) buffer containing 0.5 pCi/well of [*H]-2-deoxy-
glucose supplemented with 10 pM 2-deoxyglucose.
Glucose uptake was assessed as an increase of disintegra-
tions per minute (DPM)/well in response to insulin stimu-
lation versus basal glucose uptake for 30 min at 37°C.
After washing with KRP buffer twice, cells were air-dried,
solubilized with 500 pl of 0.1 N NaOH for 2 h, and result-
ing 400 pl lysate was mixed with 40 ul of 1 N HCI to
neutralize it and 4 ml scintillation cocktail solution added,
and then the radioactivities were counted.

For signaling pathway from insulin-insulin receptor
(IR) through its downstream protein Akt, myotubes were
seeded at a density of 5*10° into 6 well plates. After cell
attachment, cells were treated with 0.5 mM PA along
with AA at 31 or 62 uM and ETYA at 31 uM for 24 h,
respectively. Cells were rinsed with D-PBS, stimulated
with 100 nM insulin for 30 min and then lysed in lysis
buffer containing 0.5% Triton X-100, 1 mM EDTA and
protease inhibitors. The consequential cell lysates were
subjected to 10% SDS-PAGE and blotting onto polyviny-
lidene difluoride (PVDF) membrane for detection of
pAkt an Akt with antibodies.

Effects of AA on TG contents by Nile red staining
Myotubes at a density of 5*10° were exposed to 0.5 mM
PA together with unsaturated fatty acids at a concentra-
tion of 62.5 uM for 24 h. Treated cells were rinsed with
PBS and fixed with 10% formaldehyde solution and fi-
nally stained with Nile red (9-diethylamino-5H-benzo[a]
phenoxazine-5-one) in a final concentration of 1 pg/ml.
After the plates were incubated for 10-30 min at 4°C
and then washed three times with PBS, cellular Nile red-
stained lipid droplets were observed by using fluorescence
microscopy. In addition, fluorescence of cells stained with
Nile red was measured at room temperature with excita-
tion and emission at 530 nm and 590 nm, respectively.
The fluorescence intensities correspond to the fatty acids-
driven neutral lipids.

Incorporation of BODIPY FL C16 into AA-driven TG and
TLC analysis of lipid extracted from C2C12

The growing cells were supplemented with either
7.5 pM of fluorescent PA analogue BODIPY FL Cl6
alone or 7.5 pM of BODIPY C16 plus 62.5 uM AA.
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Twenty four hours later, cells were washed with PBS,
fixed with 10% formaldehyde solution and then observed
for the incorporation of PA analogue into AA-driven
lipid droplets using fluorescence microscopy. For lipid
analyses on TLC, total lipids were extracted from cells
according to Folch method [20]. In brief, cell pellets
were homogenized in chloroform:methanol mixture
(2:1), and then resulting extracts were washed by
addition of 0.2 volume of PBS to eliminate the non-lipid
contaminants. The final lower phase containing total
lipids were spotted on the TLC, and developed in solv-
ent of hexane: diethyether: acetic acid (70:30:1, V/V).
Plate were dried in air and illuminated under long wave
UV to visualize the fluorescent probe.

Statistical analyses

Results were expressed as means + S.E.M. Statistical
significance was evaluated using Student’s ¢-test, and
p <0.05 was considered as statistically significant.
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Figure 1 Lipotoxicity of saturated fatty PA as a function of
concentration (A) and the effect of unsaturated fatty acids on
PA-mediated lipotoxicity (B). Cells grown at 210" were treated
with increasing concentrations of PA for 24 h. To examine the
protective effects of unsaturated fatty acids on lipotoxicity of PA, cells
were coincubated with 0. 5 mM PA and 62.5 uM unsaturated fatty
acids indicated for 24 h. LDH release into media was assayed for the
evaluation of lipotoxicity mediated by supplementation of fatty acids,
and relative LDH release for each group was calculated from
absorbance values being set sample completely lysed in Triton X-100
and culture medium left untreated to 100% and 0%, respectively.
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Results

Cytotoxic activity of PA and protection of AA from
PA-caused cytotoxicity in C2C12

As a preliminary test, myotubes were exposed to PA at
different concentrations to understand the titration effects
of PA on cell death. When cellular toxicity was measured
by LDH released from dead cells, PA caused substantially
cell death in a dose dependent manner over 0.5-1.5 mM
concentrations (Figure 1A). However, AA alone but not
monounsaturated fatty acid significantly protected cells
from PA lipotoxicity at relatively low concentration of un-
saturated fatty acids, although other mono unsaturated
fatty acids had weak protective effects against PA toxicity
with no statistical significance (Figure 1B).

Protective effects of AA on PA-induced DNA ladder

and -mitochondrial membrane potential

In the previous articles observed in other cell types, PA
has been reported to induce cell death showing typical
apoptotic indications like DNA laddering and DNA con-
densation. To simply examine whether PA-mediated cell
death is associated with apoptosis, DNA laddering, an
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Figure 2 The changes in DNA damage (A) and mitochondrial
membrane potential (B) when C2C12 cells were treated with
either PA alone or PA and unsaturated fatty acids. Cells at a
density of 5*10° were exposed to PA in combination with
unsaturated fatty acids for 24 h. The genomic DNAs from fatty
acids-treated myotubes were isolated and resolved on 1.5% agarose
electrophoresis. For the measurement of mitochondrial membrane
potential, myotubes were overloaded with 0.5 mM PA and unsaturated
fatty acids at a concentration of 62.5 uM for 24 hr. The fatty acids-
treated cells were rinsed with phosphate-buffered saline (PBS),
incubated with culture media containing 5 uM JC-1 for 30 min

and subsequently washed twice with PBS. Fluorescent ratios were
calculated from fluorescence measured at 485/545 and 530/590 nm
(excitation/emission), respectively. Each bar represents the mean of
4 separate experiments = SEM. *p < 0.05 versus PA-treated group.
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indicative of apoptotic cell death, was checked after cells
were loaded with PA or with PA and unsaturated fatty
acids (Figure 2A). Treatment of C2C12 with PA induced
obviously DNA cleavage, and AA but not ETYA pre-
vented more effectively PA-caused DNA laddering than
did POA or OA. Apoptosis is associated with a wide set
of biochemical and physical changes in cytoplasm, nu-
cleus and plasma membrane. However, the alteration in
the mitochondrial permeability transition precedes cellu-
lar apoptosis, that is, mitochondrial opening induces
depolarization of the transmembrane potential with con-
comitant release of apoptogenic factors and loss of oxi-
dative phosphorylation. In this presentation, changes in
mitochondrial potential of C2C12 cells exposed to PA
were measured by using JC-1 (Figure 2B). As apoptotic
progression undergoes, the electrochemical gradient
across the mitochondrial membrane collapses and is aptly
monitored by JC-1 dye. PA caused a decrease in mito-
chondrial membrane potential, which was indicated by
the increased ratio of fluorescence (485 nm/530 nm). Fur-
thermore, PA-induced mitochondrial dysfunction was re-
versed to the control level by AA. In contrast, ETYA did
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not produce noticeable change in mitochondrial potential
loss caused by PA while POA and OA partially restored it.

Effects of AA on insulin-stimulated glucose uptake

and -mediated signal transduction in C2C12 cells

In C2C12 cells, insulin treatment alone (100 nM) en-
hanced glucose uptake by about 30%. However, PA ex-
posure lowered basal glucose uptake, and abolished
insulin-stimulated glucose uptake in a dose dependent
manner as well (Figure 3A). In contrast, supplementa-
tion of myotubes with AA but not ETYA reversed signifi-
cantly cellular insensitization to insulin for glucose
uptake (Figure 3B). To further understand the underlying
signaling pathways associated with glucose uptake, Akt
phosphorylation was examined upon stimulated with insu-
lin in the presence of either PA or PA and AA (Figure 4A
and 4B). Treatment of cells with PA inhibited enhance-
ment of Akt phosphorylation in response to insulin. Simi-
lar to the results of glucose uptake, AA but not ETYA
enabled cells to restore signaling pathway, fostering insulin
actions.

0 0.125 0.25 0.5
PA treatment (mM)
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3 L
z _ 5000 *
=
@ & 3000
s
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© 0
Insulin - - + + - +
BSA PA PA/AA PAETYA
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Figure 3 The dose dependent impairment of insulin-stimulated glucose uptake in C2C12 treated with PA (A) and improvement of
glucose uptake in response to insulin by AA (B). Differentiated myotubes C2C12 cells were exposed to increasing concentrations of PA or
0.5 mM PA along with either AA or ETYA at the concentration of 62.5 uM for 24 h. Subsequently, cells were rinsed and subjected to glucose
uptake assay in response to 100 nM insulin in a buffer containing 10 uM 2-deoxyglucose. Glucose uptake was expressed in an increase of DPM/
well in response to insulin stimulation versus basal glucose uptake. *p <0.05 versus basal glucose uptake.
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Figure 4 Insensitization of insulin signal pathways when
supplemented with different concentrations of PA (A) and the
restoration of PA-abrogated insulin signal pathway in the
presence of AA (B). To optimize insensitization condition of insulin
signal transduction by PA, PA in 2-fold dilution was added to myotubes
culture and kept for 24 h under CO, incubator. In addition, to test the
preventive effect of AA against insulin signal transduction impaired by
PA, cells were treated with either 0.5 mM PA plus two doses of AA
and AAZ (31 and 62.5 uM) or 0.5 mM PA plus 62.5 pM ETYA for 24 h,
respectively. Fatty acids-exposed cells were rinsed with PBS, stimulated
with 100 nM insulin for 30 min and then lysed in lysis buffer
containing 0.5% Triton X-100, 1 mM EDTA and protease inhibitors.
The prepared cell lysates were subjected to 10% SDS-PAGE and
blotting onto PVDF membrane for immunoblotting against pAkt
an Akt using specific antibodies.

Akt _,

Effects of AA on TG accumulation

When cells were treated with unsaturated fatty acids
alone, lipid droplets was observed in the cytosol within
cells. Therefore, the relative formation of intracellular
neutral lipid droplets driven by each fatty acid was mea-
sured by Nile red staining (Figure 5A). Exposure of cells
to PA showed little neutral lipid droplets while unsatur-
ated fatty acids did obviously in a dose dependent way.
Microscopic observation showed that PA strengthen
Nile red staining of lipid droplets in cells overloaded
with AA, whereas ETYA did not so much (Figure 5B).
To corroborate the augmentation of PA-driven TG syn-
thesis in the presence of AA, quantitative analyses of TG
were also performed in C2C12 cells supplemented with
different combinations of fatty acids (Figure 5C). Only
AA exhibited strong Nile red staining together with PA
at such a low concentration compared with other unsat-
urated fatty acids, demonstrating that AA at a low dose
stimulated effectively incorporation of PA into TG.

To prove the incorporation of PA into neutral lipid
droplets, fluorescent PA analogue BODIPY FL C16 was
employed (Figure 6A and 6B). BODIPY FL C16 across
cell membrane was faintly distributed within entire cyto-
sol around nuclei, whereas fluorescent BODIPY FL C16
was mostly observed in refractory droplets. EYTA was
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ineffective in facilitating the incorporation of PA into
lipid droplets (Figure 6A). To support that PA is incor-
porated in TG of AA, lipid fractions extracted from the
cells were analyzed on the TLC. The fluorescent PA
analogue itself reduced with AA overloads, and con-
versely, TG spot with fluorescence appeared freshly in
the presence of AA (Figure 6B).

Discussion

In spite of accumulating evidences that circulating FFAs
have been linked to Type II diabetes, underlying mecha-
nisms as to how FFAs lead to lipotoxicity remain un-
known. In the present study, exposure to PA caused
substantial cytotoxicity in a concentration-dependent
manner up to 0.5 mM. The cell death mediated by PA ap-
peared to be derived from apoptosis as revealed from
DNA fragmentation, an apoptosis indicator. FFA-induced
apoptosis has been previously reported in pancreatic (-
cells [21], hepatocytes [22], brain tumors [23] and skeletal
muscle [24] but the details of FFA-induced apoptosis has
not still been understood. Moreover, it has been still ob-
scure even whether FFA-induced apoptosis is executed by
direct effects of FFAs or indirect effects through its me-
tabolites. However, it seems to be apparent that mitochon-
drial dysfunction is closely associated with FFA-induced
apoptosis. In another article, long chain FFAs including
PA and OA not only increases O, consumption but also
reduces mitochondrial membrane potential [25]. In our
data, PA was shown to induce apoptosis via alteration in
mitochondrial potential. The depolarized mitochondrial
potential, an early event in the process of apoptosis, oc-
curred in the presence of PA and was significantly re-
stored by AA but not monounsaturated fatty acids. On
the contrary, there has recently been a growing body of re-
ports that PA induces predominantly alternative cell
deaths like autophagy and necrosis [26-28]. PA, but not
OA, leads to an increase in autophagic flux via protein
kinase C activation. In addition, PA causes lipotoxic cell
death of endothelia cells in a necroptotic manner. More
importantly, its lipotoxicity is rescued by pharmacological
inhibitor and genetic knockdown. Accordingly, PA in-
duces wide spectra of cell death types, depending cell
types and cellular context, so that strategies tailored to
death modes should be taken to counteract the lipotoxi-
city signaling derived from PA.

It is generally proposed that mitochondrial (mt) dys-
function and subsequent apoptotic cell death are mediated
by PA-generated ROS [29,30]. It remains controversial for
ROS generation to be dependent on ceramide synthesis. It
was previously reported that palmitate induced mtROS
generation through the de novo synthesis of ceramide, ac-
cumulation of which leads to the apoptosis in L6 myo-
tubes [31]. Conversely, it was suggested that PA caused
apoptosis via ROS generation independent of ceramide
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droplets during C2C12 culture was measured by Nile red staining of cells grown in media containing various doses of fatty acids-BSA complex
(A). Also, images of lipid droplets within cytosol were taken when cells were overloaded with 0. 5 mM PA alone (left), 0.5 mM PA plus 62.5 uM
AA (middle) or 0.5 mM PA plus 62.5 uM ETYA (right) (B). To quantitate stimulated incorporation of PA into lipid droplets by unsaturated fatty
acids, PA in combination with unsaturated fatty acids at 62.5 uM were loaded into C2C12 cell culture and allowed to incubate for 24 h. Relative

fluorescence of neutral droplets were measured following Nile-red staining and fixation of them (C). *p < 0.05 versus PA-treated group.

formation [15]. However, since PA alone in our result did
not cause ROS production, ROS did not seem to link dir-
ectly to PA-induced lipotoxicity in C2C12. Consistent with
this observation, there is an article that ROS are not in-
volved in the apoptosis induction of neonatal cardiomyo-
cytes by PA [32]. More notably, PA/Ca(2*) complex has
been proposed to induce directly the opening of mito-
chondrial cyclosporin A (CsA)-insensitive pore [33].
Interestingly, unsaturated fatty acids have been known
to exert antagonizing effects against fatty acid-induced
lipotoxicity. Treatment of islet cells with unsaturated
fatty acids prevents completely saturated FA-induced
apoptosis of human [-cells [34]. More apparently, satu-
rated FFAs induce apoptosis in granulose cells whereas
AA antagonizes saturated FFA-induced apoptosis [35].
Recently, it has been highlighted that AA protects more
effectively p-cells from PA-induced lipotoxicity than
monounsaturated fatty acids [36]. In agreement with

previous reports, we revealed that unsaturated fatty acids
rescued PA-induced lipotoxicity including cytotoxicity
and insulin signal. As a result, the preventive potency of
unsaturated fatty acids against PA was in the decreasing
order of AA >POA =OA >ETYA. Unlike other unsatur-
ated fatty acids, a non-metabolizable triple-bond analogue
of AA ETYA did not block lipotoxicity-induced biological
malfunction, therefore indicating that esterification of un-
saturated fatty acids is required for its antagonizing effect
on PA-induced lipotoxicity.

From the microscopic observation that all the unsatur-
ated fatty acids except for ETYA used in this experiment
could generate discrete lipid droplets in the cytosol of
C2C12, as visualized by Nile-red staining, we raised the
possibility that unsaturated property of fatty acids might
drive the incorporation of PA into TG, inert neutral
lipids. PA alone did not generate a large number of lipid
droplets, but it enhanced AA-derived TG formation in a
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Frontline ------

TG —
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Figure 6 The incorporation of PA into AA-driven neutral lipid TG. Microscopic images showing localization of fluorescent PA analogue
BODIPY FL C16 within lipid droplets of C2C12 cells exposed to AA (A) and lipid analyses extracted from C2C12 cells on TLC (B). To examine the
trafficking of PA into AA-driven TG, the myotubes were supplemented with either 7.5 pM of fluorescent PA analogue 7.5 uM BODIPY FL C16
alone or 7.5 uM of BODIPY FL C16 plus 62.5 uM AA or 62.5 uM ETYA for 24 h. Cells were washed with PBS, fixed with 10% formaldehyde solution
and then observed for the incorporation of PA analogue into AA-driven TG using fluorescence microscopy equipped with a B filter set. For lipid
analysis, total lipids were extracted from cells treated under the same condition as in above. Lipids on TLC were developed and visualized as
described in Methods. Lane 1 and 2 were, respectively, loaded with lipids extracted from cells left treated with BODIPY FL C16 or BODIPY FL C16
plus AA.
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concentration-dependent manner. The biological effect of
TG accumulation on PA-induced lipotoxicity seems still
controversial. Traditionally, TG accumulation is thought
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pathogenesis associated with disordered lipid metabolism. AA, OA,POA
TG accumulation in pancreatic -cells has been closely as- l

sociated with impairment in insulin secretion to glucose o \
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PA-mediated apoptosis by sequestrating deleterious PA NOROS ¢
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cells and their cellular TG contents [40]. It was further
demonstrated that exogenously or endogenously gener-
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in non-adipose cells by promoting PA incorporation into
TG, accumulation of which represents an initial cellular

Cell dysfunction Apoptosis

Figure 7 Schematic summary demonstrating the protective
effects of AA against PA-mediated lipotoxicity.
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defense against lipotoxicity in response to acute lipid over-
load [41]. More recently, AA-induced TG accumulation
could protect pancreatic B cells from PA-induced lipotoxi-
city [36]. There is an interesting report that AA has bene-
ficial effects on a clonal pancreatic B-cell line inflicted
with PA via down-regulation of inducible NO synthase
(iNOS), the p65 subunit of nuclear factor kB (NF-kB) and
p47 subunit of NADPH oxidase [42].

Besides protective effects of unsaturated fatty acids
against saturated FA load via TG accumulation, it cannot
be ruled out that there may be other mechanisms re-
sponsible for the beneficial effects of AA against PA-
induced lipotoxicity. The potent unsaturated fatty acid
AA itself is readily metabolized into lipid second mes-
sengers such as leukotrienes and prostaglandins. To as-
sess whether AA metabolites could confer the protective
action against PA-induced lipotoxicity or what sort of
AA metabolites could contribute to their protection,
specific inhibitors interfering with 3 different pathways
for AA metabolism could be employed. No inhibitors af-
fected the protective effects of AA against PA load (data
not shown), thereby suggesting that AA-CoA but not
AA metabolites is essential metabolites for protection of
AA against PA-mediated lipotoxicity. Secondly, cAMP
accumulation is suggested to reverse PA-induced apop-
tosis via both protein kinase A- and cAMP-guanine nu-
cleotide exchange factor-dependent pathways in B-cells
[43]. However, either cAMP-generating agents or non-
metabolizable cAMP analogue bromo-cAMP did not
exert significantly protective effects on the PA-inflicted
cell damage (data not shown). Thirdly, the cytotoxic
effects of PA might be derived from its physicochemical
property. A relatively large surge in partitioning of PA
into the phospholipid membrane lowers the membrane
fluidity due to high melting temperature (Ty;) [44]. In
contrast, high contents of polyunsaturated fatty acids in
phospholipid fraction are expected to renders PA-caused
rigid membrane flexible due to a drop in transition
temperature. The investigation of fatty acid composition
and ratio of fatty acid species in plasma membranes will
be helpful for further understanding the beneficial roles
of AA on membranes overloaded with deleterious PA.

Conclusions

Our findings that AA can nullify the deleterious effects
of PA via sequestration of PA into TG are recapitulated
in the schematic summary (Figure 7). In a scheme, satu-
rated fatty acids are intracellularly activated to produce
fatty acyl-CoA, which is further metabolized into -
oxidation or TG accumulation. Overload of saturated fatty
acids induces lipotoxicity to promote cell dysfunction and
further cell death via generation of ROS, ceramide and
modulation of associated molecules. Cotreatment of cells
with PA and unsaturated fatty acids diverts excess of
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saturated fatty acids into inert TG storage form, linking TG
production to its protective effect against PA lipotoxicity.
Out of unsaturated fatty acids, AA at low levels effectively
protected cells from palmitic acid-induced lipotoxicity.

Taken together, we found that AA prevented effect-
ively PA-induced lipotoxicity in myotubes. Primary
mechanism by which AA protects myotubes from PA
lipotoxicity appears to be converting harmful PA into
TG, and its substantial processes are likely to be medi-
ated by AA-CoA, but not AA metabolites. The detailed
protective mechanism of AA against PA-induced lipo-
toxicity will be further elucidated through analysis of
lipid compartmentalization and lipid compositions.
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