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Abstract

alleviation of isoproterenol-caused cardiac injury

approach for preventing heart failure progression.

Background: Cardiac oxidative stress, bioenergetics and catecholamine play major roles in heart failure progression.
However, the relationships between these three dominant heart failure factors are not fully elucidated. Caffeic acid
ethanolamide (CAEA), a synthesized derivative from caffeic acid that exerted antioxidative properties, was thus applied
in this study to explore its effects on the pathogenesis of heart failure.

Results: In vitro studies in HL-1 cells exposed to isoproterenol showed an increase in cellular and mitochondria
oxidative stress. Two-week isoproterenol injections into mice resulted in ventricular hypertrophy, myocardial
fibrosis, elevated lipid peroxidation, cardiac adenosine triphosphate and left ventricular ejection fraction decline,
suggesting oxidative stress and bioenergetics changes in catecholamine-induced heart failure. CAEA restored
oxygen consumption rates and adenosine triphosphate contents. In addition, CAEA alleviated isoproterenol-induced
cardiac remodeling, cardiac oxidative stress, cardiac bioenergetics and function insufficiency in mice. CAEA treatment
recovered sirtuin 1 and sirtuin 3 activity, and attenuated the changes of proteins, including manganese
superoxide dismutase and hypoxia-inducible factor 1-a, which are the most likely mechanisms responsible for the

Conclusion: CAEA prevents catecholamine-induced cardiac damage and is therefore a possible new therapeutic

Keywords: Bioenergetics, Caffeic acid, Heart failure, Sirtuin

Background

Heart failure (HF) remains a major cause of death in
developed nations [1]. It is a complex and multi-causal
syndrome characterized by cardiac dysfunction [2-6].
Evidence has shown that catecholamine, oxidative stress
and bioenergetic insufficiency contribute to the patho-
genesis of HF [7-13]. The increase in sympathetic tone
in HF is supposed to compensate for cardiac dysfunc-
tion; however, a previous study found that the patients
with higher plasma catecholamine concentrations had
poorer outcomes [14]. A synthetic catecholamine, iso-
proterenol (ISO), has also been widely used to induce
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oxidative stress HF, displaying cardiac remodeling, dys-
function, and bioenergetics insufficiency [15-17]. These
observations imply that catecholamine released to coun-
terbalance the cardiac dysfunction could further result
in myocardial oxidative injury and bioenergetics impair-
ment in HF.

Mitochondria are responsible for oxidative phosphor-
ylation. Adenosine triphosphate (ATP) is produced from
the electron transport chain (ETC) which supplies
energy for well-perfused hearts [12, 18, 19]. On the other
hand, reactive oxygen species (ROS) leaking from
impaired ETC in failing myocardium contributes to
mitochondrial and cellular oxidative stress, further
deteriorating cardiac bioenergetics [9, 10, 13, 18, 20-29].
Accordingly, amelioration of mitochondrial oxidative
stress has been considered as a possible resolution to
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heart failure [23, 26]. Agents that correct impaired ETC
can reduce ROS leakage from mitochondria [30, 31].
Modulation of the cellular oxidative alternation is another
possible therapeutic modality [31, 32] and attenuating
mitochondrial oxidative stress is yet another [33].

Sirtuins (SIRTs) are family of class III histone deace-
tylases, which require NAD" to deacetylate histone and
nonhistone lysines [34]. Mammals contain seven sir-
tuins, SIRT1-7 [35]. SIRT1 and SIRT3 are highly
expressed in the nucleus/cytoplasm and mitochondria
of the heart, respectively [34—37]. It has been shown
that sirtuin 1 (SIRT1) is downregulated in patients with
heart failure, and that there is an increase in sirtuin 1
reducing oxidative stress-mediated cardiac reperfusion
injury [38, 39]. Meanwhile, sirtuin 3 (SIRT3) has been
demonstrated to regulate cardiac energy status and mito-
chondria tolerance to ischemia-reperfusion injury by dea-
cetylating specific mitochondrial proteins [40, 41].
Therefore, SIRT 1 and SIRT 3 are potential targets for
managing catecholamine inducing oxidative stress and
bioenergetic insufficiency, thus preventing the progression
of HF.

Caffeic acid, a natural phenolic constituent, has antiox-
idative properties [42, 43]. Its cardiovascular protection
has been demonstrated through its free radical scaven-
ging effect [44-50]. However, the exact mechanisms
underlying caffeic acid-induced cardio-protection and its
therapeutic potential on HF remain unknown. In
addition, our preliminary data represented that a new
caffeic acid derivate, caffeic acid ethanolamide (CAEA),
exerted cardioprotective effects, which was superior to
caffeic acid (data will show later). We aimed in our
present study to evaluate the effects of CAEA on
catecholamine-induced HF, and the involved mechanisms.

Methods

Experimental animals and ethics statement
Eight-week-old male C57BL/6 mice were purchased
from the National Laboratory Animal Center of Taiwan.
The research was performed according to the Guide for
the Care and Use of Laboratory Animals published by
the US National Institutes of Health (NIH publication
no. 85-23, revised 1996), and was approved by the Insti-
tutional Animal Care and Use Committee of the
National Taiwan University, Taiwan. ISO (Sigma-Aldrich,
St. Louis, MO) 16 mg/kg once daily was subcutaneously
injected for 14 days. The control groups received the
same volume of isotonic saline. CAEA suspended in iso-
tonic saline was administered subcutaneously as a dose
of 1 mg/kg/day after ISO injection. In some experi-
ments, nicotinamide (20 mg/kg/day), a sirtuin inhibitor,
was also injected subcutaneously to investigate the
mechanism of CAEA.
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Caffeic acid ethanolamide preparation

CAEA is synthesized in the laboratory of YH Kuo
(Fig. 1). CAEA was produced from caffeic acid (100 mg,
0.56 mmole) dissolved in 1 mL N,N-dimethylformamide
and 80 pL triethylamine in a two-necked bottle. The
solution was then added into 5 mL dichloromethane
containing 41 pL (1.2 eq) ethanolamine, and 298 mg
(1.2 eq) (Benzotriazol-1-yloxy)tris- (dimethylamino)pho-
sphonium hexafluorophosphate to react for 30 min in an
ice bath, followed by reacting at room temperature for
2 h. After the reaction, dichloromethane was removed
with low negative pressure. The residue was then added
into water, and then extracted by ethyl acetate. The
organic phase was then collected, washed with 3 N HCI,
10 % NaHCOj3 and water, and then dried with anhydrous
sodium sulfate. After filtration, condensation, and col-
umn chromatography, the final product- caffeic acid
ethanolamide was obtained.

Cardiac function assessment

After 14 days of drug administration, small animal ultra-
sound imaging system (S-Sharp Corporation, Taipei,
Taiwan) was used for echocardiography measurements.
Transthoracic echocardiography was performed 12 h
after the last drug injection. Mice were anesthetized by
2 % isoflurane mixed with 1 L/min O, in the induction
chamber, while the continuous application of anesthesia
was dropped to 1 % isoflurane. Cardiac function was cal-
culated, in duplicate, in M-mode images from the para-
sternal long axis by using the leading-edge technique
defined by the American Society of Echocardiography.
Left ventricle ejection fraction (EF) is an indicator for
the determination of cardiac function.

Cardiac histology

After the echocardiogram was recorded, the heart was
excised and perfused with PBS. The weight of heart was
measured, and the heart to body weight (HW/BW) ratio
was calculated. The hearts were fixed in 4 % paraformal-
dehyde, embedded in paraffin, and sectioned horizon-
tally in 4 pm slices. Masson’s trichrome stain and Sirius
red stain were performed for fibrosis analysis.
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Fig. 1 Structure of caffeic acid ethanolamide
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Cardiac protein extraction

Left ventricles were homogenized as described previously
[51]. Briefly, left ventricles were homogenized in tissues
protein extraction buffer (Thermo Fisher Scientific Inc.,
IL, USA) containing cocktail proteases and phosphatase
inhibitors (Sigma, St. Louis, MO, USA). The super-
natant of the tissue homogenate was collected after
centrifugation (800x g, 10 min at 4 °C) and was
defined as total cardiac protein. Protein concentrations
were determined by a BCA protein assay kit (Thermo
Fisher Scientific Inc., IL, USA).

ATP content determination

Mouse ventricular tissue lysate was prepared for measur-
ing cardiac ATP content, which was measured by an
ELISA kit (Biovision, CA, USA). To detect lactate con-
tent, the ATP reaction mix was mixed well with tissue
lysate in each well at room temperature protected from
light for 30 min, and the fluorescence signals were
detected by excitation wavelength of 535 nm and an
emission wavelength of 587 nm with a microplate
spectrophotometer.

Western blotting

Cardiac protein samples were analyzed for manganese
superoxide dismutase (MnSOD), c-Jun N-terminal kin-
ase (JNK), phospho-JNK (p-JNK) and hypoxia-inducible
factor 1-a (HIF-la) expression (Cell Signaling, MA,
USA), and glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) (Santa Cruz Biotechnology, CA, USA). The
methods were described in our previous study [51].

Sirtuin activity detection

Mouse ventricular tissue lysates were prepared for the
measurement of SIRT1 and SIRT3 activities, which were
measured by kits (Cayman Chemicals, MI, USA). p53
sequence, as the substrate for sirtuin deacetylation, was
mixed with tissue lysate in a 96 well microplate, and was
then shaken at 25 °C for 45 min. Fluorescence signals
were detected by an excitation wavelength of 360 nm
and an emission wavelength of 450 nm with a micro-
plate spectrophotometer.

Lactate content and the ratio of oxidized and reduced
forms of nicotinamide adenine dinucleotides (NAD*/NADH
ratio) detection

Mouse ventricular tissue lysate was prepared for the
measurement of lactate content and NAD*/NADH ratio,
which were both measured by ELISA kits (Biovision,
CA, USA). To detect lactate content, the lactate reaction
mix was added to each well along with tissue lysate at
room temperature away from light for 30 min, and then
read at an optical density of 570 nm. In addition, after
centrifuging the samples at 14,000 rpm for 5 min, the
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supernatant of the heart tissue was transferred into a
new tube. To detect total NAD, the supernatant was
mixed with an NADH developer in each well of a 96
well microplate at room temperature for 5 min, and then
the color was read at an OD of 450 nm. To detect
NADH, we heated the supernatant to 60 °C for 30 min
to decompose NAD", and then we followed the steps of
the reaction mentioned above. After the standard curve
was prepared, the NAD+/NADH ratio was obtained
from the total NAD and NADH detected, which is equal
to the (total NAD - NADH)/NADH ratio.

Lipid peroxidation determination

Cardiac oxidative stress was represented by lipid peroxi-
dation of mouse ventricular tissue, and determined by a
kit (Cayman Chemicals, MI, USA). Briefly, after centrifu-
ging the samples at 1,600 g at 4 °C for 10 min, the
supernatant was mixed with sodium dodecyl sulfate so-
lution along with the color reagent in tubes, and then
put them into boiling water for 1 h, followed by incubat-
ing them on ice for 10 min. After centrifuging the sam-
ples at 1,600 g at 4 °C for 10 min, we read the
fluorescence signals at the excitation wavelength of
350-360 nm and an emission wavelength of 450465 nm
by using a microplate spectrophotometer.

Cell culture

HL-1 cells, a cardiac muscle cell line that contracts
and retains phenotypic characteristics of the adult
cardiomyocyte, were obtained from Dr. William C.
Claycomb (Louisiana State University Health Sciences
Center, New Orleans, LA). Cells were cultured in
Claycomb medium supplemented with 10 % FBS
(Gibco, Scotland, UK), 2 mM L-glutamine (Gibco,
Scotland, UK), 0.1 mM norepinephrine, and antibi-
otics (100 pg/ml penicillin and 100 pg/ml strepto-
mycin) at 37 °C under a 5 % CO,-95 % air
atmosphere. The HL-1 cells were wused for
experimentation after reaching 80 % confluency. ISO
was added to induce stress for 24 h. CAEA (1 uM)
was pre-incubated 1 h before ISO treatment.

Intracellular free radical determination

Intracellular ROS and mitochondria superoxide gener-
ation was detected in cardiomyocytes by labeling
with fluorescence dye 5-(and-6)-chloromethyl-2',7"-
dichlorodihydrofluorescein diacetate and MitoSOX™,
respectively. By using fluorescence microscopy, intracel-
lular ROS level was monitored at 488 nm excitation and
515 nm emission, and mitochondria superoxide gener-
ation was monitored at 510 nm excitation and 580 nm
emission, respectively. Fluorescence intensity was calcu-
lated by averaging fluorescence intensity of numerous
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outlined cells using ImageQuant (Molecular Dynamics,
Inc., Sunnyvale, CA, USA).

Rate of oxygen consumption detection

To assess the function of the cellular electron transport
chain, oxygen consumption rate (OCR) was estimated by
a kit (Luxcel Biosciences Ltd., Cork, Ireland). MitoX-
press® Xtra was added to each well containing cells after
treatment. The dual-read signal was recorded continu-
ously right after mineral oil sealing. Since the detection
dye is quenched by O, through molecular collision, the
fluorescence signal is inversely proportional to the
amount of extracellular O, in the sample. Rates of oxy-
gen consumption were determined from the changes in
the fluorescence signals over time. The slope between
linear regression lifetime of fluorescence and detection
period was calculated as OCR. The values of OCR were
normalized to protein content.

pH level determination

pH values were measured in cell culture, by adding a
pH-sensitive fluorescence dye (Invitrogen, NY, USA).
The fluorescence signal is proportionally increased dur-
ing the lowering of the pH value, and detected by excita-
tion wavelength of 560 nm and an emission wavelength
of 585 nm.
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Glycolysis detection

Cellular glycolysis was measured by a kit (Luxcel Biosci-
ences Ltd,, Cork, Ireland). After several washes, pH-Xtra™
was added to the cells, and the fluorescence signal was re-
corded in a continuous dual-read manner. The values of
the glycolysis rate were normalized to protein content.

Statistical analysis

All values were represented as means + SE. The results
were analyzed using ANOVA followed by Bonferroni's
post hoc tests. P<0.05 was considered as a significant
difference.

Results

CAEA prevents isoproterenol caused myocardial
remodeling

CAEA (1 mg/kg) alone had no significant impact on
cardiac morphology and histology (Fig. 2). Conversely,
the two-week ISO induced cardiac remodeling- ven-
tricular hypertrophy and myocardial fibrosis was allevi-
ated by CAEA (1 mg/kg). The cardio-protective effects
of CAEA were superior to caffeic acid (1 mg/kg) in
terms of isoproterenol-induced cardiac remodeling
(Fig. 2). The ratio of heart weight to body weight was
considerably reduced from 5.95 mg/g in ISO-treated
mice (ISO group) to 5.49 mg/g in mice subjected to
CAEA and ISO (ISO + CAEA group), while that in the
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vehicle-treated mice (control group) was 4.95 mg/g
(Fig. 2ab). Meanwhile, cardiac fibrosis was significantly
attenuated from 11.02 % in the ISO group to 3.67 % in
the ISO + CAEA group, when compared with 0.77 % in
the control group (Fig. 2cd).

CAEA alleviates isoproterenol induced cardiac dysfunction
and bioenergetic insufficiency

CAEA (1 mg/kg) alone did not change left ventricle
ejection fraction (LVEF) and cardiac ATP (Fig. 3abc).
LVEF declined from 65.8 % in the control group to
48.2 % in the ISO group (Fig. 3ab). The decline of LVEF
in the ISO group was significantly attenuated to 66.4 %
in the ISO + CAEA group (Fig. 3ab). In the meantime,
the drop of cardiac ATP in the ISO group (50.4 %) was
preserved in the ISO + CAEA group (86.2 %), when
compared with the control group (Fig. 3c). LVEF corre-
lated well with cardiac ATP content in mice (Fig. 3d).
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Again, CAEA showed its superiority over caffeic acid
when considering isoproterenol-induced cardiac bio-
energetic impairment and dysfunction. Therefore, we
chose CAEA for further evaluation (Fig. 3abc).

CAEA recovers cardiac manganese superoxide dismutase
and reduces oxidative stress in isoproterenol induced
heart failure

ISO increased cardiac oxidative stress, which was mea-
sured as lipid peroxidation. CAEA alleviated ISO in-
duced cardiac oxidative stress from 1.65- to 1.23-fold,
when compared with control group (Fig. 4a). Cardiac
protein expression was analyzed by Western blotting.
CAEA ameliorated ISO induced JNK phosphorylation
from 1.76- to 1.52-fold higher, compared to the control
group (Fig. 4bc), while cardiac MnSOD, which was
67.9 % in ISO group, recovered to 88.9 % in the ISO +
CAEA group, compared to the control group (Fig. 4bd).
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phosphorylation of JNK, and manganese superoxide dismutase (mnSOD) expression. ¢ Densitometry of cardiac tissue phosphorylation of JNK
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fold greater in the ISO group than in the control group,
and was reduced to 4.81-fold elevation in the ISO +
CAEA group (Fig. 5ab). In addition, mitochondrial

Isoproterenol increases cellular and mitochondrial
oxidative stress in HL-1 cardiomyocytes, while CAEA
reduces them both

ISO induced cellular oxidative stress, which was mea-
sured by fluorescence staining in HL-1 cardiomyocytes
(Fig. 5). Intracellular ROS (green fluorescence) was 8.93-

superoxide (red fluorescence) was 1.23-fold higher in the
ISO group than in the control group, and was alleviated to
1.06-fold elevation in the ISO + CAEA group (Fig. 5cd).
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d Quantification of mitochondrial superoxide. n =4 in triplicate for each group, *P <0.05 versus control, *P <0.05 versus 1SO
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CAEA reduced ISO caused cellular oxidative stress and
mitochondrial superoxide activity.

CAEA preserves oxidative phosphorylation, cellular
bioenergetics and cellular redox state in isoproterenol-
treated HL-1 cardiomyocytes

Cellular oxidative phosphorylation in HL-1 cardiomyo-
cytes was represented by oxygen consumption rate
(OCR). OCR declined from 5.53 ps/h in the control
group to 1.09 ps/h in the ISO group, and only declined
to 2.67 ps/h in the ISO + CAEA group (Fig. 6ab). The
glycolysis rate was 1.9-fold higher in ISO group than
control group (Fig. 6d). The ISO group showed the
greatest decrease in pH values among the groups
(pH 7.20) and recovered to pH 7.33 in the ISO + CAEA
group (Fig. 6c). Cellular ATP in the ISO group was
58.5 % of the control group. NAD" in the ISO group
was 66.0 % of the control group, compared to NADH
which was 1.42 fold higher than in the control group.
The NAD'/NADH ratio (representing cellular redox
state [18]) in the ISO group was 45.7 % of the control
group (Fig. 6de). Taken together, ISO decreased cellular
OCR, elevated the glycolysis rate and NADH, reduced
cellular pH, ATP production, NAD"* and NAD"/NADH
ratio (Fig. 6). Conversely, CAEA significantly reversed
the effects of ISO on cellular glycolysis rate, pH, ATP
production, NAD*, NADH and NAD'/NADH ratio,
which were 1.23-fold, 83.3 %, 87.3 %, 92.9 %, 1.17-fold
and 79.2 % of control group, respectively (Fig. 6). The
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preservation of cellular oxidative phosphorylation and
the alleviation of glycolysis by CAEA in HL-1 cells
exposed to ISO could lead to cellular ATP and redox
state restoration.

CAEA preserved cardiac bioenergetics in isoproterenol
induced cardiac dysfunction is sirtuin dependent

CAEA did not change the SIRT1 and SIRT3 expression
levels compared to the control group. However, the
decline of SIRT1 and SIRT3 activity in the ISO mouse
group was preserved in the ISO + CAEA group, which
were elevated from 67.7 % to 82.5 % and from 68.5 % to
83.6 % of the control group, respectively (Fig. 7a). The
increase in lipid peroxidation and HIF-1la expression in
the ISO group (1.65-fold, 2.1-fold of control group) was
significantly reduced in the ISO + CAEA group (1.23-fold,
1.4-fold of control group) (Fig. 7bcd). When sirtuin
was inhibited by nicotinamide, the CAEA protective
effects, including lipid peroxidation, HIF-la expres-
sion, lactate contents, LVEF and ATP production, were
all abolished (Fig. 7b ~ h). In summary, the CAEA alle-
viating effects of ISO induced cardiac injury were sir-
tuin dependent.

Discussion

We demonstrated that CAEA alleviates cardiac remodel-
ing and improves cardiac functions in murine ISO
induced HF. CAEA recovered the SIRT1, SIRT3 activity,
and MnSOD expression and downregulated HIF-la
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expression, leading to a reduction in oxidative stress,
preserving oxidative phosphorylation, cardiac bioener-
getics, and cardiac function.

Cardiac ATP status is linked to cardiac ventricular per-
formance [52]. Normally, two thirds of the ATP hydroly-
sis in cardiomyocytes is utilized for the contractile
apparatus while the rest is used for the ion pumps to
maintain the cellular ion concentrations [19]. Cardiac
energy is impaired in HF [10, 13, 18, 19, 53, 54]. Elevated
catecholamines given to compensate for cardiac dysfunc-
tion in HF may do more harm than good and lead to a
deterioration in cardiac bioenergetics [13, 55, 56]. Mito-
chondria are responsible for ATP production through
oxidative phosphorylation. Several studies have shown
that cardiac ETC is impaired and is accompanied with

an increase in mitochondrial ROS generation in HF
[20, 23, 24, 32, 57, 58]. Collectively, catecholamine has
been shown to cause bioenergetics impairment in HF
[10]. Our present study shows that continuous ISO
stimulation results in cellular oxidative stress, cardiac
remodeling, ETC impairment, mitochondrial super-
oxide elevation, cardiac bioenergetics alteration, and fi-
nally cardiac function deterioration.

Our present study shows that CAEA has anti-
oxidative properties. CAEA recovered MnSOD expres-
sion and activity in mice subjected to ISO, subsequently
alleviated cardiac oxidative stress, preserved cellular oxi-
dative phosphorylation, cardiac energy, and cardiac func-
tion. The cardioprotective effect of CAEA was blocked
by nicotinamide, inferring a sirtuin-dependent MnSOD
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restoration. This is in line with a previous study report-
ing a sirtuin-dependent MnSOD enhancement in AC5
knockout mice [59]. In view of the fact that some gen-
eral antioxidants fail to treat HF, subcellular compart-
ment signaling is believed to be the target for future
drug development [26]. SIRT1 is found mostly in the
nucleus and cytoplasm while SIRT3 is predominantly in
the mitochondria [35, 36]. CAEA restored both SIRT1
and SIRT3 activity, and reduced cellular and mitochon-
drial oxidative stress. Hence, CAEA is a potential thera-
peutic candidate for preventing catecholamine-induced
cardiac dysfunction during HF progression.

HIF-1a is a protein that regulates hypoxia-regulated
gene expression to mediate cell adaption to low oxygen
circumstances [60, 61]. ISO injections in rats have been
shown to increase HIF-la expression [62]. In the
present study, ISO impaired cardiac ATP production
while increasing the cardiac working load. This may
have augmented HIF-la expression due to relative hyp-
oxia. HIF-1a is further stabilized by ROS or mitochondrial
dysfunction [63, 64]. In addition, HIF-1a reprograms glu-
cose metabolism from mitochondrial oxidative phosphor-
ylation to glycolysis [65]. It has shown that metabolic
remodeling in advanced HF includes elevated glycolysis,
and a reduced respiratory chain activity [18]. This is con-
sistent with the findings of the present study where ISO
elevated cardiac HIF-la expression, and the glycolysis
rate. Hence, HIF-1a may be the missing link between oxi-
dative stress and the metabolic shift seen in HEF, resulting
from chronic catecholamine stimulation.

CAEA reversed the HIF-1a elevation caused by ISO,
which may result in the preservation of the cellular
redox state. NAD'/NADH ratio represents the cellular
redox state [18]. Through mitochondrial oxidative
phosphorylation (OXPHOS), NADH produced by gly-
colysis is normally shuttled into the mitochondrial to
generate ATP, H,O, CO, and NAD" that are shuttled
back into the cytoplasm, maintaining the cellular and
mitochondrial NAD*/NADH ratio [18]. Hence, mito-
chondrial OXPHOS is essential to maintain the cellular
redox state. Studies have shown that HIF-1a increases
anaerobic glycolysis accompanied with lactate accumu-
lation. A prolonged lactate accumulation inhibits NAD*
regenerated from NADH, which leads to a decline in
the NAD"/NADH ratio [18, 65]. In addition, a low
NAD*/NADH ratio has been shown to enhance HIF-1a
mediated mitochondrial OXPHOS inhibition that could
cause a failure in the preservation of the cellular redox
state [18, 66, 67]. These are compatible to the findings
in the present study where CAEA restored mitochon-
drial OXPHOS, reduced HIF-1a expression and lactate
content, and maintained cellular redox state in mice
during chronic ISO treatment. Being NAD"-dependent
deacetylases, the maintenance of sirtuins activity in the
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present study may be cooperatively by the preservation
of intracellular NAD".

Study limitations

Our study does not provided a reason as to why CAEA
was superior to caffeic acid in its cardioprotective effects
on ISO-induced cardiac dysfunction. The mechanisms of
the cardioprotective differences between CAEA and caf-
feic acid are planned for future studies.

Conclusion

Our study shows that CAEA triggers intrinsic anti-
oxidants in the cardiomyocyte, thus preventing oxidative
stress-induced heart failure. CAEA also preserved the
cardiac bioenergetic functions by oxidative phosphoryl-
ation restoration, HIF-1a expression reversal and cellular
redox state maintenance. These findings suggest that the
regulation of cardiac bioenergetics by SIRT1 and SIRT3
could increase heart tolerance to chronic stress and pre-
vent catecholamine-induced cardiac dysfunction during
HF progression.
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