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Abstract

Background: Increased circulating levels of endoglin® endothelial microparticles (EMPs) have been identified in
several cardiovascular disorders, related to severity. Endoglin is an auxilary receptor for transforming growth factor 3
(TGF-B) important in the regulation of vascular structure.

Results: We quantified the number of microparticles in plasma of six patients with chronic thromboembolic pulmonary
hypertension (CTEPH) and age- and sex-matched pulmonary embolic (PE) and healthy controls and investigated the role
of microparticle endoglin in the regulation of pulmonary endothelial function in vitro. Results show significantly increased
levels of endoglin™ EMPs in CTEPH plasma, compared to healthy and disease controls. Co-culture of human
pulmonary endothelial cells with CTEPH microparticles increased intracellular levels of endoglin and enhanced
TGF-B-induced angiogenesis and Smad1,5,8 phosphorylation in cells, without affecting BMPRII expression. In an
in vitro model, we generated endothelium-derived MPs with enforced membrane localization of endoglin. Co-culture

endothelial damage.

of these MPs with endothelial cells increased cellular endoglin content, improved cell survival and stimulated
angiogenesis in a manner similar to the effects induced by overexpressed protein.

Conclusions: Increased generation of endoglin® EMPs in CTEPH is likely to represent a protective mechanism
supporting endothelial cell survival and angiogenesis, set to counteract the effects of vascular occlusion and
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Background

Chronic  thromboembolic ~ pulmonary  hypertension
(CTEPH) is one of the leading causes of severe pulmonary
hypertension (PH). In CTEPH, the formation of secondary
nonresolving thromboemboli following the acute phase of
thrombotic pulmonary embolism, leads to the obstruction
of the pulmonary vascular bed followed by vascular remod-
elling and right heart hypertrophy [1, 2]. Endothelial dys-
function and defective thrombus neovascularization
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accompanied by a decrease in the expression of factors in-
volved in proliferative pathways of vascular cells, such as
bone morphogenetic protein receptor type 2 (BMPR2) or
TGEF-B1, are thought to play a key role in the pathogenesis
of CTEPH [3].

Circulating plasma microparticles (MPs) have been im-
plicated in the pathogenesis of numerous cardiovascular
disorders including pulmonary arterial hypertension
(PAH), but their cellular origin and associated specific
roles have not been fully elucidated [4]. MPs are <1 um
membrane vesicles released after cell activation or apop-
tosis [5-7]. Depending on the size, formation and release
mechanism, microparticles can be divided into 2 groups:
exosomes and microvesicles. Exosomes (40-100 nm in
diameter) derive from multivesicular bodies, which are
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compartments of the endosomal system, while microvesi-
cles (100-1000 nm in diameter) derive from plasma mem-
brane via shedding [8]. MPs harbor membrane proteins of
the parent cells and contain intracellular signalling mole-
cules such as microRNA or DNA fragments [7, 9].

Increased levels of endoglin® (CD105") endothelium-
derived MPs (EMPs) can be detected in blood from re-
modelled pulmonary arterial hypertensive (PAH) lung
[10] and occluded coronary arteries [11, 12]. Endoglin is
an ancillary receptor for several TGF-p superfamily li-
gands, including bone morphogenetic proteins (BMPs)
[13]. Defective signaling of TGF-p family of proteins is
common to most forms of PH [14], including CTEPH
[2]. Vascular injury, inflammation and hypoxia, in par-
ticular in combination with TGF-f are strong inducers
of endoglin expression [13]. Ectopic expression of endo-
glin promotes endothelial cell proliferation and inhibits
hypoxia-induced endothelial cell apoptosis via TGF-p/
Alk-1 signaling [15, 16]. Inhibition of endoglin signalling
is associated with pulmonary vascular remodelling in
pulmonary hypertension. Adult Eng”~ mice spontan-
eously develop signs of pulmonary hypertension that are
attributable to uncoupled eNOS activity and reactive
oxygen species (ROS) production causing progressive
loss in pulmonary vascularity and increased musculariza-
tion of arterioles [17]. Interestingly, circulating levels of
a soluble, truncated form of endoglin (Sol.Eng) are ele-
vated in PAH and preeclampsia, hypercholesterolemia,
atherosclerosis and acute myocardial infarction [17-19].
It has been postulated that Sol.Eng inhibits TGF-pR2-
dependent signalling by binding circulating TGF-p and
attenuating vasorelaxation [20].

We hypothesized that CTEPH MPs can alter the func-
tion of healthy human pulmonary endothelial cells leading
to changes that may affect disease progression. To address
this hypothesis, we compared the effects of MPs isolated
from plasma of CTEPH patients, pulmonary embolic pa-
tients and healthy individuals, on pulmonary endothelial
survival, proliferation and angiogenesis in vitro. The effect
of microparticle endoglin on endothelial function was
studied with the use of microparticles from plasma and
endothelial cells overexpressing recombinant endoglin.

Methods

Blood collection and patient information

Venous blood samples were obtained with local ethics com-
mittee approval and informed written consent from 6
CTEPH patients, 6 pulmonary embolic (PE) patients and 4
healthy individuals with no history of PE or PH (Table 1).

Isolation and characterization of microparticle fraction
from human plasma

25 mL of systemic venous blood was collected in the
presence of 3.8 % sodium citrate and subjected to
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Table 1 Patient characteristics

Healthy CTEPH PE

N=4 N=6 N=6
Males/females 2/2 2/4 2/4
Age, years 54 (42-60) 68 (52-81) 68 (45-91)
mPAP, mmHg 42 (30-57)
Warfarin/anticoagulants - 6 6
Ca channel blockers - 1 1
statins 2 2
paracetamol/aspirin 3 4
ET-1 antagonists 5
Diuretics 4 1
ACE inhibitors 2 1
Angiotensin Il antagonists - - 1
[-blockers - 1 4

sequential centrifugation at 1,500 g for 15 min, 5,000 g
for 5 min, 10,000 g for 30 min and 200,000 g for 60 min.
PKH26 Red Fluorescent Cell Linker Kit (Cat# MINI26
and PKH26GL, Sigma, USA) was used to label the MPs
according to the manufacturer’s protocol. In order to
prepare MPs for the flow cytometry analysis, the mix-
tures were diluted with filtered PBS (1:3) and 3 pm
latex polystyrene beads (Ref# LB30-1ML, Sigma) were
added. Phycoerythrin-conjugated anti-human VE-cadherin
(CD144, cat. no c-1449-80, eBioscience, USA) was used to
label endothelium- derived MPs. Human Annexin 5-FITC
antibody (cat. no BMS306F1/20, eBioscience) was also used
to label the phosphatidylserine-rich MPs.

Scanning electron microscopy

Human pulmonary artery endothelial cells (HPAECs)
were plated on coverslips and incubated with purified
MP fraction for 30 min. The cells were then fixed in 4 %
formaldehyde in PBS for 15 min, washed with PBS and
dehydrated by subsequent incubation in 20 %, 50 %,
70 %, 80 %, 90 % and 100 % ethanol; 5 min in each solu-
tion. The cells were transferred into hexamethyldisila-
zane (HMDS) for 5 min and left to air dry. The samples
were gold-coated for one minute at 20 mA and analysed
with laser scanning microscope JEOL JSM-5610LV
(JEOL, Japan) at 15 KV in secondary imaging mode
(SEI) and magnified images were taken with Helios 600
NanoLab (FEI Electron Microscopes, USA).

Quantification of microparticles by flow cytometry
Fluorescently labelled MPs were analysed with FACSCa-
libur flow cytometer (BD Biosciences, USA). MP con-
centration in plasma was calculated from the equation:
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Estimated .
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(203111)/(no. of beads counted) * (no. of MP counted)  x

MP/mL of plasma

3 pum polystyrene beads were used to estimate the con-
centration of MPs per mL of plasma. 203111 is a con-
stant, provided by the manufacturer. The number of
beads counted is the number of events identified as
beads due to their size and characteristic density plot.
Number of MP counted is the number of events de-
tected as MPs due to positive staining. X is the dilution
factor.

Quantification of microparticles by laser light scattering
spectroscopy

0.3 mL of the MP suspensions were analysed with the
Nanosight LMI10-HSGFT14 Nanoparticle Analysis
System (Nanosight, UK), using Nanoparticle Tracking
Analysis (NTA) software (Nanosight).

Quantification of endoglin in microparticle fractions
Endoglin was quantified in MP fractions using Human
Endoglin/CD105 Quantikine ELISA Kit (R&D), accord-
ing to the manufacturer’s protocol.

Cell culture

HPAECs (PromoCell GmbH, Germany) were cultured in
endothelial cell growth medium 2 (ECGM2) (PromoCell
GmbH, Germany) containing 2 % foetal calf serum,
growth factor supplement mix and penicillin/strepto-
mycin in tissue culture dishes coated with 10 pug/mL bo-
vine fibronectin (Sigma) in a humidified incubator (5 %
CO,) at 37 °C.

Endoglin expression vectors

The pDisplay-HA-L-endoglin expression vector contain-
ing the HA-tagged human full length (L)-endoglin has
been described in [21]. pDisplay™ (Invitrogen, USA) is a
5.3 kb mammalian expression vector that allows display
of proteins on the cell surface. Proteins expressed from
pDisplay™ are fused at the N-terminus to the murine Ig
K-chain leader sequence, which directs the protein to the
secretory pathway. The pCEXV-HA-L-endoglin expres-
sion vector contains the HA-tagged full length human
L-endoglin, including its leader sequence and will be de-
scribed elsewhere. Empty pCEEXV vector and empty
pDisplay vector were used as transfection controls.
HPAECs were transfected using Amaxa™ Basic Nucleo-
fector™ Kit for Primary Mammalian Endothelial Cells
(Lonza, Switzerland) applying optimal Nucleofector™

Volume of plasma used (mL)

program M-003. The cells were used for experiments
18 h post-transfection.

In vitro model of MP generation

MPs were generated by an established method of serum
starvation [22]. The untransfected or transfected
HPAECs were grown in T75 flasks in 10 mL of serum-
and growth factor-depleted medium. Following 24 h in-
cubation, MPs were isolated from HPAEC conditioned
media by sequential centrifugation.

HPAEC-MP co-culture experiments

In experiments involving co-culture of HPAECs with
MPs, MPs obtained from 2 mL plasma were re-
suspended in 2 mL of culture medium and plated on
cells. Endoglin™ or VE-cadherin™ MP fractions were ob-
tained by antibody-mediated immunoprecipitation with
Dynabeads (Life Technologies). Briefly, 2 mL of MP sus-
pension was incubated o/n with 30 pL. Dynabeads linked
with 5 pg of mouse anti-human endoglin (Millipore,
USA) or mouse monoclonal anti-VE-cadherin antibody
(Santa Cruz Biotechnology). The suspension was then
placed in a magnetic holder and the supernatant was
carefully collected without disturbing Dynabeads at-
tached to the side of the tube. The beads were washed
3x in PBS. All samples (the beads, full MP fraction, VE-
cadherin™ and endoglin~ MPs) were resolved by SDS-
PAGE (30 pg protein/lane) and studied by western blot-
ting. Endoglin levels were also measured in ELISA assay,
as described above.

In co-culture experiments, HPAECs grown in 96-well
plates were incubated with MP suspension obtained
from patient plasma or from endoglin-overexpressing
HPAECs. In some experiments, TGF-$ (10 ng/mL) was
added to the cells 1 h after the addition of MPs and in-
cubated for further 1 h (smad phosphorylation) or 18 h
(cell proliferation, angiogenesis and BMPRII expression).

Immunostaining and confocal laser scanning microscope

HPAECs grown on plastic coverslips in 24-well plates
were incubated with MPs for 1-18 h, as appropriate.
The cells were then fixed in 4 % formaldehyde in PBS,
permeabilised with 0.1 % Triton X-100 and incubated
with 2 % bovine serum albumin (BSA) to block non-
specific antibody binding [23]. The coverslips were incu-
bated with 50 pL of mouse anti-endoglin monoclonal
antibody (10 pug/mL, Millipore, USA) and rabbit anti-HA
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polyclonal antibody (5 pg/mL, Santa Cruz Biotechnol-
ogy, USA) in PBS for 1 h. Coverslips were then washed
in PBS and incubated with TRITC (Tetramethylrhoda-
mine-5-(and 6)-isothiocyanate)-phalloidin (1:100, Sigma)
and Cy5-conjugated goat anti-mouse and FITC (Fluores-
cein isothiocyanate)-conjugated goat anti-rabbit antibody
(10 pg/mL, Invitrogen, USA) for 1 h, washed in PBS and
mounted in Vectashield mountant with nuclear stain
DAPI (Vector Laboratories, USA). Fluorescent confocal
images were taken using Leica TCS SP5 (Leica Microsys-
tems, Germany).

Western blotting

Following electrophoresis and protein transfer, PVDF
membranes were incubated overnight with mouse
monoclonal anti-endoglin antibody (1 pg/mL, R&D,
USA), mouse monoclonal anti-HA-probe antibody
(1 pg/mL, Santa Cruz Biotechnology, USA), mouse
monoclonal anti-VE-cadherin antibody (1 pg/mL, Santa
Cruz Biotechnology, USA), mouse monoclonal anti-
BMPRII antibody (0.5 pg/mL, R&D), mouse monoclonal
anti- B-actin antibody (0.2 pg/mL, Sigma), rabbit anti-p-
smadl,5,8 (0.5 pg/mL; Santa Cruz Biotechnology, USA)
or mouse monoclonal anti-smad 1 antibody (0.5 pug/mL;
Santa Cruz Biotechnology, USA). The membranes were
washed in Tris-buffered saline with Tween 20, incubated
with goat anti-mouse- or goat anti-rabbit polyclonal
HRP-conjugated antibodies (0.2 pg/mL; DAKO, USA)
for 1 h. Blots were developed in Luminata Crescendo
Western HRP substrate (Millipore, USA) and analysed
in BioRad ChemiDoc Imager.

Angiogenesis assay

Untransfected or transfected HPAECs were seeded on
40 pL of growth factor-reduced Matrigel (Corning™, #
354230) in a 96-well plate (14 x 10% cells per well) in
growth factor-free medium containing 0.5 % FBS, with
or without MPs (full fraction, VE-cadherin™ or endoglin”)
or TGF-P (10 ng/mL), as appropriate. Following 18 h in-
cubation, the cells were fixed in 4 % formaldehyde in PBS
and photographed under a phase contrast microscope
(Olympus IX70, Japan) equipped with a Peltier CCD cam-
era. Total tube length was calculated using Image ]
software.

Proliferation assay (MTS)

HPAECs (7 x 10? cells per well) were cultured in 96-well
plates in growth factor-free medium containing 0.5 %
EBS, with or without MPs and TGF-f (10 ng/mL), as ap-
propriate. Following 18 h incubation, cell proliferation
was measured using CellTiter 96° Aqueous One Solution
Cell Proliferation Assay System (Promega, USA). In this
assay, the conversion of MTS tetrazolium compound
into a coloured formazan product is accomplished by
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NADPH or NADH generated by dehydrogenase en-
zymes in metabolically active cells. The quantity of the
coloured formazan product determined by absorbance at
490 nm is directly proportional to the number of living
cells and commonly associated with cell proliferation
and migration [24].

Apoptosis assay

Untransfected or transfected HPAECs were cultured
overnight in 96-well optical bottom plates at cell density
of 7x10% cells per well in growth factor-free medium
containing 0.1 % foetal calf serum, with or without MPs,
as appropriate. 100 pL of DiOC7(3) (3,3'-Diheptyloxa-
carbocyanine Iodide), a cell-permanent, green fluores-
cent, lipophilic dye that selectively labels the
mitochondria in live cells (1: 1000 dilution in PBS, Life
Technologies, Invitrogen, USA) was added into each
well. After 45 min incubation at 37 °C, fluorescence was
read at excitation/emission 490/525 nm in GloMax"-
Multi + Microplate Multimode Reader (Promega, USA).

Human angiogenesis microarray

The levels of pro-angiogenic cytokines in CTEPH EMP
fraction were studied with Proteome Profiler™ Human
Angiogenesis Array (R&D Systems™, # ARY007), accord-
ing to the manufacturer’s protocol. Briefly, EMPs were re-
moved from 5 x 10° CTEPH MPs fraction by Dynabeads
antibody capture, as described above. Following 3 washes
in PBS, Dynabeads with the bound EMPs were re-
suspended in 1 ml of PBS and incubated overnight with
the human angiogenesis microarray membrane. More in-
formation about the assay can be found on https://resour
ces.rndsystems.com/pdfs/datasheets/ary007.pdf.

Ethics, consent and permissions
All procedures performed in studies involving human
participants were in accordance with the ethical stan-
dards of the institutional and/or national research com-
mittee and with the 1964 Helsinki declaration and its
later amendments or comparable ethical standards.
Informed consent was obtained from all individual
participants included in the study.

Statistical analysis

All experiments were performed in triplicate or, as indi-
cated. Data was analysed using one-way ANOVA (Graph-
Pad Prism Version 6) followed by Tukey’s post-test.

Results

CTEPH patients show increased levels of endoglin®
endothelium-derived microparticles, compared with
healthy and disease controls

Electron scanning microscopy analysis confirmed vesicu-
lar appearance and sizes ranging from 0.01 to 1.5 pm of
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MPs purified from patient plasma (Fig. 1a). Flow cytom-
etry analysis revealed significantly higher number of
annexin V* PKH26" MPs in CTEPH plasma compared
to pulmonary embolic patients and healthy controls
(2.5 x 10° MPs/mL compared to 1.4 x 10° MPs/mL and
1.1 x 10° MPs/mL respectively) (Fig. 1b). The number of
endothelial (VE-cadherin®™) MPs (EMPs) in CTEPH
plasma was 7.5 x 10* EMPs/ml (~3 % of total MP frac-
tion), which was ~2-2.8-fold higher than the number of
EMPs found in control groups (Fig. 1c). MP fraction
from CTEPH patients also contained 2.5-fold higher
levels of endoglin, compared with healthy and PE con-
trols (Fig. 1d). While the levels of endoglin in CTEPH
microparticle fraction were elevated, there were no sig-
nificant differences in the total plasma levels of endoglin
between the studied groups (4.1 +0.5 ng/mL in healthy
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plasma, 3.9 + 0.4 ng/mL for CTEPH and 3.2 + 0.5 ng/mL
for PE).

CTEPH MPs stimulate endothelial angiogenesis in vitro
We further sought to establish the effect of MPs on hu-
man pulmonary endothelial function in vitro. MPs were
added to HPAEC cultures at the concentration found in
plasma and incubated for 1-18 h. Confocal microscopy
analysis confirmed that microparticles were internalised
by the cells within the first hour of incubation (data not
shown).

Co-culture of HPAECs with CTEPH microparticles in-
creased endothelial angiogenesis (tube formation) by ~2.5-
fold (P<0.001, comparison with healthy and disease
controls) and the effect was dose-dependent (Additional
file 1: Figure S1).
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Endoglin* endothelium-derived MPs (EMPs) from CTEPH
blood enhance TGF-fB-induced angiogenesis and
Smad1,5,8 phosphorylation in HPAECs

CTEPH MPs stimulated proliferation and tube forma-
tion in the untreated and TGF-p-treated HPAECs
(10 ng/mLTGE-p, 18 h incubation). The stimulatory re-
sponses were attenuated by removing endoglin* and VE
cadherin® MPs from the total MP fraction (Fig. 2a, b and
Additional file 1: Figure S2). CTEPH MPs significantly in-
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HPAECs:, likely to indicate enhanced endoglin signalling
(Fig. 2¢, d). This response was prevented by removing
endoglin® VE-cadherin® MPs from the total MP fraction
(Fig. 2d).

Microparticle-mediated transfer of membrane endoglin

facilitates the pro-angiogenic and anti-apoptotic effects
of MPs
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expression in HPAECs, while endoglin- and VE-
cadherin-depleted fractions had no significant effect
(Fig. 2e). Depleting microparticles of VE-cadherin re-
moved endoglin and vice versa, depleting microparti-
cles of endoglin removed VE-cadherin from MP
fraction (Fig. 2f and Additional file 1: Figure S3), indi-
cating that the endothelium-derived (VE-cadherin®)
MPs were the main carriers of endoglin. Preliminary
microarray analysis of CTEPH EMP fraction (n=2)
showed the presence of plasminogen activator inhibi-
tor 1 (Serpinel) and traces of urokinase plasminogen
activator (uPA) but did not detect measurable levels of
any other pro-angiogenic factors included in the assay
(Additional file 1: Figure S4).

To verify whether the membrane-bound endoglin
plays a role in MP-induced responses, we overexpressed
L-endoglin in HPAECs using the mammalian expression
vector pDisplay that allows display of this protein on the
cell surface [21]. pDisplay-HA-L-endoglin vector con-
tains the HA-tagged full length human L-endoglin with
the leader sequence of Igk-chain. To investigate poten-
tial role of the membrane localization of L-endoglin, we
also used another expression vector, pCEXV-HA-L-
endoglin that encodes the own leader sequence of endo-
glin. Empty vectors were used as transfection controls.

Recombinant endoglin localised in F-actin-rich mem-
brane protrusions along the leading edge of migrating
endothelial cells (Fig. 3a), similar to the localization ob-
served in human prostate cancer cells [25]. Transfection
of cells with pDisplay-HA-L-endoglin and pCEXV-HA-
L-endoglin (~70 % transfection efficiency) increased
endoglin levels by ~2-fold (Fig. 3b). Overexpression of
pDisplay-HA-L-endoglin or pCEXV-HA-L-endoglin did
not affect cell proliferation but stimulated tube for-
mation and inhibited starvation-induced apoptosis in
HPAECs (Fig. 3c-f), with pDisplay-HA-L-endoglin hav-
ing a more pronounced effect.

We further aimed to explore whether endoglin effects
can be passed onto cultured cells by MPs generated
from endoglin-overexpressing HPAECs. To generate
MPs, L-endoglin overexpressing HPAECs were starved
for 24 h in serum- and growth factor-free media. The
cells produced an average of 0.2-0.32 x 10° MPs/mL of
medium. These microparticles were then incubated with
HPAECs in a similar manner to plasma-derived MPs.
Confocal microscopy analysis documented a transfer of
HA-endoglin-bearing MPs to the recipient cells (Fig. 4a).
Incubation of HPAECs with microparticles generated by
pDisplay-HA-L-endoglin-overexpressing cells inhibited
starvation-induced apoptosis and significantly increased
endothelial tube formation in HPAECs, while control
MPs (generated by HPAECs transfected with an empty
pDisplay vector) did not have a significant effect
(Fig. 4b-e).
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Discussion

We are first to demonstrate that CTEPH patients show
increased levels of circulating endoglin® EMPs compared
with healthy and pulmonary embolic control groups.
Moreover, we show that these microparticles can evoke
pro-survival and pro-angiogenic responses in primary
human pulmonary endothelial cells.

MP-mediated transfer of membrane-associated recep-
tors has been documented in a variety of cell types [26].
MPs may fully or partially fuse with the target cell,
allowing for a complete or selective transfer of contents
including membrane and cytosolic proteins, bioactive
lipids, or even whole cell organelles [26—28]. The mech-
anism, depending on MP origin and cell type, is thought
to involve integrin a4 or annexin V/phosphatidylserine
signalling [26]. The role of microparticles in disease may
be beneficial or detrimental, depending on the cellular
source. For instance, MPs from animals with hypoxia-
induced PH inhibit endothelium-dependent vasoreactiv-
ity of isolated pulmonary arteries and decrease nitric
oxide production in isolated pulmonary endothelial cells
[29]. On the other hand platelet or T-cell-derived MPs
are thought to have a pro-proliferative and pro-
angiogenic effects [30]. Our results support the notion
that MPs secreted by endothelial cells in conditions of
metabolic stress promote endothelial repair and counter-
act endothelial damage [31].

Pro-proliferative and pro-angiogenic effects of CTEPH
EMPs were particularly evident in the presence of exogen-
ous TGF-B. This may be explained, at least in part, by
endoglin-mediated increase in TGF-B-induced smadl,5,8
phosphorylation. TGF-f regulates cell proliferation, differ-
entiation, migration, synthesis of the extracellular matrix
[32, 33] and promotes endothelial cell survival by activat-
ing ALK1/Smad 1/5/8 signalling [15, 34]. Interestingly, a
weak stimulatory effect was also observed in the absence
of exogenous TGEF-p, likely to result from the effects in-
duced by other components of EMPs. For instance, EMPs
generated by apoptotic endothelial cells contain miR-126,
known to promote endothelial angiogenesis [35, 36]. In
addition, CTEPH EMP fraction contained plasminogen
activator inhibitor 1 (Serpin E1) and traces of urokinase
plasminogen activator (uPA). Serpine 1 is a serine pro-
tease inhibitor that stabilizes capillary vessel structure,
regulates cell invasive behaviour and enhances TGF-f
signaling [37, 38].

Reparative actions of CTEPH MPs may be attributed
to endothelial endoglin® MP fraction but the precise
mechanism will require further studies. Confocal
microscopy analysis documented the presence of
microparticle-derived HA-tagged L-endoglin in recipi-
ent endothelial cells, suggesting a possibility of a func-
tional receptor transfer. Recycling of membrane
receptors carried by microparticles has been shown in
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Fig. 3 L-endoglin induces pro-survival and pro-angiogenic responses in HPAECs. a Cellular localization of endoglin and F-actin in HPAECs transfected
with pDisplay-HA-L-endoglin and pCEXV-HA-L-endoglin following an overnight incubation. The arrows in (a) point to the lamellipodia where
recombinant endoglin co-localises with F-actin. In the merged image, F-actin is red, endoglin is green and HA-tag is blue. Bar = 10 um. b Corresponding
western blot shows expression levels of HA-tagged endoglin, total endoglin and B-actin in HPAECs transfected with empty pDisplay,
pDisplay-HA-L-endoglin and pCEXV-HA-L-endoglin, as indicated. ¢ Cell proliferation; (d) cell viability and (e) angiogenesis (tube formation)
in HPAECs overexpressing pDisplay-HA-L-endoglin and pCEXV-HA-L-endoglin or transfected with control empty vectors, as indicated. In (d)
cells were serum-starved (0.1 % serum; 18 h), while the non-starved (incubated with full culture media) cells served as a positive (+) control. In (e)
HPAECs were cultured in growth factor-depleted and serum-reduced (0.5 % serum) media. *P < 0.05; ***P < 0.001, comparisons with vector controls;

#P < 0.05, comparison with pDisplay-L-endoglin. N = 4. f Representative images of tube formation in cells treated, as indicated. Bar =50 um

various cell types [39—44]. Future studies will need to
determine whether the recombinant endoglin was in-
deed recycled to the surface and remained functional.
Of interest, platelet-derived MPs can increase surface
expression of chemokine receptor CXCR4 by modifica-
tion of receptor transfer, internalisation and external-
isation as well as modified gene regulation [26, 45]. The
type of endoglin microparticle carrier will also need
further investigation. While microvesicles budding off

the plasma membrane are most likely to play a role,
exosomes can also carry surface proteins of their
mother cells: exosomes from antigen presenting cells
harbor MHCII on their surface, exosomes from reticu-
locytes contain the transferrin receptor, and exosomes
from T-cells carry the TCR/CD3/zeta complex [46-48].
It is conceivable that local accumulation of endoglin®
microparticles in distal vasculature may promote angio-
genesis and counteract the effects of Sol.Eng or other
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Fig. 4 MPs obtained from endoglin-overexpressing HPAECs stimulate endothelial cell survival and angiogenesis in vitro. a Internalisation of
fluorescently-labelled MPs by HPAECs (2 h incubation). In the merged image, PKH26 is red, HA is blue and endoglin is green, as indicated. White
pixels mark co-localization of PKH26, HA and endoglin and indicate intracellular localization of microparticles carrying recombinant endoglin (Image J
analysis). Bar =2 um. b Cell proliferation, (c) cell viability and (d) angiogenesis/tube formation in HPAECs treated with MPs isolated from untreated
(control) HPAEGs, cells transfected with empty pDisplay vector and HPAECs overexpressing pDisplay-L- endoglin, as indicated. e Representative images
of tube formation in cells transfected with pDisplay or pDisplay-L-endoglin*P < 0.05; ***P < 0,001, comparison with transfection controls; Bar =50 um; n=3 )
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factors inducing endothelial senescence. Microparticle-
mediated endoglin delivery may also have potential
therapeutic implications in angiogenic disorders associ-
ated with abnormal endoglin function, such as heredi-
tary hemorrhagic telangiectasia [49].

Conclusions

Our study shows that CTEPH blood contains increased
levels of endoglin® endothelial microparticles and that
these microparticles induce pro-survival and pro-
angiogenic responses in human pulmonary endothelial
cells, likely to reflect a healing mechanism set to coun-
teract the effects of vascular occlusion and endothelial
damage.

Additional file

Additional file 1: Figure S1. Endothelial tube formation induced by
CTEPH microparticles. HPAECs were cultured on Matrigel in serum-reduced
(0.5 % serum) medium with different numbers of CTEPH microparticles, as
indicated. Tube formation was scored after 18 h of incubation. **P < 0.01,
comparison with untreated controls. Figure S2. Tube formation in HPAECs
incubated with TGF-3 and MPs. Representative images of tube formation in
HPAECs incubated with MP fractions (full and endoglin™) from healthy and
CTEPH plasma, with or without TGF- (10 ng/mL;18 h). Bar =50 um. Figure
S$3. Endoglin levels in full MP fractions (containing endoglin® MPs) and
endoglin-depleted (endoglin™) MP fractions. Endoglin®™ MPs were removed
by Dynabeads-mediated immunoprecipitation and endoglin levels were
measured with Human Endoglin/CD105 Quantikine ELISA Kit***P < 0.001,
Student t-test, n = 6. Figure S4. Pro-angiogenic factors in CTEPH EMP
fraction. (a) Proteome Profiler™ Human Angiogenesis Array membrane
was incubated with CTEPH EMPs (image representative of n = 2). (R) shows
reference spots, (1) corresponds to Serpin E1 and (2) corresponds to uPA, as
indicated. Full information about the microarray layout can be found on
https://resources.rndsystems.com/pdfs/datasheets/ary007.pdf. A schematic
diagram of microarray is shown in (b). (DOCX 479 kb)
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