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Abstract

recruitment to promoter sites of IP-10 and IL-8.

hinder host from robust response to MTb infection.

Background: Our previous study showed NF-kB repressing factor (NKRF) downregulates IP-10 and IL-8 synthesis
in the peripheral blood mononuclear cells and alveolar macrophages of TB patients with high bacterial loads.
However, the mechanism underlying the repressive effect of NKRF is not fully understood.

Results: The levels of IP-10, IL-8 and NKRF were significantly up-regulated in THP-1 cells treated with heated
mycobacterium tuberculosis (H. TB). NKRF inhibited NF-kB-mediated IP-10 and IL-8 synthesis and release induced
by H. TB. The repressive effect of NKRF is mediated via interference with NF-kB (p65) binding and RNA polymerase ||

Conclusions: We have elucidated that direct contact with MTb induces IP-10, IL-8 and a concomitant increase in
NKRF in THP-1 cells. The up-regulated NKRF serves as an endogenous repressor for IP-10 and IL-8 synthesis to
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Background

Tuberculosis (TB) killed an estimated 100 million people
over the last century [1-3]. About one third of the world’s
population is infected with Mycobacterium tuberculosis
(MTb). Most of the infected persons never develop an ac-
tive disease [1-3] because the host immune response keeps
the infection under control. After MTb infection, innate
immunity initially predominates the subsequent response
in the host. For the purpose to contain MTb, T lympho-
cytes are recruited to the lung within granulomas, which
consist of activated macrophages, T lymphocytes, fibro-
blasts, and epitheloid cells [4]. To prevents the disease re-
activation, a complex interaction between different cell
populations are involved in the control of MTb infection.
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Specific chemokines, such as IP-10, IL-8, MIG/CXCL9
and MCP-1/CCL2 are released from monocytes, alveolar
macrophages and polymorphonuclear granulocytes to re-
cruit NK cells, y§ T lymphocytes, and off T lymphocytes
of CD4" and CD8" phenotypes in sequential order into
the site of MTb infection [5-9].

IP-10, a member of the a-chemokine subfamily, is in-
volved in delayed type hypersensitivity [10]. It promotes
Thl responses and IFN-y gene expression [11], and
attracts monocytes and activated T lymphocytes to in-
flammatory foci [12]. High levels of IP-10 were detected
in TB patient’s sera [13,14] and bronchoalveolar lavage
[13,15]. Except for chemotaxis, IP-10 also contributes to
the necrosis of tuberculous granulomas by inhibiting
angiogenesis [16].

Enhanced IL-8 release and gene expression in macro-
phages or monocytes has been shown after exposure to
MTDb and its components [17,18]. IL-8 gene polymorphism
is associated with susceptibility to TB [19], and in HIV-
infected patients [20]. IL-8 is necessary for granuloma
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formation [21], limits the growth of intracellular MTb, and
enhances the abilities in macrophage killing MTb [22].

The induction of both IP-10 and IL-8 by MTb is NF-«kB
dependent [16,23]. Our previous study showed NF-kB
repressing factor (NKRF) is upregulated in the circulating
monocytes and alveolar macrophages of patients with ac-
tive pulmonary TB, and inhibits synthesis and release of
IP-10 and IL-8 [13]. NKRF is a transcriptional silencer and
is implicated in the basal silencing of specific NF-«B tar-
geting genes, including iNOS, IFN-B and IL-8 [24-26].
NKREF only interacts with specific NRE (negative regula-
tory element) to mediate NF-kB transcriptional silencing.
NKREF specific NREs are only found in certain NF-«B tran-
scriptional genes in certain cells [24-26]. However, the
mechanism underlying NKRF up-regulation and its silen-
cing effect on IP-10 and IL-8 in MTb infected monocytes
has not been clearly explored. In the present study, we
have demonstrated that direct exposure to MTb upregu-
lates NKRF expression in monocytes, and the repressive
effect of NKRF on IP-10 and IL-8 synthesis might be via
interfering with NF-kB (P65) binding and RNA poly-
merase II recruitment to their promoter sites.

Methods

Cell preparation and culture

THP-1 cells purchased from the ATCC (TIB202) were
grown in suspension in T-150 tissue culture flasks in
RPMI 1640 (GIBCO, Grand Island, NY, USA) supple-
mented with 10% fetal calf serum (FCS, Flow Laboratories,
Paisley, Scotland, UK). Cells (1 x 10° cells/ml) were pre-
treated with or without NF-kB specific inhibitor Helenalin
(Merck KGaA, Darmstadt, Germany) half hour before
incubation with or without heated TB bacilli (H37-RA)
(H. TB) (DIFCO) for various time points (6, 24, 72 hrs).
The culture supernatant was collected and frozen at -70°C
before analysis for assay of IP-10 and IL-8 by ELISA with
commercial ELISA kits (R&D Systems, Minneapolis, MN).
The levels of cytokine secretion could vary among dif-
ferent passages of the target cells, e.g,, THP-1 cells. In each
experimental study, the same passage of cultured cells was
used to minimize the variation. The control group from
the same passage was used to justify a similar response as
that in different passage of cultured cells.

Quantitative real-time PCR (qPCR)

Total RNA was isolated from cells using TRIzol reagent
(Invitrogen, Grand Island, NY) according to the manufac-
turer’s instruction. cDNA was reversely-transcribed from
isolated RNA by incubating 200 ng of DNase-treated
RNA with the first-strand synthesis kit (Advanced Bio-
technologies). qPCR was performed in a LightCycler 2.0
System (Roche Applied Science) using LightCycler DNA
Master SYBR Green I (Roche Applied Science). Samples
were denatured at 95°C for 10 min, followed by 45 cycles
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of annealing and extension at 95°C for 15 s, 60°C for 5 s,
and 72°C for 10 s. Melting curves were obtained at the
end of amplification by cooling the samples to 65°C for
15 s, followed by further cooling to 40°C for 30 s.

Data were analyzed by standard curve method of rela-
tive quantification using the LightCycler analysis software.

Quantification of NF-kB p65 DNA-binding activity
(TransAM assay)

To determine the alteration of NF-«B activity by MTb in
THP-1 cells, the level of NF-kB subunits p50, p52, p65,
C-Rel and RelB activity was measured using the NF-kB
TransAM kit (Active Motif) according to the manufac-
turer’s instructions. Briefly, cells nuclear extraction were
prepared by using the Nuclear Extract Kit (Active Motif)
and protein concentrations were measured using the
Bradford assay (Bio-Rad). Lysates (10 pg total proteins)
were incubated in ELISA wells coated with the NF-kB
consensus site (5'-GGGACTTTCC -3°) recognized by ac-
tive NF-kB subunits p50, p52, p65, C-Rel and RelB, then
they were detected using a specific antibody, followed by a
secondary antibody conjugated to peroxidase.

Immunostaining and confocal microscopic analysis

THP-1 cells treated with or without H. TB were spun
down on slide then fixed in methanol at ~20°C for 5 min.
The cells were then blocked with 1% BSA/PBS at room
temperature for 30 min and incubated with the rabbit anti
human NKRF Ab at room temperature for 1 hr. After
washing, the cells were incubated with a Cy3-conjugated
anti-rabbit Ab (Chemicon International) and incubated
with Hoechst dye (Sigma-Aldrich). After washing and air-
drying, the cells were mounted with anti-fade mounting
medium (Dako Cytomation). Images were acquired with a
confocal laser-scanning microscope (Leica) and analyzed
by Metamorph Image Analysis (Universal Imaging).

Western blot analysis

Total cellular proteins were extracted from THP-1 cells by
freeze-thawing samples in Reporter lysis buffer (Promega).
Proteins were subjected to 7.5% SDS-PAGE and blotted
onto nitrocellulose filters. NKRF was detected with -actin
(sigma) and an alkaline phosphatase-conjugated anti-mouse
secondary Ab (1/100,000 dilution; Calbiochem) or specific
anti-NKRF Ab and an alkaline phosphatase-conjugated
anti-rabbit secondary Ab (1/10,000 dilution; Calbiochem).
Blots were incubated with ECL solution (LumiGLO;
Amersham Bioscience). Images were acquired and ana-
lyzed using G: BOX (Syngene).

Transfection of siRNA and plasmids

To knockdown NKRF expression, Si-RNA (Si-Scramble
and Si-NKRF) were introduced into THP-1 cells. Plasmid
DNA (p-CMV and p-CMV-NKRF) were introduced into
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THP-1 cells to evaluate whether NKRF overexpression
can regulate the release of IP-10 and IL-8. The trans-
fection of THP-1 cells (1 x 10° cells/ml) was performed by
lipofectamine 2000 kit (Invitrogen, Grand Island, NY). We
diluted 20 pmol siRNA oligomer (or 1 pg plasmid DNA)
in 50 pl Opti-MEM medium (Invitrogen, Grand Island,
NY) without serum to mix gently. Then, 1 pl Lipofecta-
mine 2000 in 50 pl Opti- MEM medium was diluted to
mix gently and incubate for 5 minutes at room tem-
perature. The diluted oligomer and diluted Lipofectamine
2000 were mixed and incubated for 20 minutes at room
temperature. We added the oligomer (DNA)- Lipofecta-
mine 2000 complexes to each well containing 0.5 ml cells
and medium. The cells were incubated at 37°C in a CO,
incubator for 6 hrs. After transfection, cells were incu-
bated in complete medium for 48 hrs (for si-RNA) or 24
hrs (for plasmid DNA). The transfection efficiency in
THP-1 cells was 53.4% for siRNA and 56.3% for plasmid
DNA. The supernatant of cell after 6 hrs culture was col-
lected for ELISA. The protein of transfected THP-1 cells
was harvested for Western blot analysis.

Chromatin immunoprecipitation (ChIP) assay

ChIP assays were preformed as described previously
[13,27]. After stimulation, protein-DNA complexes were
cross-linked at 37°C for 10 min by formaldehyde (1%
final concentration). Twenty pl (1%) of ChIP dilution
solution was kept as input control. The remained diluted
solution was precleared by incubating with 80 ul of
salmon sperm DNA/protein A-agarose-50% slurry for
30 min at 4°C on a rotator. After centrifuge, 900 pl of the
supernatant was immunoprecipitated at 4°C overnight on
a rotator by using Abs specific for NKRF (5 pg), IgG
(Santa Cruz Biotechnology) followed by incubation for
1 hr at 4°C with 60 pl of salmon sperm DNA/protein
A-agarose-50% slurry. Protein-bound immunoprecipitated
DNA (IP-DNA) was sequentially washed with low-salt or
high-salt immune complex wash buffers. Immune com-
plexes were eluted twice by adding 250 pl of elution buffer
(1% SDS/0.1 M NaHCO3). DNA-protein cross-links were
reversed by incubation for 4 hrs at 65°C in 200 mM NaCl/
1% SDS, and proteins were digested by incubation for 1 hr
at 45°C with 70 pg/ml proteinase K (Sigma-Aldrich). DNA
was isolated with phenol/chloroform, precipitated with
ethanol/0.3 M NaHCOOH/20 pg of glycogen and was re-
suspended in 50 pl of nuclease- free water. qPCR was per-
formed with 7 pl of DNA sample for quantification.

Statistical analysis

Data were expressed as mean + SE. The data were ana-
lyzed with Student’s ¢ test for paired or unpaired data. For
data with uneven variation, the Mann—Whitney U test or
Wilcoxon’s signed ranks test was used for unpaired or
paired data, respectively. Statistical significance of results
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was determined using prism4 software. A value of p < 0.05
was considered statistically significant.

Results

Increased mRNA expression and protein release of IP-10
and IL-8 in H. TB treated THP-1 cells

After treatment with or without H. TB, THP-1 cells were
harvested for q-PCR and the supernatant was collected
for ELISA. The expression of mRNA and NF-kB subunit
activation were observed at 2 hour, while protein expres-
sion and ChIP assay were observed at 6 hour and 1 hour,
respectively throughout the study. The viability deter-
mined by MTT assay was significantly decreased when
THP-1 cells treated with 20 pug/ml H. TB (81.7 + 1.0% of
control) (Figure 1A). Among non-cytotoxic concentra-
tions (H. TB 2.5, 5, 10 pg/ml), 10 pg/ml induced the ma-
ximal and 5 pg/ml induced the submaximal cytokines
secretion responses. We therefore defined H. TB 10 pg/ml
as the highest non-cytotoxic concentration and 5 pg/ml as
submaximal concentration in this study. H. TB induced
increases in the levels of mRNA and protein of IP-10 and
IL-8 in a concentration-dependent manner (Figures 1B,
C). When treatment with H. TB for 2 hrs, the mRNA levels
of IP-10 significantly increased at 5 pug/ml of H. TB (n =5),
reaching the maximum at 10 pg/ml (n = 5) (Figure 1B). The
levels of IL-8 mRNA significantly increased at 2.5 pg/ml of
H. TB (n =5), reaching the maximum at 10 pug/ml (n=>5)
(Figure 1B), when compare to the vehicle controls (n=5,
P <0.05 respectively). When treatment with H. TB for 6
hrs, the protein of IP-10 significantly increased at 2.5 pg/ml
of H. TB, reaching the maximum at 10 pg/ml when com-
pared with vehicle control (Figure 1C). The protein of IL-8
also significantly increased at 2.5 pg/ml of H. TB, reaching
the maximum at 20 pg/ml when compared with vehicle
controls (Figure 1C).

Increased NF-kB subunits, and the role of NF-kB inhibitor

in the release of IP-10 and IL-8 in H. TB treated THP-1

cells

This study was designed to examine the modulatory role of
NKREF in regulation of IP-10 and IL-8. Therefore, a sub-
maximal concentration at 5 pg/ml was used to examine
the mechanisms for NKRF implicated in suppression of
IP-10 and IL-8 gene activation via an interference with
NEF-kB p65. TransAM assay in THP-1 cells stimulated with
H. TB (5 pg/ml) for 2 hrs revealed an increase in NF-xB
subunits p65, p52, p50, C-Rel and RelB, respectively
(p<0.05, n=5) compare to vehicle control (Figure 2A).
THP-1 cells pretreated with a specific NF-xB inhibitor,
Helenalin (0.5 uM), suppressed H. TB induced IP-10 and
IL-8 release compared with those of control (Figure 2B),
indicating the release of IP-10 and IL-8 is mediated via
NE-kB. There was no significant cytotoxicity induced by
0.5 pM Helenalin (cell viability >96%, data not shown).
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Figure 1 The activation of IP-10 and IL-8 in THP-1 cells treated with H. TB. (A) MTT cytotoxicity assay shows the cell viability of THP-1 cells
when treated with H. TB at variable concentrations (2.5, 5, 10, 20 pug/ml) for 6 hours. The cell viability decreased when THP-1 cells treated with H.
TB at the concentration of 20 pg/ml (n=5) compared with control. (B) The expression of IP-10 (Left panel) and IL-8 (Right panel) mRNA in THP-1
(n=5) cells was concentration-dependently increased when treated with H. TB for 2 hours, reaching the maximum at 10 pug/ml. (C) The release
of IP-10 and IL-8 proteins by THP-1 cells (n =5) was concentration-dependently increased when treated with H. TB for 6 hours, reaching the
maximum at 10 pg/ml. Data are means + SE. *p < 0.05, **p < 0.01 compare with the vehicle control.
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Expression of NKRF in THP-1 cells

Quantification by quantitative RT-PCR demonstrated that
NKRF mRNA expression in THP-1 cells increased when
treated with H. TB (2.5, 5, 10, 20 pg/ml) for 2 hrs com-
pared with control (Figure 3A). Western Blot analysis
(Figure 3B left panel) and confocal microscopic analysis
(Figure 3B right panel) revealed a time-dependent increase
of NKRF protein in THP-1 cells. The Western blotting
(left panel) and confocal image analysis (right panel) for
H. TB induced NKRF expression revealed a maximal re-
sponse at concentration of 5 pg/ml, when THP-1 cells

were treated with H. TB (2.5, 5, 10, and 20 pg/ml) for
30 minutes.

NKRF binds the IP-10 and IL-8 promoter sites in H. TB
treated THP-1 cells

By binding to the NRE in the IL-8 promoter, NKRF
showed suppression of its basal transcription [28]. As
shown in our previous study, there is a specific NRE se-
quence in the promoter site of IP-10 (Table 1). To this
end, ChIP assay analysis with the antibody specific for
NKRF was used to study whether NKRF would bind to
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Figure 2 Increased NF-kB subunits, and the role of Helenalin in the release of IP-10 and IL-8. (A) TransAM assays to measure the NF-kB
subunits p65, p52, P50, C-Rel and RelB activities reveals an increase of p65, P52, C-Rel and RelB in THP-1 cells treated with 5 ug/ml H. TB at 2 hour
(n=5). (B) The release of IP-10 (left panel) and of IL-8 (right panel) in THP-1 cells (n =5) treated with H. TB for 6 hours was significantly inhibited
by a NF-kB specific inhibitor Helenalin (0.5 uM). Data are means + SE. *p < 0.05, **p < 0.01 compared with corresponding vehicle control.

the NRE sequence in the promoter sites of IP-10 or IL-8.  amplifying an irrelevant site around the 3'-UTR was also
The amount of IP-DNA was determined by RT-qPCR  used. IgG controls were used to demonstrate the specifi-
using primer pairs amplifying a region around the NRE city of the antibody. In the vehicle control, a low but con-
site in the IP-10 or IL-8 promoter (Table 2). To de- sistently detected enrichment of IP-DNA over background
monstrate the site specificity of the assay, a primer pair  (the IgG control) was observed. In H. TB treated THP-1
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Figure 3 Expression of NKRF in THP-1 cells treated with H. TB. (A) Treatment of H. TB for 2 hours increased the expression of NKRF mRNA in
THP-1 cells (n = 5) significantly at the concentration of 5, 10 and 20 pg/ml. (B) Westen blotting (left panel) and confocal image analysis (right
panel) (n=5) of THP-1 cells treated with H. TB at the concentration of 5 pg/ml revealed a time-dependent increase in NKRF expression. (C) The
Western blotting (left panel) and confocal image analysis (right panel) (n =5) for H. TB induced NKRF expression revealed a maximal response at
concentration of 5 ug/ml, when THP-1 cells were treated with H. TB (2.5, 5, 10, and 20 ug/ml) for 30 minutes. Data are means + SE. *p < 0.05,

**p < 0.01 compared with control.
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Table 1 Sequence comparison of the NRE sites in IP-10
and IL-8 promoters

Construct gene NRE sequence
(=503) AACTCCTGAGC (—493)
(-1415) AATTCCTCTGA (-1405)

NRE = negative response element; IP-10 = interferon gamma induced protein
10 kd; IL-8 = interleukin-8.

IP-10 promoter

IL-8 promoter

cells, the amount of p65 IP-DNA at IP-10 and IL-8
promoters was significantly higher than those of control
(Figure 4A). In contrast, there was no significant change
in the IP-DNA when the primers for 3'-UTR were used
(data not shown). H. TB also induced increased occu-
pancy of NKRF to the promoters at IP-10 and IL-8 in
THP-1 cells (Figure 4B). The highest increase was found
in 1 hr (Figure 4C).

NKRF inhibits H. TB induced release of IP-10 and IL-8 in
THP-1 cells

We conducted in vitro experiments of NKRF knockdown
by transfection with siRNA targeting NKRF (NKRF-RNAi)
or non-targeting siRNA (scramble RNA) in THP-1 cells.
Transfection with NKRF-RNAi for 48 hrs significantly

Table 2 Transcript and sequence of each primer used in
real time RT-PCR and ChIP assays

Transcript Sequence
For RT-PCR Primer
IP-10 F: 5'-AGTTAGCAAGGAAAGGTCT-3'

R: 5'-ACATTATAGTGCCAGGT-3'
IL-8 F: 5'-AGATCTGAAGTGTGATGACTCAGG-3'
R: 5-GAAGCTTGTGTGCTCTGCTGTCTC-3"

NKRF F: 5'-AGAAAGATGGGTTGGACT-3"
R: 5-CTGTGTGGCTCTCGGA-3'
GAPDH F: 5'-TTCCAGGAGCGAGATCCCT-3'

R: 5-CACCCATGACGAACATGGG-3'
Primer

F: 5'-AGGTTCAAGCAGTTTTCC-3'

R: 5-CTGTAATCTCAGCACTTTGG-3'
F: 5'-AGGCTGGTCTCAAACT-3'

R: 5'-CCTCCCACATCCAATTACT-3"
F: 5'-GGGCCATCAGTTGCAAATC-3'
R: 5'-TTCCTTCCGGTGGTTTCTTC-3"
F: 5'- TTGAGTTATAATTACTTAT-3"
R: 5'-TGAAAAGAAGGGTGAGAAGAG-3'
F: 5'-AGGTTCAAGCAGTTTTCC-3"

R: 5-CTGTAATCTCAGCACTTTGG-3'

For ChIP assays
NKRF promoter,

IP-10 promoter

IL-8 promoter

IP-10 3'-untranslated region

(3'-UTR)

IL-8 3'-untranslated region
(3'-UTR),

F =forward; R = reverse; IP-10 = Interferon gamma induced protein 10 kd;
IL-8 = interleukin-8; NKRF = NF-kB repressing factor; ChIP = chromatin
immunoprecipitation.
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decreased the level of NKRF mRNA compared with
scramble (55.2 + 8.0% of scramble control, n =5, p < 0.05
data not shown). MTT assays showed similar cellular via-
bility between NKRF-RNAi and scramble transfected cells
(96.6 + 3.0% of control, n =5, data not shown). Cells after
transfection were then treated with or without H. TB for 6
hrs, and the supernatants were collected for ELISA assay.
THP-1 cells transfected with NKRF-RNAi released a
greater levels of IP-10 and IL-8 proteins with or without
H. TB (5 pg/ml) treatment when compared with those
transfected with scramble (Figure 5A). These data indicate
that endogenous NKRF suppresses basal and H. TB in-
duced IP-10 and IL-8 production in THP-1 cells.

To delineate the mechanism underlying the up-regu-
lation of NKRF by H. TB, THP-1 cells were transfected
with plasmid DNA (p-CMV-vector and p-CMV-NKRF)
for 24 hrs, then exposed to H. TB. Lower protein levels of
IP-10 and IL-8 were produced by p-CMV-NKRF trans-
fected THP-1 cells than p-CMV-vector transfected cells
when exposed to 5 pg/ml of H. TB (Figure 5B). The ChIP
assays revealed overexpressions of NKRF by p-CMV-
NKRF transfection inhibited p65 binding to the promoter
sites of IP-10 and IL-8 at basal levels or after H. TB treat-
ment (5 pg/ml) when compared with p-CMV-vector
transfection (Figure 6A). Treatment with H. TB induced
recruitment of RNA polymerase II to the promoter sites
of IP-10 and IL-8 when compared with vehicle controls
(Figure 6B). Transfection with p-CMV-NKRF significantly
attenuated H. TB induced recruitment of RNA polyme-
rase II to either IP-10 or IL-8 promoter sites (Figure 6B).
These observations suggest that the intracellular NKRF
regulates the production of IP-10 and IL-8 via an inhi-
bition of p65 binding and RNA polymerase II recruitment
to both IP-10 and IL-8 promoter sites.

Discussion

The present study has demonstrated that direct exposure
to Mycobacterium TB induces increased mRNA synthesis
and release of IP-10 and IL-8 proteins, as well as a con-
comitant upregulation of NKRF mRNA and proteins in
mononuclear cells. The ChIP assay revealed that increased
NKRF nuclear translocation was associated with an in-
creased occupancy at the promoter sites of IP-10 and
IL-8. Over there, NKRF hindered NF-«B (p65) from bin-
ding to the promoter sites, and then prevented RNA poly-
merase II recruitment resulting in a decrease in mRNA
and protein synthesis of IP-10 and IL-8. Knockdown of
NKRF by siRNA augmented H. TB induced protein re-
lease of both IP-10 and IL-8. Furthermore, NKRF over-
expression suppressed H. TB induced release of IP-10 and
IL-8 proteins. Our results illustrate that NKRF can restrain
IP-10 and IL-8 expressions via hindering NF-xB (p65) and
RNA polymerase II from occupancy at the corresponding
promoter sites.
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Although there are some similarities with the previous
published work [13], this study was designed to confirm
whether a direct contact of monocytes or alveolar macro-
phages with Mycobacteria might directly induce NKRF
without other immunological modifications as like in vivo.
Other immune cells, especially lymphocytes may have
primed circulating monocytes or alveolar macrophages
even retrieved from normal subjects in this country where
TB is highly prevalent and latent TB is difficult to be ex-
cluded. Thus, the mechanisms explored in primary cell
lines might provide more insight into the up-regulation of

NKRF and its interaction with NF-kB in regulation of
IP-10 and IL-8 release.

In pulmonary tuberculosis, the encounter between MTb
and the innate immune system induces a complicated and
sophisticated series of host responses. The next long-term
phase of the encounter is played by the activation of the
adaptive immune system. An important first step is to re-
cruit intravascular immune cells to the proximity of the
infective focus and prepare them for extravasation. In
pulmonary tuberculosis, the local generation of che-
mokines and immune regulation are responsible for the
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recruitment of leukocytes to the site of inflammation and
injured site [29]. The increased induction of C-X-C che-
mokines, IP-10 in MTb infection [9,13] attracts Thl-, Tcl-
activated lymphocytes and NK cells through CXCR3
[10-12]. IP-10 also can play a role in generation and func-
tion of effector T cells by promoting antigen-specific pro-
liferation and IFN-y secretion [12,30,31]. IL-8 is involved
in monocyte, lymphocyte, and neutrophil recruitment
[32,33], and implicated in granuloma formation and main-
tenance in TB [21,34,35]. The present study demonstrated
that direct contacts with MTb induced mononuclear cells
to increase synthesis and release of IP-10 and IL-8, in-
dicating IP-10 and IL-8 are very important in the innate
immune response and bridges to the adaptive cellular
response.

NKRF plays a dual role in IL-1-induced IL-8 transcrip-
tion [27] and the binding to DNA specifically abolishes the
transcriptional activity of the bordering NF-kB-binding
sites by a noncompeting, distance and position-indepen-
dent mechanism [26]. In our previous study in human air-
way smooth muscle cells, NKRF inhibited neutrophil
elastase induced NF-«B transactivating activity or directly
suppressed the promoter site to modulate IL-8 synthesis
and protein release [36]. In alveolar macrophages and
peripheral blood mononuclear cells of pulmonary TB pa-
tients, knockdown of NKRF significantly increased IP-10

and IL-8 release [13]. These results suggest NKRF may
serve as an endogenous repressor in IP-10 and IL-8
synthesis and release. However, NKRF was found up-
regulated to repress IP-10 and IL-8 release only in pul-
monary TB patients with high bacterial load [13]. In this
study, we have shown H. TB dose-dependently increased
NKRF expression in THP-1 cells, significantly at con-
centrations of H. TB more than 5 pg/ml, suggesting the in-
duction of NKRF synthesis might be directly related to
exposure to TB bacillus itself or its components.

MTb and its components also have been reported to
cause a constitutive degradation of IkB-a, leading to NF-kB
activation in monocytes from TB patients [37]. TransAM
assay in the present study showed H. TB exposure induced
activation of a variety of NF-kB subunits, predominantly
p65. A specific NF-kB inhibitor Helenalin suppressed
H. TB induced IP-10 and IL-8 release, suggesting both
IP-10 and IL-8 release were mainly mediated via NF-kB
activation, especially p65 subunit. Our previous study has
indicated that NF-«B activation induces NKRF synthesis
through NF-«xB subunit p65 binding to the NKRF pro-
moter to transcriptionally activate NKRF mRNA synthesis
[36]. Thus, a direct contact with MTb induces NF-kB acti-
vation leading to up-regulation of IP-10 and IL-8 synthesis
and release in mononuclear cells. If bacterial load is high
enough, NF-kB activation may also induce a concomitant
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increase in NKRF that represses the synthesis and release
of IP-10 and IL-8.

A further study to investigate whether H. TB induced
up-regulation of NKRF is mediated through NF-«B is
hindered by a concomitant NF-«B activation-increased
oxidative stress induced by H. TB stimulation. The high
levels of oxidative stress degrade NKRF as we have
reported in monocytes of COPD patients [38]. Thus,
modification of NF-«B activation by pharmacological in-
hibitors or by gene knock down or over-expression may
concomitantly influence the levels of intracellular oxi-
dants, leading to a difficulty in precisely representing the
causal-effect on NKRF synthesis in this experimental
model. In addition, we have also found distinct subunits
of NF-«B are activated by different concentrations of H.
TB. Whether distinct NF-xB subunits mediate diffe-
rential effects of H. TB on NKRF expression is currently
under study.

Our data display a great difference of increased activities
of p65 and NKRF to promoter of IP-10 and IL-8, ie.

NF-«B p65 expression was 2-fold for IP-10 and 15-fold for
IL-8. The possible explanation is that the IL-8 promoter is
predominantly activated by the induction of NF-kB
complex containing p65, though either AP-1 or C/EBP-
may also play supporting roles [39,40]. However, IP-10
promoter is predominantly activated by an interferon-
stimulated response element, although there is also an
existent NF-kB responsive site that binds a p65 homodi-
mer. IP-10 gene activation is less dependent on NF-kB
p65, but only in maximal IP-10 expression, cooperation
between two sites is required [41]. Thus, the binding activ-
ities of NF-kB to promoter of IP-10 might be much lower
than those to IL-8 promoter.

Our ChIP assay used the same primer pairs (Table 2) to
amplify a region around the NRE site in the promoters of
IP-10 and IL-8. There was an increase in NKRF occupancy
at IP-10 and IL-8 promoter sites in the H. TB treated
group, suggesting an inhibition at the transcriptional
initiation. RNA interference and plasmid overexpres-
sion were performed to explore a link between NKRF
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expression and it’s repressive effect on IP-10 and IL-8 syn-
thesis. In THP-1 cells, knockdown of NKRF augmented H.
TB induced IP-10 and IL-8 release, but overexpression of
NKREF attenuated the responses. Furthermore, in ChIP
assay we found that NKRF overexpression restrained p65
binding and RNA polymerase II recruitment to IP-10 and
IL-8 promoter sites. However, NKRF overexpression did
suppress the baseline IP-10 and IL-8 release, and H. TB
still induced IP-10 and IL-8 release from THP-1 cells.
Therefore, we suggest NF-kB might be also involved in the
basal release of IP-10 and IL-8. H. TB induced IP-10 and
IL-8 release is not completely inhibited by NKRF. H. TB
may act through NF-kB-independent pathways, such as
AP-1 or C/EBP-P or interferon-stimulated response ele-
ments to induce IL-8, or IP-10 release. Thus, NKRF in
THP-1 cells may serve as an endogenous repressor to pre-
vent robust increase in H. TB induced IP-10 and IL-8 re-
lease by interference with NF-kB transcriptional activity.

Conclusions

The results of this in vitro study are consistent with the
findings of our previous study that NKRF up-regulated ex-
pression in alveolar macrophages and peripheral blood
monocytes of active pulmonary TB patients represses IP-10
and IL-8 synthesis and release. This study further delineates
the underlying mechanisms that a direct contact with MTb
induces NKRF synthesis and nuclear translocation, binding
to NRE in the promoter sites of IP-10 and IL-8. Over there,
NKREF interferes with NF-kB (p65) binding and RNA poly-
merase II recruitment, leading to a repressive effect on
IP-10 and IL-8 synthesis.
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