
REVIEW Open Access

Monosodium glutamate-induced oxidative
kidney damage and possible mechanisms:
a mini-review
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Abstract

Animal studies suggest that chronic monosodium glutamate (MSG) intake induces kidney damage by oxidative
stress. However, the underlying mechanisms are still unclear, despite the growing evidence and consensus that
α-ketoglutarate dehydrogenase, glutamate receptors and cystine-glutamate antiporter play an important role in
up-regulation of oxidative stress in MSG-induced renal toxicity. This review summaries evidence from studies into
MSG-induced renal oxidative damage, possible mechanisms and their importance from a toxicological viewpoint.

Keywords: Monosodium glutamate, Kidney, Oxidative stress, Glutamate receptors, α-Ketoglutarate dehydrogenase

Introduction
Monosodium glutamate (MSG) is a commonly-used
additive in processed food and Asian cuisine to increase
palatability. However, several studies in animals have
shown that MSG is toxic to the various organs such as
the liver, brain, thymus, and kidneys [1–3]. Published
data indicate that renal fibrosis is associated with the
chronic consumption of MSG [4] and oxidative stress is
the main cause of kidney injury [5].
Oxidative stress is caused by the excessive production

or a decreased elimination of free radicals in cells, the ma-
jority of which are oxygen radicals and other reactive oxy-
gen species (ROS) [6]. Nutrition metabolism and several
extracellular and intracellular factors such as hormones,
cytokines, and detoxification processes contribute to the
oxidative stress [7–9]. Therefore, excessive renal metabol-
ism of glutamate as in chronic MSG intake can be a
source of ROS. Decreased levels of major anti-oxidant
enzymes and increased lipid peroxidation have been
demonstrated in the kidneys of chronic MSG-exposed rats
[10, 11]. Also, high doses of glutamate have been shown
to induce significant toxicity in renal culture cells [12].
The abundance of long-chain polyunsaturated fatty

acids in the composition of renal lipids makes kidney

susceptible to damage by ROS [13].This makes kidney tis-
sues prone to damage by different mechanisms such as
the promotion of lipid peroxidation, protein modification,
and DNA damage, leading to cell death [14–16]. Accord-
ingly, the involvement of ROS has been reported in glom-
erular, tubular, and tubulo-interstitial alterations [17, 18].
A host of studies have explained glutamate-induced oxi-

dative damage in tissues like brain or neurons, where α-
ketoglutarate dehydrogenase, glutamate receptors and
cystine-glutamate antiporter are the vital players [19–
21].These molecules can contribute to the oxidative stress
through, different mechanisms but little is known about
their involvement in MSG-induced renal oxidative stress.
The increased level of α-ketoglutarate dehydrogenase has
been found in the kidney of MSG-fed rats [5] and accord-
ingly, a strong consensus is being developed against α-
ketoglutarate dehydrogenase, glutamate receptors, and
cystine-glutamate antiporter for their potential role in the
MSG-related renal oxidative stress. The purpose of this
short review is to outline MSG-induced oxidative kidney
damage and possible mechanisms.

Review
MSG-induced kidney damage
The association between dietary factors, including MSG
and the risk of kidney disease, has been hypothesized in
numerous studies. The kidneys are highly sensitive to is-
chemia, toxic insults, and other chemicals. As such,
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processes leading to direct or indirect disturbances of
renal cell energy metabolism will result in cell injury and
acute renal insufficiency [22].
A summary of chronic MSG-induced renal alterations

is illustrated in Fig. 1. MSG can induce changes in the
renal cytoarchitecture, increase glomerular hyper-
cellularity, infiltration of inflammatory cells in the renal
cortex, edema of tubular cells, and eventually degener-
ation of renal tubules [10, 11, 23]. Although infiltration
of inflammatory cells points towards a pathology, the
exact pathophysiology is not fully understood. Cellular
dysfunction is considered as an important cause of the
subsequent development of most of the morphological
alteration, regardless of the toxic principle acting upon
the kidney. Therefore, ultra-structural examination of
the kidney in experimental models with chronic MSG
treatment could contribute to a better understanding of
the mechanism of derangements during renal injury.
Experimental evidence of renal damage mediated by

chronic MSG intake will be discussed further under oxi-
dative stress, and urolithiasis, and interstitial fibrosis.

Oxidative stress
The formation of ROS in the kidney exposed to MSG
was seen as a major contributor to their nephrotoxic ef-
fects leading to cellular and functional damage [24].
MSG supplementation either by injection or oral intake
has been shown to alter renal antioxidant system
markers, including lipid peroxidation byproducts and
kidney function in rats [10, 24]. Paul et al. (2012) found
reduced activities of superoxide dismutase, catalase,
glutathione-S-transferase and glutathione (GSH) in the

kidney after MSG administration [10]. They also re-
ported that markers for lipid peroxidation such as
malondialdehyde (MDA) and conjugated dienes were in-
creased in MSG treated renal tissue. It is possible that
MSG leads to the excessive production of free radicals
and endogenous antioxidants are insufficient to meet the
demand. The up-regulation of heat shock cognate 70, an
indicator of oxidative stress, and the down-regulation of
glutathione-S-transferase in MSG-treated kidneys fur-
ther strengthens the findings [5]. Moreover, some studies
have found the ameliorating effect of vitamin C, E, and
quercetin on MSG-treated kidneys [2, 10]. The mechan-
ism whereby these antioxidants exert such effects is yet
to be fully elucidated. However, these antioxidants do
seem to play a key role against renal inflammatory re-
sponses through a diminution of the activity of inflam-
matory enzymes [25] and cytokines secretion, or by
inhibiting the activity of NF-ĸB [26, 27].
Furthermore, studies using thiol antioxidants such as N-

acetylcysteine (NAC) and lipoic acid have demonstrated
therapeutic protection against glutamate-induced neurotox-
icity [28, 29]. Although there is no experimental evidence
available supporting the protective effect of these molecules
in MSG-induced renal oxidative toxicity, NAC has been
shown to reduce kidney MDA levels in a diabetic mouse
model [30]. In cultured human proximal tubular epithelial
cells, NAC reduced lipid peroxidation and maintained
mitochondrial membrane potential, thereby preventing
apoptosis following hydrogen peroxide administration [31].
Also, lipoic acid has been effective in protecting kidneys
from oxidative stress and mitochondrial dysfunction [32].
In a different context, the ameliorating effect of selenium
on MSG-induced testicular oxidative toxicity has been
demonstrated [33]. These important findings add further
prospective to the therapy of MSG-induced renal oxidative
stress using antioxidants.

Urolithiasis and interstitial fibrosis
Obstructive nephropathy due to chronic dietary MSG
has been reported in adult rats probably due to alkaline
urine and decreased levels of stone inhibitors such as
magnesium and citrate in the urine [4]. The mechanism
behind MSG-caused urine alkalization is still unknown
but this effect was first reported by de Groot et al.
(1988) [34]. It is likely that MSG-treated animals may
generate higher catabolic products of glutamate in kid-
ney cells and its carbon skeleton is converted into car-
bon dioxide and then to bicarbonate anions [35, 36].
The generated bicarbonates are then absorbed back into
the blood circulation and ultimately to the kidneys for
excretion of the extra-alkali, resulting in alkaline urine
[37, 38]. Alkaline urine can influence the kidneys cap-
acity in terms of secreting or reabsorbing metabolites
that can contribute to stone formation, whereas

Fig. 1 An outline of chronic MSG-induced renal alterations in the
kidney. Alkaline urine and oxidative stress due to chronic MSG intake
may damage the kidneys by unknown mechanisms. Urolithiasis can
also contribute to the interstitial fibrosis by producing inflammatory
cytokines and ROS
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inhibitors of stone formation play a major role in natural
defense. An elevated ion activity product of calcium
phosphate in the alkaline urine of MSG-fed mice indi-
cates the risk of calcium-phosphate stone formation [4].
Furthermore, ROS can cause damage to the cells lead-

ing to cell death and formation of membrane-bound ves-
icles which support crystal nucleation [39, 40]. With this
background, hydronephrosis with major changes such as
fibrosis in the tubulo-interstitial compartment has been
reported in MSG-treated rat kidneys by Sharma et al.
(2013) [4]. It is important to note here that 2/10 of
MSG-treated animals demonstrated a presence of hydro-
nephrosis and 3/10 with renal stones in the study. How-
ever, all of the MSG treated rats had significantly high
levels of renal fibrosis compared to the controls, suggest-
ing the fibrotic effect of MSG, not merely renal obstruc-
tion. It is difficult to explain these distinct findings among
the MSG-treated animals but the individual factors could
have played a role. In a different experiment, our group
was unable to notice the altered renal function or stones
in rats at 1 month, 3 months, and 6 months of MSG treat-
ment (unpublished data). However, altered kidney func-
tion and pathology but not the renal stones were reported
by Paul et al. (2012) after 6 months of oral MSG treatment
with higher dose. This indicates that the dose and dur-
ation of MSG exposure are vital for its nephrotoxic effects
including stones and obstruction.
The mechanical disturbance resulting from complete

ureteral obstruction causes tubular injury, resulting in a
pro-inflammatory cytokines and tubulo-interstitial fibro-
sis [41]. Accordingly, in an experiment with a ureteral
obstructed rat model, the investigators found increased
4-hydroxynoneal (4-HNE) stain for ROS products in the
renal tubulo-interstitial compartment [42]. It can there-
fore be surmised that urolithiasis and oxidative stress
due to MSG can cause fibrosis in the kidney, as ROS
can induce the transformation of fibroblasts to myofi-
broblast [43]. Tubular interstitial fibrosis is highly asso-
ciated with the progress of renal diseases [44].

MSG-induced ROS generation in kidney
The possible mechanisms of MSG-induced ROS produc-
tion in the kidney are illustrated in Fig. 2. ROS arises as
a by-product of aerobic metabolism [45]. The main sites
of ROS production are the mitochondrial electron trans-
port system, peroxisomal fatty acid, cytochrome P-450,
and phagocytic cells [46, 47]. One study suggested that
the mitochondrial electron transport chain is a major
source of ROS in oxidative glutamate toxicity [48] and
that extracellular glutamate level increases the formation
of hydroxyl radicals [49]. Most cellular ROS arise due to
leakage of electrons from the mitochondrial respiratory
chain. In normal physiological conditions, ROS pro-
duced as a byproduct of metabolic processes are

completely inactivated by cellular and extracellular
defense mechanisms. Nutrient metabolism can affect the
production of oxidative stress in the kidney by altering en-
ergy metabolism. In this scenario, α-ketoglutarate de-
hydrogenase (α -KGDH) is the primary site of the control
of the metabolic flux through the Krebs cycle [50].

α-Ketoglutarate dehydrogenase: an ROS generator
A recent study has shown that increased activity of α-
KGDH is related to the glutamate-stimulated ROS
production in rat kidneys [5]. According to this study,
glutamate contributes fuel to the Krebs cycle and modu-
lates the redox state of the cell. High glutamate concentra-
tion may increase the mitochondrial proton gradient as a
result of the over production of the electron donor by the
Krebs cycle, which may in turn increase the production of
mitochondrial superoxide. This proposed mechanism is
supported by evidence from brain tissues where α-KGDH
is a potential site of ROS generation against glutamate
[21]. The E3 subunit (lipoamide dehydrogenase) of α-
KGDH can activate oxygen, resulting in the production of
superoxide and/or hydrogen peroxide [51–53].
α-KGDH is a key and arguably the rate-limiting en-

zyme in the Krebs cycle. The enzyme is inhibited by its
own product, succinyl-CoA, or by a high NADH/NAD+

ratio, as well as by a high dihydrolipoate/lipoate ratio,
thereby playing an important role in cellular redox regu-
lation [52, 54]. However, an increased level of succinyl
CoA ligase in the MSG-treated kidney tissue [5] may
favor the activation of α-KGDH by consuming succinyl
CoA, an inhibitor. In addition, during the oxidative
stress a segment of the Krebs cycle is maintained by glu-
tamate through α-ketoglutarate [55]. Increased levels of
glyceraldehyde-3-phosphate dehydrogenase as reported

Fig. 2 A proposed model of MSG-induced ROS production in the rat
kidney. Glutamate upon chronic MSG exposure may raise the activity
of α-ketoglutarate dehydrogenase, a potential ROS generator.
Additionally, an increased intracellular calcium level via glutamate
receptors can stimulate free radical generation and lipid peroxidation.
Inhibition of cystine uptake leads to decreased GSH levels that may
further promote ROS-mediated renal cell damage
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in MSG treated kidney [5] can also cause oxidative stress
because isolated glyceraldehyde-3-phosphate dehydro-
genase has been shown to catalyze NADH-dependent
superoxide production [56]. Notably, NADH is one of
the regulators for the activity of α-KGDH. It is possible
that the excessive metabolism of glutamate in the kidney
wards off the barriers to α-KGDH and thus changes the
redox state of the cell. Further studies exploring the rela-
tionship between energy metabolism and oxidative stress
in MSG-treated kidneys are necessary to elucidate this
phenomenon.

Glutamate receptors
Most studies in the literature link oxidative stress and tis-
sue damage through glutamate receptor (N-methyl –D-
aspartate, NMDA) via calcium (Ca2+) in MSG-induced
renal toxicity. There are two categories of receptors avail-
able to glutamate: ionotropic and metabotropic receptors
[57]. Nearly all of the known glutamate receptors and
many of their interacting proteins have been detected in
the kidney [58–60]. Most of the functional studies of the
kidney have examined NMDA receptors, a subtype of
ionotropic receptor, and group 1 metabotropic glutamate
receptors (mGluRs).
NMDA receptors are Ca2+ favoring glutamate gated

ion channels, whereas mGluRs are coupled to G protein
cascades [19, 61]. The functional significance of these re-
ceptors for normal kidney physiology is not well under-
stood. But, increased NMDA receptor subunit NR1 and
NR2C expression correlates with the renal damage in a
rat model of gentamicin nephrotoxicity [62]. Further-
more, a study applying NMDA receptor agonists (glycine,
glutamate) and antagonists (MK 801, CPP) in renal cul-
ture cells has demonstrated that an excessive stimulation
or blockade of the renal NMDA receptor results in cell
death [12]. Sustained activation of these receptors induces
changes in cellular Ca2+ dynamics that can trigger numer-
ous cellular reactions, including the activation of nitric
oxide synthase and protein kinase C [63, 64]. These in
turn can activate free radical generation and lipid peroxi-
dation [65], leading to cell damage. This mechanism of
excitotoxicity has been described not only in neurons but
also in lung [19, 64]. However, there is no direct evidence
in the literature of studies investigating the role of glutam-
ate receptors against MSG-induced renal cell damage; ex-
periments with the blockade of NMDA receptor to
prevent MSG-induced toxicity could be conclusive.

Cystine-glutamate antiporter
The cystine-glutamate antiporter, designated as system xc

-,
exchanges extracellular cystine for intracellular glutamate
in a variety of cells [66]. The uptake of cystine that results
from cystine-glutamate exchange is critical in maintaining
the levels of glutathione, a critical antioxidant [67]. Under

the condition of oxidative stress, the transport activity of
this carrier appears to be up-regulated [68, 69].
Considering the fact that the system xc

- is strongly
expressed in the kidney [70] and the decreased GSH levels
are prominent in MSG-induced renal toxicity, our group
investigated the expression level of system xc

- in acute and
chronic MSG-treated kidney. However, no significant
changes were observed at the mRNA level (unpublished
data). Notably, there are other minor transporters for cyst-
ine intake into the cell as well. In another study, marked
inhibition of cystine uptake by glutamate in the five-day-
cultured renal tubule cells of rats but not in uncultured
cells has been observed [71]. Despite these findings, more
studies are necessary to find the possible involvement of
cystine-glutamate antiporter in MSG-induced oxidative
kidney damage. It is important to note here that glutamate
toxicity in the neuronal cells involves the inhibition of
system xc

-, leading to oxidative stress [20].

Conclusions
During the last decade it became apparent that the
chronic intake of MSG has potential effects on the periph-
eral organs such as the kidneys. Reduced antioxidant en-
zymes, increased lipid peroxidation, and tubulo-interstitial
fibrosis brought on by high MSG intake strongly support
the theory that oxidative stress is central to MSG-induced
renal toxicity, with α-KGDH as a key player. Also, there is
now evidence that excessive NMDA receptor activation is
toxic for renal cells. However, a more clear association has
to be established between α-KGDH, glutamate recep-
tors, cystine-glutamate antiporter, and chronic MSG in-
take in order to provide a more comprehensive
mechanism of renal oxidative stress. Approaches utilizing
high throughput in vitro methods are crucial.
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