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Abstract

Background: Although Imatinib mesylate has revolutionized the treatment of chronic myeloid leukemia, some
patients develop resistance with progression of leukemia. Alternative or additional targeting of signalling
pathways deregulated in Bcr-Abl-driven chronic myeloid leukemia may provide a feasible option for improving
clinical response and overcoming resistance.

Results: In this study, we investigate ability of CR8 isomers (R-CR8 and S-CR8) and MR4, three derivatives of the
cyclin-dependent kinases (CDKs) inhibitor Roscovitine, to exert anti-leukemic activities against chronic myeloid
leukemia in vitro and then, we decipher their mechanisms of action. We show that these CDKs inhibitors are potent
inducers of growth arrest and apoptosis of both Imatinib-sensitive and —resistant chronic myeloid leukemia cell
lines. CR8 and MR4 induce dose-dependent apoptosis through mitochondrial pathway and further caspases 8/10
and 9 activation via down-regulation of short-lived survival and anti-apoptotic factors Mcl-1, XIAP and survivin

chronic myeloid leukemia.

signalling

which are strongly implicated in survival of Bcr-Abl transformed cells.
Conclusions: These results suggest that CDK inhibitors may constitute a complementary approach to treat
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Background
Chronic myeloid leukaemia (CML), a myeloproliferative
disorder, was the first human disease the onset of which is
associated with a specific chromosomal abnormality, the
t(9;22)(q34;q11) translocation, known as the Philadelphia
chromosome [1]. This translocation creates a novel
proto-oncogene giving rise to the constitutively activated
protein tyrosine kinase Bcr-Abl responsible for the
leukemogenesis of transformed cells and evolution to-
wards blast crisis.

Since a few years, STI571 (Imatinib mesylate; Gleevec),
a specific Ber-Abl tyrosine kinase (TK) inhibitor, has
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profoundly modified the therapeutic approach of CML
and created a big emphasis on development of specific
TK inhibitors [2]. However, despite major anti-leukemic
effect of STI571 in chronic phase of CML, clinical resist-
ance to STI571 treatment has been observed in patients
with advanced phase diseases and has been attributed
to mutations in the ATP-binding site of the Bcr-Abl
protein (notably T3151 mutation) which alter drug
binding and thus its inhibitory effects. Moreover, meta-
bolic resistance to STI571 was observed through drug
efflux pump Pgp glycoprotein overexpression, Bcr-Abl
protein overexpression, BCR-ABL gene duplication [3, 4].
Development of second (Dasatinib, Nilotinib) or third
(Ponatinib) generation of Bcr-Abl inhibitors contributed
to diminish ICso but not to overcome the major resistance
problems, like the T315I mutation [5, 6]. Another cause of
disease progression after STI571 treatment is the selection
of a Ber-Abl leukemogenic effect -independent clone that
acts through other proliferation signalling pathways such
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as Gab2 or Cbl/Cbl-b [7, 8]. Therefore, new anti-leukemic
strategies need to diversify molecular targets by less select-
ive compounds or by associating alternative selective com-
pounds, in order to prevent escape of resistant malignant
clones.

Progression through the mammalian cell cycle is
known to be regulated by phosphorylation/dephos-
phorylation of the retinoblastoma protein (pRb), a
process operated by cyclin-dependent kinases (CDKs)
which require association with cyclins and phosphoryl-
ation to be catalytically active [9]. Based upon this
established function of CDKs in cell cycle regulation,
and given that approximately 90 % of all neoplasias are
associated with CDK hyperactivation [10], several
strategies have recently been designed to develop
pharmacological compounds that are capable of inhi-
biting the catalytic CDK subunit, i.e. its ATP-binding
site. Such chemical CDK inhibitors (CKIs) are exten-
sively evaluated in various diseases, such as cancer
chemotherapy, Alzheimer’s disease, or other neurode-
generative disorders, polycystic kidney disease. To
date, over 120 CKIs have been identified and charac-
terized (reviewed in [11]) and 10 of which are currently
undergoing clinical evaluation as anti-cancer drugs
[12]. Purine analogs were among the first low molecular
weight inhibitors of CDKs (reviewed in [13]). One of these,
(R)-Roscovitine (CYC202, Seliciclib), a potent inhibitor of
CDK1, 2, and 5 [14], has reached clinical phase 2 trials
against non-small cell lung cancer and breast cancer [15].
Its strong selectivity against a small subset of kinases [16]
and limited toxicity and side effects [17, 18] have contrib-
uted to its progression through clinical investigations.
However, short half-life, strong catabolism and rather
weak potencies on CDKs and cell lines (in the sub-
micromolar and micromolar ranges, respectively) consti-
tute limiting factors for clinical use. Therefore, second-
generation analogues of Roscovitine, conserving initial
qualities of the parental molecule, have been developed,
guided by the CDK/roscovitine crystal structures to main-
tain high kinase selectivity and to induce cell death at
much lower concentrations [19]. Among which, CR8
(both R- and S- isomers) and MR4 displayed stronger
effects on neuroblastoma cells despite rather similar in-
hibitory activity on CDKs [20, 21]. Based on these pre-
vious works, the aim of our study was to evaluate the
antitumoral effects of these new CDXKs inhibitors in
Imatinib-sensitive or -resistant chronic myeloid leukaemia
cell lines. Here we report that new Roscovitine-derived
CDKs inhibitors R-CR8, S-CR8, and MR4 trigger strong
anti-proliferative and cytotoxic effects both in Imatinib-
sensitive and Imatinib-resistant cell lines, suggesting that
such molecules could join the therapeutic armamentarium
against haematological malignancies and chronic myeloid
leukemia in particular.
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Methods

Cell lines

Four human chronic myeloid leukaemia cell lines were
used in this study. K562 and KCL22 were kindly provided
by Dr Laurence Dubrez-Daloz (University of Bourgogne,
Dijon, France), and their Imatinib-resistant respective
counterparts K562-R and KCL22-R were furnished by
Pr Carlo Gambacorti-Paserini (University of Milan,
Italy). Murine pro-B cell line BaF3 transfected with
wild-type or T3151 P210 Bcr-Abl, used as genetic
Imatinib-resistant model, was kindly given by Pr Frangois-
Xavier Mahon (Inserm U1035, Bordeaux, France). All
cell lines were cultured in RPMI 1640 (Lonza,
Levallois-Perret, France) supplemented with 10 % fetal
calf serum (FCS) (Lonza), 1 mg/mL L-Glutamine and
100X Penicillin-Streptomycin (Gibco Life Technolo-
gies, Saint-Aubin, France). Imatinib-resistant cell lines
K562-R and KCL22-R were grown under 1 pM Imatinib-
pressure. Twenty-four hours before experiments, these
cell lines were washed in PBS and starved from
Imatinib.

Chemistry

Roscovitine was synthesized as previously described [22].
Synthesis of R-CR8, S-CR8, and MR4 was recently de-
scribed in detail by Oumata and colleagues [19]. Com-
pounds were stored dry and diluted in dimethylsulfoxide
(DMSO) as 10 mM stock solutions until use.

CFSE proliferation assay

Proliferation of the CML cell lines was analysed by flow
cytometer using the CFSE staining kit (Invitrogen,
Cergy-Pontoise, France). Briefly, cells were stained with
5 uM of CFSE per 10° cells per mL in sterile PBS 1X ac-
cording to manufacturer’s instructions. One hundred
thousands cells were cultured for five days in culture
medium and treated with various drugs at indicated con-
centrations in a final volume of 1 mL. Then, cells were
washed, resuspended in 0.5 mL of sterile PBS 1X and
ten thousands events were recorded on a Beckman-
Coulter XL4 flow cytometer. Control of no proliferation
was made treating cells with Actinomycin D (Sigma,
Saint-Quentin-Fallavier, France) at 1 uM.

XTT viability assay

Inhibition of the proliferation of the CML cell lines was
confirmed using colorimetric XTT assay kit (Sigma) ac-
cording to manufacturer’s instructions. Two thousands
cells were cultured for one to three days in culture
medium and treated with various drugs at the indicated
concentrations in a final volume of 200 pL. Then, 20 pL
of the XTT formazan dye were added to each sample
and plates were reincubated for another 4 h and absorb-
ance was measured at 450 nm on a microplate reader.
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Cell cycle analysis

To assess proliferation inhibition at the cell cycle level,
CML cell lines were treated as indicated above for the
proliferation assay. At the end of culture, cells were har-
vested and washed twice in sterile PBS 1X. Five hundred
thousand cells were then incubated with 1 mL of DNA
staining solution containing 25 pg/mL propidium iodide
(PI), 0.1 % sodium citrate, and 0.1 % Triton X-100
(Sigma) for 10 min at 4 °C. PI fluorescence of 20,000
nuclei was analyzed for each sample using a Beckman-
Coulter XL4 flow cytometer. The percentage of cells
within the Go/Gy, S, and G,/M phases of the cell cycle
were identified by analysis with the Expo32 ADX™ software
(Beckman-Coulter, Villepinte, France).

Detection of apoptosis

Apoptosis of the CML cell lines was analysed by flow
cytometry using the Annexin V-Propidium iodide staining
kit (Beckman-Coulter). Briefly, 5.10° cells were cultured
for 24 h in culture medium and treated with various
drugs at indicated concentrations in a final volume of
1 mL. Then, cells were washed and labelled with
Annexin V and propidium iodide according to manufac-
turer’s instructions. Ten thousands events were recorded
on a Beckman-Coulter XL4 flow cytometer. Positive
control of apoptosis was made by treating cells with
Doxorubicin or Etoposide (Sigma) at 10 uM or 34 uM,
respectively.

Measurement of mitochondrial transmembrane potential
Changes in the mitochondrial membrane potential
(AY,,) were measured by incorporation of the cationic
lipophilic fluorochrome 3,3’-dihexylocarbocyanine iodide
(DiOCg; Sigma), a cell-permeable marker that specific-
ally accumulates in mitochondria, depending on AW,,.
CML cells were exposed to the CDK inhibitors for vari-
ous times and DiOC¢ at 40 nM was added for the last
30 min at 37 °C in the dark. Then, cells were washed
twice with sterile PBS 1X, resuspended in 0.5 mL PBS
and analyzed for fluorescence distribution using a
Beckman-Coulter XL4 flow cytometer.

Measurement of reactive oxygen species

Generation of reactive oxygen species (ROS) was mea-
sured by increase of fluorescence of the cell-permeable
superoxide sensitive probe dihydroethidium (DHE;
Sigma). CML cells were stained with 2 pM DHE for
15 min at 37 °C in culture medium without FCS. After
washing, 5.10° cells were cultured for 24 h in complete
culture medium and treated with CDKs inhibitors for
various times or concentrations, as indicated, in a final
volume of 1 mL. Then, cells were washed twice with
sterile PBS 1X, resuspended in 0.5 mL PBS and analyzed
for fluorescence distribution using a Beckman-Coulter
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XL4 flow cytometer. Positive control of ROS generation
was made treating cells with 5 uL of hydrogen peroxyde
(Sigma).

DNA fragmentation analysis

DNA fragmentation was analysed by agarose gel electro-
phoresis of apoptosis-induced cells' DNA. Briefly, 2.10°
cells were treated or not by drugs at 10 pM or DMSO as
vehicle control and incubated for 24 h. Then, DNA was
extracted using the QIAamp DNA Mini Kit (Qiagen,
Courtaboeuf, France) according to the manufacturer’s
instructions. Twenty pL of DNA extracts were ran on
1 % agarose gel at 5 V/cm for 3 h and observed under
UV light. Image acquisition was done using the BioX-
Capt software (Vilber-Loumat, Marne-la-Vallée, France).

Caspase 3 cleavage detection

Caspase 3 cleavage in treated cell lines was detected by
flow cytometry using a specific Alexa Fluor 488-anti-
caspase 3 cleaved fragment antibody purchased from Cell
Signaling Technology (Ozyme, Saint Quentin en Yvelines).
Briefly, 5.10° cells were cultured for 24 h in culture
medium and treated with various drugs at indicated con-
centrations in a final volume of 1 mL. Then, cells were
washed and labelled with antibody according to the manu-
facturer’s instructions. Ten thousands events were re-
corded on a Beckman-Coulter XL4 flow cytometer.

Preparation of cell lysates

For each cell line, 30.10° cells were washed in sterile
cold phosphate-buffered saline 1X, centrifuged for
5 min. at 1000 g. Cells were then resuspended in culture
medium and treated with Imatinib, Roscovitine, R-CRS,
S-CR8 or MR4 at 107> M for up to 24 h. A non-treated
control was also done for each time. When time was
reached, cells were centrifuged for 5 min. at 1000 g, re-
suspended in cold sterile PBS 1X, and transferred to
1.5 mL tubes. Tubes were centrifuged, supernatants
were discarded and pellets were resuspended in 300 pL
of Lysis Buffer (Tris 50 mM, NaCl 140 mM, EDTA
1 mM, NazVO, 1 mM, Triton X-100 1 % v/v, proteases
cocktail inhibitor 2 % v/v, pH 7,5) and incubated on ice
for 30 min. Tubes were then centrifuged for 10 min at
14,000 g and supernatants were collected as cell lysates
in well-identified tubes, quantified for protein amount
(Uptima BC Assay Protein Quantitation, Interchim,
Montlugon, France) and stored at —80 °C until analysis.

Subcellular fractionation

Cytosolic and mitochondrial fractions were prepared
from cells treated as above using the Mitochondria Iso-
lation kit for cultured cells from Pierce Biotechnology
(Brebieres, France), according to the manufacturer’s
instructions.
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Nuclear fractions were obtained using a homemade
nuclear lysis buffer containing Hepes 10 mM, NaCl
500 mM, Triton X-100 1 %, glycerol 10 %, NaVO4
1 mM, PMSF 1 mM, RNase 2 % and proteases inhibi-
tors cocktail (pepstatin, aprotinin and leupeptin) 1 pg/mlL,
pH 7.5. Lysis buffer was applied on pellets resulting
from the first centrifugation of subcellular fractionation
with the Mitochondria Isolation kit. Samples were soni-
cated 5-8 times for 30 s each with 1 min pause, then
centrifuged at 14,000 rpm for 15 min at 4 °C. Superna-
tants were saved as nuclear fractions and pellets were
discarded.

Treatment with caspases inhibitors

When caspases inhibition was required, CML cell lines
were first pre-incubated with desired caspase inhibitors
(R&D Systems, Lille, France) or vehicle (DMSO) for 1 h,
and then exposed to treatment with the tested CDK in-
hibitors as described for each experiment.

Western-blotting

Equal amounts of proteins (20-30 pg) were resolved
using SDS-PAGE (Bio-Rad Laboratories, Marnes la
Coquette, France) and electrotransferred onto PVDF
membranes. The membranes were blocked with 5 %
semi-skimmed milk in PBS-Tween 20 (0.1 %) at room
temperature for 1 h, washed three times in PBS-Tween
20 for 10 min each, and probed with the appropriate di-
lution of primary antibody in 1 % semi-skimmed milk in
PBS-Tween 20 overnight at 4 °C. The membranes were
washed three times with PBS-Tween 20 for 10 min each,
and then incubated with a 1:1000 dilution of HRP-
conjugated secondary antibody in 1 % semi-skimmed
milk in PBS-Tween 20 at room temperature for 1 h.
The membranes were finally washed three times in
PBS-Tween 20 for 10 min each before revelation. All
antibodies used were purchased from Cell Signaling
Technology except for PSTAIR (Chemicon Merck-
Millipore, Guyancourt, France), PU.1 (Santa Cruz Biotech-
nology, Heidelberg, Germany) and actin (Sigma), and
were employed according to manufacturers’ instructions.
HRP-conjugated secondary antibodies were obtained from
Sigma or Cell Signaling Technology and used to detect
protein labelling by the Amersham ECL Plus Western
Blotting Detection Reagents kit (GE Healthcare, Saclay,
France). Results were acquired by a Vilber-Loumat camera
and analysed using the Chemi-capt software (Vilber-
Loumat).

Statistical analyses

Results were expressed as means + standard deviation of
three independent experiments. Statistical analyses were
performed using the paired two-tailed Student’s ¢-test.
Statistical significance was accepted at p < 0.05.
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Results
CR8 and MR4 exert more potent antiproliferative effects
than R-Roscovitine in CML cell lines
To assess the antiproliferative effect of CDK inhibitor R-
Roscovitine and its new analogues R-CR8, S-CR8 and
MR4, CML cell lines were stained with CFSE and cul-
tured for five days. As shown on Fig. 1, we observed that
all tested CDK inhibitors prevent proliferation of all the
tested CML cell lines, the Imatinib-sensitive lines as well
as the Imatinib-resistant lines. However, and as expected
from CDKs inhibition ICs, values [20, 21], we observed
the three molecules R-CR8, S-CR8 and MR4 act very
similarly and display a more than 100-fold stronger anti-
proliferative effect than Roscovitine (mean ICsy: 0.22 to
0.24 uM vs 27 uM; see Additional file 1: Table S1).
Moreover, we showed that contrarily to Imatinib, our
CDKs inhibitors were always efficient to block the prolif-
eration of metabolic Imatinib-resistant K562-R and
KCL22-R cell lines as well as T315] mutation bearing
BaF3 cell line whereas Imatinib did not at such low con-
centrations (Fig. 1, graphs b, d, f).

CR8 and MR4 block cell cycle mostly in G,/M transition
To investigate the antiproliferative effects of our mole-
cules, we analyzed the cell cycle phase distribution after
treatment by CDKs inhibitors. As shown in Fig. 2a for
the KCL22 cell line as a representative experiment, R-
CR8 blocked cell cycle in Gy/M transition phase in a
time-dependent manner whereas R-Roscovitine was
unable. Moreover, G,/M blocking of cell cycle was ac-
companied with an increasing sub-Go/G; peak most
probably corresponding to apoptotic cells. Similar results
were obtained for S-CR8 and MR4 (data not shown).
This arrest of cell cycle appeared to be dose- and time-
dependent and to begin from 4 h after induction of
treatment. Western-blotting analysis of KCL22 treated
cells (Fig. 2b) revealed a loss of CDK1/cdc2, PSTAIR
motif containing CDKs and CDK7 with CR8 isomers
and MR4 that is in accordance with G,/M block of the
cell cycle and previous studies [23].

CR8 and MR4 trigger cytotoxic effects in CML cell lines

Based on the appearance of a sub-Gy/G; peak during cell
cycle experiment, we further investigated the cytotoxic
effects of CDKs inhibitors on CML cell lines by XTT
reduction assay and flow cytometry analysis of double
Annexin-V and propidium iodide staining. Imatinib was
tested in parallel for comparison. XTT reduction assay,
performed 48 h after exposure to increasing concentra-
tions of each compound, showed that all three com-
pounds R-CR8, S-CR8 and MR4 reduced cell survival
in a dose-dependent manner on the six CML cell lines
tested (Fig. 3). As for antiproliferative effects, R-CRS,
S-CR8 and MR4 were roughly equipotent at inducing
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Fig. 1 Inhibition of proliferation of Imatinib-sensitive and —resistant CML cell lines. Imatinib-sensitive K562 (a), KCL22 (c), and BaF3 Bcr-Abl WT
(e) and Imatinib-resistant K562-R (b), KCL22-R (d), and BaF3 Bcr-Abl T315! (f) CML cell lines were CFSE-labelled and treated with increasing
concentrations of drugs for five days before analysis of cell fluorescence in a flow cytometer. Negative and positive controls of proliferation were
obtained with actinomycin D-treated or untreated cells, respectively. Each experiment was done twice

cell death (mean ICs,: 1.05, 1.10 and 0.78 uM, respect- Annexin-V/PI staining assays confirmed the dose-
ively) and approximately 30 to 40-fold more potent dependent cell death-inducing effects of these CDKs
than R-Roscovitine (mean ICsq: >36 uM; see Additional inhibitors with similar 1Cs, values (Fig. 4a). Moreover,
file 2: Table S2). additional time-course experiments (Fig. 4b) demonstrated
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Fig. 2 Analysis of cell cycle in KCL22 cell line. a Cells were treated or not by 1 uM Roscovitine or R-CR8 for increasing times and distribution of cells among
the different phases of cell cycle was assessed by DNA content staining with Pl (FL2-log). b Western-blotting analysis of CDK1/cdc2, PSTAIR-containing CDKs
and CDK? after 24 h treatment of KCL22 cells. Actin was used as a control of sample loading. No T not treated, Imat Imatinib, Rosc Roscovitine

that cytotoxic effects of drugs were time-dependent with
maximal response obtained from 48 h exposure time on
K562 and KCL22 cells.

Very similar results obtained with XTT reduction assays
and Annexin-V/PI staining suggest that the mechanism
underlying CR8 isomers- and MR4-induced cell death im-
plied an apoptotic process. Then, we ran a DNA fragmen-
tation analysis on agarose gel electrophoresis. As
illustrated in Fig. 4c for the KCL22 cell line, we clearly ob-
served a DNA laddering profile constituted of multiple-
180 bp fragments for R-CR8-, S-CR8-, and MR4-treated

cells. This profile of internucleosomal fragmentation of
genomic DNA is a characteristic hallmark of apoptosis,-
confirming that CDKs inhibitors-induced cell death is me-
diated by apoptosis. At the concentrations used, no effect
of either Imatinib or R-Roscovitine was observed.

CR8 and MR4 induce caspase-dependent apoptosis of
CML cell lines

To determine whether cell apoptosis involved the cas-
pases, we examined processing of late events of apop-
tosis: cleavage of caspase 3 and PARP by flow cytometry
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and western-blotting. Results obtained for KCL22 cells
are presented in Fig. 5. Cells treated with R-CR8 were
stained with anti-cleaved caspase 3 fragment antibody in
a dose-dependent manner (from 5.7 % at 0.1 uM to
433 % at 1 pM and 704 % at 10 uM), whereas cells
treated with Roscovitine or untreated were not (Fig. 5a),
indicating that R-CR8 specifically induced processing of

caspase 3 depending on the concentration and relying it
on proapoptotic ICsq values. Similar results were ob-
tained for S-CR8 and MR4 (data not shown). Blot ana-
lysis of KCL22 cells showed the presence of the cleaved
fragments of caspase 3 (15 kDa) and PARP (60 kDa) re-
spectively, only when cells were treated with Imatinib,
R-CR8, S-CR8 and MR4 (Fig. 5b). Altogether, these
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Fig. 4 (See legend on next page.)
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D DMSO, MW molecular weight

Fig. 4 Assessment of apoptosis as cell death mechanism induced by CDKs inhibitors. a Analysis of Annexin V-positive cells on Imatinib-sensitive
K562 (a), KCL22 (c), and BaF3 Bcr-Abl WT (e) and Imatinib-resistant K562-R (b), KCL22-R (d), and BaF3 Bcr-Abl T315! (f) CML cell lines treating
with increasing concentrations of drugs for 48 h. Negative and positive controls of cell viability were obtained with etoposide-treated or
untreated cells, respectively. b Analysis of K562 and KCL22 Annexin V-positive cells treated for 24, 48 or 72 h with 10 uM drugs. ¢ DNA
fragmentation analysis of KCL22 cells treated by CDK inhibitors. NT not treated, / Imatinib, R Roscovitine, R8 R-CR8, S8 S-CR8, MR4 MR4,

results confirmed that CDK inhibitors induced-apoptosis
is caspase-dependent.

We then tried to determine whether an initiator cas-
pase preceded caspase 3 cleavage. As demonstrated in
Fig. 6a, R-CR8 or S-CR8 as well as MR4 treatment of
CML cell lines induced activation of initiator procas-
pases 2, 8, 9 and 10, as well as other effector caspases 6
and 7. These results indicate that both extrinsic and
mitochondrial pathways of apoptosis were triggered by

the CDKs inhibitors. To investigate if one or some of
the initiator procaspases was cleaved first and so, could
be considered as the key event in drugs induced apop-
tosis, we analyzed the kinetics of caspases activation. As
illustrated in Fig. 6b for the R-CR8 molecule on KCL22
cells, we observed by western blot experiments that all
caspase events were visible from 4 h exposure of cells to
the drugs. At this time, all studied caspases showed acti-
vation so we were unable to depict the scheme of

Not Treated Imatinib 10uM Rosco. 10uM
9.8 % 22.8 % 12.9 %
R-CR8 0.1uM R-CR8 1uyM  R-CR8 10uM
43.3 %

(b)

No T Imat Rosc R-CR8S-CR8 MR4

TR O T B - caspase 3

T A— com———

— cleaved C3

— PARP
wwes - cl. PARP

g

" S — S— w— w—— — 3C{iN

Fig. 5 Involvement of caspases processing in CDKs inhibitors-induced apoptosis in KCL22 cells. a Cells were left untreated or treated with Imatinib
or Roscovitine (10 uM), or R-CR8 (0.1, 1 or 10 uM) before detection of cleaved caspase 3 by flow cytometry. b KCL22 cellular extracts were analyzed

for caspase 3 and PARP cleavage after 10 uM treatment by drugs. Actin was used as a control of sample loading. No T not treated, Imat Imatinib,
Rosc Roscovitine
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apoptosis induction by these Roscovitine-derived mole-
cules. Then, we performed Annexin V/PI staining exper-
iments by flow cytometry, using specific caspases
inhibitors. Figure 6¢ shows that pretreating cells with
these caspases inhibitors only partially prevented R-CR8
induced apoptosis by less than 50 % for caspases 8
(z-IETD-fmk), 9 (z-LEHD-fmk), and 10 (z-AEVD-fmk) in-
hibitors and by approximately 70 % when these inhibitors
were combined. These results seem to indicate that none
of the extrinsic or mitochondrial pathways was predomin-
ant for apoptosis induction by the CDKs inhibitors. More-
over, the use of caspase 3 specific (z-DEVD-fmk), caspase
6 specific (z-VEID-fmk) as well as pan-caspase (z-VAD-
fmk) inhibitors did not allow to prevent cell death,
suggesting that CDKs inhibitors induced-apoptosis acts
partially by a caspase-independent pathway.

CDKs inhibitors provoke loss of mitochondrial membrane
potential, down-regulation of Mcl-1, XIAP and survivin
and nuclear translocation of AIF

As demonstrated by DiOC¢ incorporation on Fig. 7a,
the Roscovitine-derived CDKs inhibitors induced re-
duction of the mitochondrial membrane potential of
K562 and KCL22 cell lines in a time-dependent manner.
Loss of Wm appeared significant after 4 h exposure to
drugs and increased up to five-fold the control level
after 16 h exposure on KCL22 cell line which seemed to
be more sensitive than K562, in accordance with previ-
ous results on cytotoxic activities. Pretreatment of cells
with the pan-caspase inhibitor z-VAD-fmk was
absolutely unable to reverse loss of mitochondrial mem-
brane potential, indicating this event precedes subse-
quent caspase cascade.
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Then, we evaluated the expression of Mcl-1 and its
transcription factor PU.1 at the protein level. Western
blot revealed a pronounced decrease in both Mcl-1 and
PU.1 proteins when cells were treated by CDKs inhibitors
(Fig. 7b), removing the anti-apoptotic function of Mcl-1
on the mitochondria. Conjugated to this, subcellular
fractionation analysis revealed the release of cytochrome c
from mitochondria to cytosol where it could complex with
Apaf-1 and caspase 9 to form the apoptosome. This re-
lease of cytochrome c (and other apoptogenic factors)
from the mitochondria act through the Voltage Dependent
Anion Channel (VDAC) whose dimers were possibly visu-
alized (Fig. 7c).

Translocation of AIF from mitochondria to nucleus
(although not seen in the cytosol), where it could induce
DNA fragmentation as early evidenced, also occurred

consequently to ¥m loss. This observation reinforced
the idea of a caspase-dependent and —independent con-
tribution to apoptosis triggered by R-CR8, S-CR8 and
MR4 treatment of CML cell lines, and thus would ex-
plain the relatively modest effects of caspases inhibitors
observed in our experiments.

Additionally, we were unable to detect the truncated
form of Bid in cellular extracts (neither cytosol nor
mitochondria), suggesting that extrinsic and mito-
chondrial pathways of apoptosis are possibly acting
independently.

Moreover, XIAP and survivin, two survival and anti-
apoptotic molecules belonging to the Inhibitor of
Apoptosis Proteins (IAPs) family, were both strongly
down-regulated from their subcellular location, cytosol
and nucleus, respectively. In contrast, no changes were
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observed for other pro- or anti-apoptotic molecules, such
as Bax, Bad, and Bcl2 (Fig. 7c).

CR8 and MR4 induce ROS generation consequently to
caspases activation

We next examined if cell treatment with the CDKs in-
hibitors induced the generation of reactive oxygen spe-
cies within the mitochondria. As shown in Fig. 8, R-CR8
induced the production of ROS in a concentration- and
time-dependent manner in the KCL22 cell line. ROS
were undetectable within the 4 h while apoptosis already
occurred. Then, we measured ROS generation on cells
pretreated by caspases inhibitors. Figure 8c shows that
ROS were abundantly prevented with initiator caspase
inhibitors and to a lesser extent with caspase 3 and pan-
caspase inhibitors, suggesting that ROS generation sim-
ply represent a secondary event of the apoptotic process.

Discussion
Development of drug resistance, leading to selection of resist-
ant cell clone, is often a major obstacle for successful cancer

treatment. Therefore, there is always an urgent need for
novel molecules with improved efficacy against tumor cells,
even in currently “curable” diseases. Previous reports indi-
cated that CDKs not only regulate eukaryotic cellular prolif-
eration, but also participate in multiple cellular processes
such as transcription [24]. Therefore, inhibition of CDKs
offers a promising therapeutic strategy against cancer [25].

The aim of the present study was to analyze whether
analogues of Roscovitine, a well-known CDXKs inhibitor,
could affect cell death and survival of CML cell lines
and to decipher the mechanisms of action of these mole-
cules. We have shown that the R-CR8, S-CR8 and MR4
analogues exert growth-inhibitory effects in all CML cell
lines, both Imatinib-sensitive and Imatinib-resistant, by
increase of the G,/M phase of the cell cycle (Figs. 1 and 2).
This G,/M blockade is sustained by a down-regulation
of CDK1 and CDK2 as previously demonstrated for
Roscovitine, depending on cell types [14, 26]. Observed
inhibition of CDK7 would also be indirectly implicated
since this kinase phosphorylates threonine residues on
and then activates CDK1 and CDK2 [27, 28].
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In addition to their cytostatic properties, Roscovitine
analogues have been shown to trigger apoptosis on CML
cell lines with ICsy values in the micromolar range.
Although analogues displayed only approximately 2 to
4-fold better affinity for CDKs [20], antiproliferative and
pro-apoptotic effects of these molecules were 100- and
30-fold more potent than Roscovitine, respectively. Such
differences could be explained by slight differences in
cell permeability to drugs, intracellular stability, or dis-
tribution across cell organelles. Another possibility is
that Roscovitine analogues bind to other yet unidentified
targets (maybe a kinase or not) with a 10- to 100-fold
stronger affinity than Roscovitine does.

To delineate mechanisms of the cytotoxic effects of R-
CR8, S-CR8 and MR4, we have tested whether observed
CML cell lines apoptosis involved caspase activation and,
if so, which pathway (the extrinsic- or mitochondrial one)
was predominant for this activity. In this study, treatment
of CML cells with the Roscovitine-derived inhibitors leads
to increase of active forms of caspase 3 and its substrate
PARP ultimately leading to cell death. Kinetics analysis of
caspase activation (Fig. 6b) revealed that processing of the
initiator as well as of the effector caspases occurred at the
same time, from 4 h of treatment. This observation was
consistent with kinetics previously reported for leukemia
cells [29]. Nevertheless, it is surprisingly that all initiator
and effector caspases were activated simultaneously, and
thus, it does not permit to identify the former caspase
event. Experiments using specific caspase inhibitors
brought us some new information. First, we found that
the pan-caspase inhibitor, as well as specific caspase inhib-
itors, used at a high concentration (100 pM), were only
partially protective against cell death processing (Fig. 6¢).
In contrast, some previous studies on CML cell lines using
Cepharantine demonstrated classic caspase-dependent
apoptotic responses and were easily blocked by only
20 uM Z-VAD-fmk [30]. This limited protection suggests
that R-CR8, S-CR8 and MR4 also trigger caspase-
independent cell death. Second, AWm loss, also significantly
appearing from 4 h treatment, was completely unchanged
under pan-caspase inhibitor pretreatment (Fig. 7a). This led
us to assume that caspases are activated downstream of
mitochondria events. Taken together, these results support
that the hypothesis that CR8 isomers- and MR4-mediated
apoptosis begins with the commitment of mitochondrial
events and that cell death proceeds through caspase-
dependent and -independent pathways, suggesting that
caspase cascade may be important to amplify the apop-
totic signal emanating from mitochondria, but not ab-
solutely crucial to achieve cell death, as previously
reported [31, 32].

Bid is a substrate of caspase-8 in the extrinsic pathway,
and provides a link between the extrinsic and mitochon-
drial pathways of apoptosis. We then considered the
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possibility that caspase 8 activation could be responsible
for amplifying caspase 9 activation through cleavage of
Bid [33], although this seemed unlikely given that activa-
tion of caspase 9 appeared to occur concomitantly with
caspase 8 activation. Indeed, CDKs inhibitors treatment
was not associated with detectable Bid cleavage (Fig. 7c).
This suggests that extrinsic- and mitochondria-pathways
of caspase activation are not linked in this model. However,
we cannot rule out a technical problem in the detection of
truncated Bid.

According to current knowledge, and consistent with
above-mentioned results, cytotoxic drugs cause apop-
tosis mainly through the mitochondrial pathway. In this
pathway, apoptosis is induced by an intrinsically gener-
ated death signal which arrives at mitochondria, causing
loss of ¥m and release of cytochrome ¢ and/or AIF into
the cytoplasm [34, 35].

The possibility that Roscovitine analogues act directly
on mitochondria permeability transition was discarded
by previous studies on isolated mitochondria [36]. A fac-
tor leading to cytochrome c release consequently to
AW¥m loss and VDAC opening is the antiapoptotic factor
Mcl-1, located on the outer membrane of mitochondria.
Mcl-1 plays a critical role in negatively modulating mito-
chondrial apoptotic events, such as cytochrome c release
and caspase activation [37]. Our results show that Mcl-1
and its transcription factor PU.1 were drastically down-
regulated under R-CR8, S-CR8, and MR4 treatment,
confirming works on Mcl-1 in other malignancies such
as chronic lymphocytic leukemia [38], neuroblastoma
[39], or multiple myeloma [40]. Previous reports have
shown that RNA polymerase II phosphorylation by
CDK?7 and CDKO is sensitive to Roscovitine or R-CR8
treatment and that its inhibition leads to suppressed
transcription [17, 20]. So far, observed down-regulation
of Mcl-1 certainly results from this CDK7/CDK9-medi-
ated inhibition of transcription and acts as the leading
event to subsequent release of cytochrome c. Moreover,
we also observed a ~64 kDa protein band revealed by
anti-VDAC antibody, possibly corresponding to VDAC
homodimers that assemble between Mcl-1 decrease and
cytochrome c release [41, 42].

It has recently been shown that Mcl-1 is required
for survival during BCR-ABL transformation and in
established BCR-ABL(+) leukaemia [43]. Thus, down-
regulation of Mcl-1 triggered by Roscovitine analogues
would suppress the survival advantage conferred by
Mcl-1 in chronic myeloid leukemia, resulting in apop-
totic cell death.

Among other cellular proteins regulating caspase activa-
tion are the IAPs (Inhibitor of Apoptosis Proteins), includ-
ing XIAP and survivin [44]. Similarly to Mcl-1, we found
that both survivin and XIAP were strongly down-
regulated after R-CR8, S-CR8 and MR4 treatment (Fig. 7).
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Survivin acts as a prosurvival and antiapoptotic factor by
inhibiting active forms of caspase-3 and -7 and Bax- and
Fas-induced apoptotic pathways [45], and by activating
mitosis and cytokinesis during the G,/M phase [46].
Thus, down-regulation of survivin may be triggered by
CDK1/CDK2 impairment during cell cycle as well as
CDK7/CDK9-mediated transcription inhibition. XIAP
directly neutralizes initiator caspase 9 and effector
caspases 3 and 7 through its baculovirus-IAP-repeat
domains 3 and 2, respectively [47]. Study of survivin
and XIAP genes in CML revealed that disease progres-
sion from chronic to blastic phases was accompanied
with overexpression of survivin [48] and XIAP mRNA
levels [49, 50]. Considering this, survivin and XIAP
would represent another targets to control disease
progression, arguing in favour of the evaluation of CDKs
inhibitors in CML.

As discussed above, our results using synthetic cas-
pases inhibitors strongly suggest that CDKs inhibitors-
mediated cell death of CML cell lines also occurs
through caspase-independent pathway. Such pathway is
described to proceed from mitochondria release of non
caspase-dependent factors such as AIF or Endonuclease
G [36, 51]. Subcellular fractionation demonstrated the
translocation of propapoptotic factor AIF from mitochon-
dria to nucleus (despite the lack in the cytosol) where it
could induce DNA fragmentation (Figs. 4 and 7), confirm-
ing that Roscovitine analogues-induced cell death implies
both caspase-dependent and -independent pathways.

Finally, we quickly assessed the Roscovitine analogues
ability to induce ROS generation. We showed that ROS
production was induced by CDKs inhibitors in a time-
and dose-dependent manner. However, ROS generation
was considerably delayed behind other events of apop-
tosis induction (Figs. 6 and 8). This suggests that ROS
generation by CDKs inhibitors was only a consequence
of cell death processing. Surprisingly abolition of ROS
was observed with caspases inhibitors, suggesting that
ROS generation could only be a hallmark of caspase-
dependent CDKs inhibitors-mediated apoptosis. These
results contrast with most reported studies where ROS
generation seems to precede and to trigger mitochon-
drial commitment. However, there is still debate for
place and role of free radical production in the apoptotic
process, which may vary with stimulus and cell type. In
some studies, induction of apoptosis by chemotherapeutic
agents has been linked to production of ROS [52, 53],
whereas other studies have suggested that ROS generation
represents a consequence rather than a cause of cell death
[54]. Moreover, results obtained here are contradictory
with one of two recent reports indicating that Roscovitine
treatment of c-Abl-activated neutrophils in inflammatory
context, drive them to apoptosis with a markedly decrease
in ROS generation [55]. However, in the breast cancer
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context, Roscovitine induces apoptosis by increasing ROS
[56]. Further works, in particular using ROS scavenger,
will be needed to delineate ROS contribution to Roscov-
itine analogues effects in CML context.

Conclusions

The data presented here demonstrate that prolonged
exposure of human CML cell lines to novel CDKs in-
hibitors R-CR8, S-CR8, and MR4 represents a potent
stimulus for mitochondrial damage and apoptotic cell
death of these cells, targeting and/or inducing down-
regulation of key molecules sustaining disease establish-
ment and evolution. These second-generation analogues
of Roscovitine should now be investigated for their toxicity
and antitumor properties in appropriate animal models of
CML. Remaining questions about cell death mechanisms
should also be investigated.
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