Journal of Biomedical Science

A B
24h )

MDA-MB-231
2y

uuuuuu

S — ERESS
“ \'\t‘> s \
g,,, - g""

84 165
-
C o .36 D/ 83.36)
: _— =
2678 12.08
& | J
Annexin V

- E23 Late apoptotic

Apoptotic cells (%)

Apoptosis induction

[ Early apoptotic

Andrographolide on MDA-MB-231 breast cancer cell line

Control Treated 24h)  Treated (48 h)

- -~
-
-

DAPI

AO/EtBr

Nuclear fragmentation

Andrographolide
(uM) 0 30 0o 30

B Cytochrome ¢
o [ . o
B pactn
sc I
_ Cytochrome ¢
Apaf-1 _ (mitochondria)
pacn [ SIS coxv

Pro/ anti-apoptotic protein expression

Cytotoxicity and cell cycle arrest induced by
andrographolide lead to programmed cell death
of MDA-MB-231 breast cancer cell line

Banerjee et al.

( ) BiolVed Central

Banerjee et al. Journal of Biomedical Science (2016) 23:40
DOI 10.1186/512929-016-0257-0



Banerjee et al. Journal of Biomedical Science (2016) 23:40

DOI 10.1186/512929-016-0257-0 Journal of Biomedical Science

m"’ i% ﬁ Ministry of Science and Technology

The cost of publication in Journal of Biomedical Science is borne by the Ministry of Science and
Technology, Taiwan.

RESEARCH Open Access

Cytotoxicity and cell cycle arrest induced ® e
by andrographolide lead to programmed
cell death of MDA-MB-231 breast cancer

cell line

Malabika Banerjee', Subrata Chattopadhyay? Tathagata Choudhuri®, Rammohan Bera?, Sanjay Kumar?,
Biswajit Chakraborty® and Samir Kumar Mukherjee'”

Abstract

Background: Breast cancer is considered as an increasing major life-threatening concern among the malignancies
encountered globally in females. Traditional therapy is far from satisfactory due to drug resistance and various side
effects, thus a search for complementary/alternative medicines from natural sources with lesser side effects is being
emphasized. Andrographis paniculata, an oriental, traditional medicinal herb commonly available in Asian countries,
has a long history of treating a variety of diseases, such as respiratory infection, fever, bacterial dysentery, diarrhea,
inflammation etc. Extracts of this plant showed a wide spectrum of therapeutic effects, such as anti-bacterial,
anti-malarial, anti-viral and anti-carcinogenic properties. Andrographolide, a diterpenoid lactone, is the major active
component of this plant. This study reports on andrographolide induced apoptosis and its possible mechanism in
highly proliferative, invasive breast cancer cells, MDA-MB-231 lacking a functional p53 and estrogen receptor (ER).
Furthermore, the pharmacokinetic properties of andrographolide have also been studied in mice following
intravenous and oral administration.

Results: Andrographolide showed a time- and concentration- dependent inhibitory effect on MDA-MB-231 breast
cancer cell proliferation, but the treatment did not affect normal breast epithelial cells, MCF-10A (>80 %). The
number of cells in S as well as Go/M phase was increased after 36 h of treatment. Elevated reactive oxygen species
(ROS) production with concomitant decrease in Mitochondrial Membrane Potential (MMP) and externalization of
phosphatidy! serine were observed. Flow cytometry with Annexin V revealed that the population of apoptotic cells
increased with prolonged exposure to andrographolide. Activation of caspase-3 and caspase-9 were also noted. Bax
and Apaf-1 expression were notably increased with decreased Bcl-2 and Bcl-xL expression in andrographolide-treated
cells. Pharmacokinetic study with andrographolide showed the bioavailability of 9.27 +1.69 % with a Cyay, Of
0.73+0.17 pumol/L and T, of 042+ 0.14 h following oral administration. AG showed rapid clearance and
moderate terminal half lives (T;,,) of 1.86+0.21 and 3.30+0.35 h following IV and oral administration
respectively.

Conclusion: This investigation indicates that andrographolide might be useful as a possible chemopreventive/
chemotherapeutic agent for human breast cancers.
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Background

The plant, Andrographis paniculata Nees (family:
Acanthaceae) is very common in Asian countries in-
cluding India and has been reported to have a trad-
itional therapeutic use [1, 2]. This plant is considered
as an important source of phytomedicine to treat a
wide range of diseases, such as respiratory infection,
fever, bacterial dysentery and diarrhea [3, 4]. It was
also reported to possess anti-inflammatory [5], anti-
malarial [6], and even anti-HIV activity [7]. The major
bioactive component extracted from A. paniculata
Ness is andrographolide, a diterpene lactone. Three
hydroxyls at C-3 (secondary), C-14 (allylic) and C-19
(primary) on the basic structural skeleton were reported
to be responsible for its biological activities [8, 9]. In re-
cent years several studies have indicated that androgra-
pholide also possess antitumor activity [10, 11].

Breast cancer is a major life-threatening concern
among the malignancies encountered in females and
ranks second as a cause of death [12]. Apoptosis is a
programmed cell death which occurs due to the activa-
tion of certain evolutionarily conserved intracellular
functions. Many naturally occurring phytochemicals
were reported to possess anti-tumor effect thus inducing
apoptosis of cancer cells. Curcumin from turmeric, epi-
gallocatechin gallete from green tea, resveratrol from
grape seed extract and quercetin from fruits are some
examples of chemopreventive agents derived from plant
that induce apoptosis with some being in clinical inter-
vention trials [13, 14]. Earlier reports based on the
pharmacological properties of andrographolide, espe-
cially on its antitumorogenic activity through various
mechanisms, such as, inhibiting cell cycle progression,
reducing invasiveness of cancer cells or inducing apop-
tosis through different cell-death mechanism in different
carcinoma cells [10, 15] prompted us to evaluate the
possible induction of apoptosis by andrographolide on
breast cancer cell line.

With this background, this study was designed to
evaluate in vitro anticancer activity of andrographolide
in a breast cancer cell line, MDA-MB-231 which is
highly invasive, proliferative, estrogen receptor (ER)
negative and harbors mutated p53. Although, earlier
studies with other breast cancer cells containing func-
tional ER and wild type p53 showed cell growth inhib-
ition and apoptosis induced by andrographolide [16, 17],
reports on the effect on this particular triple negative
breast cancer (TNBC) cell line are scanty. Therefore, it
is worthwhile to investigate the inhibitory and/or apop-
tosis inducing effect of andrographolide on MDA-MB-231
as this cell line is clinically harder to treat [18]. Cancer
cells harboring mutated p53 is exhibited as more resistant
to certain anticancer drugs because mutated p53 no lon-
ger renders the tumor suppressing abilities of the wild
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type, rather it often contributes to the oncogenic charac-
teristics [19]. Furthermore, metastatis-derived MDA-MB-
231 breast cancer cell line is not hormone sensitive (ER
negative). Blocking the Estrogen receptor in these cells
will not serve the purpose of inhibiting cancer. Thus
MDA-MB-231 cells are more resistant to drug therapy in
comparison to other breast cancer cells like MCF-7. For
instance, while resveratrol inhibits cell proliferation and
activity in both MCF-7 and MDA-MB-231 cells, it was
able to induce apoptosis in MCF-7 cells only [20]. In the
present study, attempts have been made to elucidate the
molecular mechanism by which andrographolide renders
its inhibitory effects on cell proliferation, cell cycle, ex-
pression levels of pro- and anti-apoptotic proteins and fi-
nally towards apoptosis in this clinically distinct cell line.
Our results show that andrographolide can inhibit the cel-
lular growth of MDA-MB-231 by causing cell cycle arrest
and apoptosis in a time- and dose-dependent manner.

Additionally, andrographolide was analyzed by LC-
MS/MS method to determine its pharmacokinetic
characteristics in the plasma of BALB/c mice and these
pharmacokinetic results are important for further study of
the clinical applications of andrographolide.

Methods

Materials and reagents

Andrographolide was procured from Santa Cruz
Biotechnology (Santa Cruz, CA, USA), dissolved in
DMSO and kept at 4 °C at a concentration of
50 mM. AnnexinV-FITC Apoptosis Detection Kit was
purchased from BD Pharmingen (Pharmingen, USA).
Caspases fluoremetric assay kit was purchased from
Chemicon International Corporation (USA). Ac-DEVD-
CHO (caspase-3 inhibitor), and Ac-LEHD-CHO (caspase-
9 inhibitor) were from Calbiochem (La Jolla, USA). Pri-
mary antibodies (Bcl-2, Bcl-xL, Bax, Apaf-1, cytochrome
¢, B-actin and COX IV) and polyclonal secondary antibody
were obtained from Santa Cruz Biotechnology Inc. (Santa
Cruz, USA). The fetal bovine serum (FBS), Dulbecco’s
Modified Eagle’s Medium (DMEM), and antibiotics were
purchased from Gibco BRL (Grand Island, USA).
Plastic wares for cell culture were procured from
NUNC (Roskilde, Denmark). Other chemicals including 4,
6-diamidino-2-phenylindole (DAPI), 3[4-dimethylthiazol-
2-71]-2-5-diphenyl tetrazolium bromide (MTT) were
from Sigma-Aldrich (St. Louis, USA).

Cell culture

MDA-MB-231, T-47D and MCF-7 human breast cancer
cell lines and MCF-10A normal human breast epithelial
immortalized cell line were obtained from American
Type Culture Collection (ATCC) (Rockville, USA).
MDA-MB-231, T-47D and MCF -7 breast cancer cells
were cultured in DMEM supplemented with 10 % (v/v)
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heat inactivated FBS, 2 mM L-glutamine, 100 U/ml of
penicillin, and 100 pg/ml of streptomycin. MCF-10A
cells were maintained in DMEM-F12 (Sigma-Aldrich,
USA) supplemented with 10 % (v/v) FBS, 100 U/ml of
penicillin, 100 pg/ml of streptomycin, 2 mM of L-
glutamine, 20 ng/ml of epidermal growth factor (Sigma-
Aldrich, USA), 10 pg/ml of insulin (Sigma-Aldrich, USA),
100 ng/ml of cholera toxin (Sigma-Aldrich, USA) and
1 pg/ml of hydrocortisone (Sigma-Aldrich, USA). Cells
were cultured in 75 cm?® culture flasks at 37 °C under
humid environment in an incubator having 5 % CO,.

Animals

Female BALB/c mice were obtained from animal facility,
TCGLS, Kolkata, India. Animal studies involving mice
were approved by the Institutional Animal Ethics
Committee (IAEC), TCGLS with respect to ethical
practice and animal care under the guidelines of
Committee for the Purpose of Control and Supervision of
Experiments on Animals (CPCSEA), India and Reg. No.
1068/PO/RcBi/S/07/CPCSEA.

Experimental animals, aged 6-8 weeks and weighed
between 19-22 g, were maintained at temperature of
22 +2 °C, 30-70 % humidity and 12/12 h light-dark
cycle. The mice had ad libitum access to standard
animal diet and water.

In vitro cytotoxicity assay

The effect of andrographolide on cell viability was mea-
sured by MTT assay following the method by Mosmann
[21]. Briefly, the cells (1 x 10° cells per ml) were seeded
in a 96 well micro titer plate (100 pl per well) with repli-
cations. Treatment was conducted for 24 and 48 h with
different concentrations (0, 5, 7.5, 15, 30, 45, 60, 75 and
100 uM) of andrographolide. After incubation, 20 pl of
5 mg/ml MTT stock solution was added to each well
and incubated for 4 h at 37 °C. The obtained formazan
crystals were solubilized with DMSO and the absorbance
was measured at 570 nm using a microplate reader (Spec-
traMax M5, Molecular Devices, USA). Cell viability (%)
has been shown as a ratio of absorbance (As;) in treated
cells to absorbance in control cells (0.1 % DMSO) (As7q).
The IC5, was calculated as the concentration of sample
needed to reduce 50 % of the absorbance in comparison
to the DMSO-treated control. Percent cell viability was
calculated following the equation:

Cell viability(%) = [As7o(Sample)/As7o(Control DMSO)]
x 100

Cell proliferation assay
MDA-MB-231 cells harvested from exponential growth
phase were seeded at a density of 1x 10%*well in a
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24-well culture plate. After 24 h, the cells were
treated with varying concentrations of andrographo-
lide (15, 30, 45 and 60 pM) or DMSO (0.1 %, vehicle
control) for 12, 24, 36 and 48 h. After treatment, cells
were harvested by trypsinization, stained with 0.4 %
trypan blue and counted in a hemocytometer. Cell
proliferation index PI, was calculated as PI=C,/Cy;
where C, = cell count at time t and C,=cell count at
the time of treatment.

Analysis of apoptosis observing the nuclear and cell
morphological changes

To study nuclear and chromatin structural changes,
MDA-MB-231 cells were treated with or without
50 % inhibitory concentration (ICsy) of andrographo-
lide for 24 and 48 h respectively. The cell suspensions
were harvested and the cell pellet was washed with
DAPI-methanol (working solution, 1 pg/ml) twice.
Cells were then incubated with 2 ml DAPI-methanol
for 15 min at 25 °C. After centrifugation at 1000 x g,
DAPI-methanol was discarded and the pellet was sus-
pended in PBS, then mounted on a glass slide and
4 % paraformaldehyde was used as a fixative. Cells
were examined using a fluorescence microscope
(excitation, 360 nm; emission, 454 nm) (Nikon eclipse
TE300, Tokyo, Japan) [22]. Cells with condensed
chromatin and fragmented nuclei were considered as
apoptotic.

Standard acridine orange/ethidium bromide (AO/EtBr)
staining technique was used with some modifications
to discriminate the live, apoptotic and necrotic cells
[23]. Briefly, cells treated with or without 50 % inhibi-
tory concentration (ICso) of andrographolide for 24
and 48 h, were stained with AO/EtBr (50 pg/ml each
at 1:1), and then fixed on slide with 4 % paraforma-
dehyde and analyzed under fluorescence microscope
(excitation, 488 nm; emission, 550 nm).

Cell cycle analysis

In order to study the stages of the cell cycle affected by
andrographolide, flow cytometry analysis of cell cycle
was carried out. Cells were seeded in a 6-well tissue cul-
ture plate at an initial density of 2.5 x 10° cells per well
in the presence of andrographolide (30 uM) or vehicle
(DMSO) for 24, 36 and 48 h. The treatment medium
and the attached cells were collected after trypsinisation
and centrifugation at 1000 x g. Cells were then fixed
with 70 % ethanol at 4 °C overnight. The resulted pellets
were resuspended in PBS having 100 pg/ml RNAse A
(Sigma-Aldrich, USA) and 50 pg/ml PI, and then kept in
dark at 25 °C for 30 min. Cell cycle phase distribution
were monitored on the BD FACSVerse™ (Becton Dickin-
son, USA) and analyzed by using FACSuite™ software. A
total of 10,000 events were recorded.
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Externalization of phosphatidyl serine and confirmation
of apoptosis

In order to examine phosphatidyl serine externalization
from inner to the outer cell membrane, a characteristic
feature of apoptotic cell death [24] and to quantify the
percentage of apoptotic cell death, cultured MDA-MB-
231 cells (1 x 10°%) were treated with 50 % inhibitory con-
centration (30 pM) of andrographolide for 24 h, 36 h
and 48 h. Cells were resuspended in 1X binding buffer,
labelled with fluorescein isothiocyanate (FITC)-conju-
gated Annexin V (200 pg/ml) and PI (30 pg/ml), incu-
bated for 15 min at room temperature in the dark and
analyzed by flow cytometry using BD FACSVerse™
(Becton Dickinson, USA). Data were analyzed using
FACSuite™ software. For each set, total of 10,000 events
were recorded. Similar experiment was also performed
using MCF-7 cells treated with andrographolide for
48 h.

Measurement of cellular Reactive Oxygen Species (ROS)
level

To estimate intracellular ROS level, MDA-MB-231
(2x10* cells per well) were treated with androgra-
pholide (15, 30, 45 and 60 uM) for 12—-48 h and were
harvested by centrifugation for the assay. The cell
suspension (200 pl, containing 1 x 10° cells per ml) was
mixed to PBS (800 pul) and 10 uyM 2, 7  -dichlorofluor-
escein diacetate (DCF-DA) and kept at 37 °C for 30 min
in the dark. 25 uM H,O, was used for positive control.
The intracellular ROS level was measured by determining
the production of H,O, using a spectrofluorometer (exci-
tation, 488 nm; emission, 515 nm). Another set of experi-
ment was similarly performed where MDA-MB-231 cells
were pre-treated with 3 mM NAC for 1 h followed by
without or with andrographolide (30 M) treatment. Same
experiment was also performed using MCEF-7 cells.

Measurement of mitochondrial membrane potential

The loss of mitochondrial membrane potential (Aym)
(MMP) is a primary event leading to phosphatidyl serine
externalization, which corresponds with the activation of
caspase. MMP was quantified by the incorporation of a
fluorescent dye Rhodamine 123 [25]. Cells (1 x 10* per
well) were incubated with different concentrations
(15, 30, 45 or 60 puM) of andrographolide in the ab-
sence or presence of NAC for 24 and 48 h. Positive
control was obtained with a mitochondrial uncoupling
agent, carbonyl cyanide m-chloro-phenylhydrazone
(CCCP; 20 pM) for 30 min. The treated cells were
washed twice with chilled PBS before incubation with
Rhodamine 123 (5 pg/ml) and kept at 37 °C for
15 min. The fluorescence intensity was detected using
an emission filter of 535 nm. Same experiment was
also performed using MCEF-7 cells.
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Cytosolic and mitochondrial fraction preparation

Cells were treated with andrographolide (30 uM) for
48 h and mitochondrial as well as cytosolic fractions
were obtained with a mitochondria isolation kit (Pierce,
Rockford, USA). The mitochondrial pellet was re-
suspended in sample buffer for SDS-gel electrophoresis
and analyzed by Western blot using cytochrome ¢ anti-
body. COX IV and [B-actin were used as loading controls
for the mitochondrial fraction and cytosolic fraction re-
spectively. Cytosolic fractions were also Western blotted
for studying cytochrome c expression [26].

Western blotting

Cells from control regime and andrographolide treat-
ment (30 pM, 48 h) were used for Western blot [27].
After centrifugation, cell pellets were lysed in RIPA buf-
fer containing protease and phosphatase inhibitors
(Roche, Germany). Each cell lysate was used for protein
assay with Bio-Rad protein assay kit (Bio-Rad, USA)
[28]. A protein sample of 50 pg was electrophoresed in a
12 % SDS-PAGE. Proteins were electro-transferred from
the gel onto a nitrocellulose membrane (Amersham Bio-
sciences, UK). After incubating with blocking buffer
containing 5 % nonfat milk for 1 h, the membranes were
probed with the primary antibody specific for Bcl-xL
(1:750 dilution), Bcl-2 (1:1000), Bax (1:1000), cyto-
chrome ¢ (1:800) and Apaf-1 (1:500) at 4 °C. Membrane
was then washed thrice with TBST (Tris buffered saline
having 0.1 % Tween-20, pH 7.5), exposed to horseradish
peroxidase conjugated secondary antibody (1:2500) and
was then kept at 25 °C for 1 h. The membrane was then
finally washed thrice with TBST. The protein bands were
visualized by incubating the membrane with diamino-
benzidine/hydrogen peroxide (Sigma-Aldrich) for color
reaction. B-Actin and COX IV were also detected as
loading controls.

Caspase activity assay

MDA-MB-231 cells (1 x 10° cells per ml) were incubated
with different concentrations of andrographolide (0, 15,
30, 45 and 60 uM) for 24 h and then centrifuged to
detect caspase-3 and caspase-9 activation using caspase
fluoremetric protease assay kit following manufacturer’s
instructions. Briefly, cells were lysed in RIPA buffer
supplemented with protease inhibitor cocktail and 10 pl
lysate were diluted with 10 pl substrate buffer (1:1)
containing 100 puM each of fluorogenic substrate,
DEVD-AFC and LEHD-AFC for caspase-3 and caspase-9
respectively, and was then incubated for 90 min at 37 °C.
Reactions were stopped using 0.2 mM sodium phos-
phate buffer (pH 7.5) and fluorescence was quanti-
fied by a spectrofluorometer (excitation, 405 nm;
emission, 505 nm). Experiment was also performed
using MCEF-7 cells.
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Similar set of experiment was designed with MDA-
MB-231 cells treated with 30 uM andrographolide along
with Ac-DEVD-CHO (caspase-3 inhibitor) or Ac-LEHD-
CHO (caspase-9 inhibitor). DMSO treated cells were
considered as control set and compared.

In vivo pharmacokinetic studies

Female BALB/c mice, being divided into two groups
(n=6 per group), received andrographolide via oral route
(PO) as well as intravenous (IV) bolus dosing at 50 mg/kg
(equivalent to 142.73 pmol/kg and dose volume, 10 ml/kg)
and 5 mg/kg body weight (equivalent to 14.27 pmol/kg and
dose volume, 5 ml/kg) respectively. The formulation was
prepared in 10 % DMSO, 10 % Cremophor and 80 % 1/15
(M) Na,HPO, with dose volume of 10 ml/kg and 5 ml/kg
for oral and IV respectively. ~50 pl of blood samples were
collected at each time points (0.25, 0.5, 1, 2, 4, 8 and 24 h
for PO and 0.08, 0.25, 0.5, 1, 2, 4, 8 and 24 h for IV) into
heparinized capillary tubes by piercing the saphenous vein
using a disposable needle (26 G). Blood samples were cen-
trifuged at 3000 rpm for 10 min at 4 °C. The resulting
plasma samples were stored at —80 °C until bioanalysis.

LC-MS/MS analysis

Analysis of plasma samples were performed using a
liquid chromatography tandem mass spectroscopy
(API-4000, AB Sciex Instruments, Foster City, CA) at-
tached with the ESI source. The LC system consisted
of LC-20ADvp pump (Shimadzu, Kyoto, Japan) and
CTC PAL (HTS) autosampler. Liquid chromatography
was performed using a Luna C18 column (2 x 30 mm,
5 p particle) of Phenomenex (Torrance, CA) and the
mobile phase consisted of 2 mM ammonium acetate
in water (A) and 80: 20 (v/v) MeCN: Solvent A (B).
The gradient elution program was as follows: first
60 s only A for washing, then 60 s for gradient up to
100 % B and it was continued for next 60 s. Total run time
was 3.5 min with a flow of 0.8 ml/min at room
temperature. Samples were detected and quantified using
Analyst 1.4.2. Internal standard used was diclofenac.

Statistical analysis

The data were expressed as the means of three replica-
tions with standard deviation (+ SD). GraphPad Prism5
software was used for analysis of variance (ANOVA) cal-
culation. A p-value of <0.05 was considered as statisti-
cally significant.

Results

Effect of andrographolide on cell viability and proliferation
For determining the effect of andrographolide on cell
viability, three different breast cancer cell lines namely
MDA-MB-231, T-47D and MCF-7 were incubated in the
absence or presence of andrographolide (5-100 uM) for
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24 or 48 h. MTT assay was performed to compare the
cell viability with a normal breast epithelial cell line,
MCEF-10A. Andrographolide resulted in loss of cell
viability in all three lymphoma cell lines (MDA-MB-231,
T-47D and MCF-7) with the function of concentration
and time of treatment (Fig. 1a). The degree of cytotox-
icity on the selected cell lines varied, and it was found to
be most potent on MDA-MB-231. The ICs, values at 24
and 48 h was found to be 51.98 uM and 30.28 uM re-
spectively in MDA-MB-231(Fig. 1b). For MCF-7 cells,
the IC5q values were estimated to be 61.11 pM (24 h)
and 36.9 pM (48 h) respectively (Fig. 1b) while T-47D
was found to be lesser sensitive at both the time points
(Table 1). It was also observed that the same doses could
not inhibit the proliferation of MCF-10A, normal human
mammary epithelial cells to that extent. The calcu-
lated ICsy values were found to be 137.9 uM (24 h)
and 106.1 pM (48 h) for MCF-10A cells which signi-
fies that the IC5y at 48 h was nearly 3.5-fold higher
than that for MDA-MB-231 cells. As andrographolide
was found to be most cytotoxic towards MDA-MB-
231 among the tested cell lines, therefore, we focused
on the anticancer property of andrographolide in this
TNBC cell line.

Anti-proliferative potential of andrographolide was
further confirmed by monitoring the proliferation kin-
etics of exponentially growing MDA-MB-231 cells. A
dose- and time-dependent reduction in the cell prolif-
eration rate was evident with a cytostatic effect up to
24 h post-treatment followed by growth inhibition
(Fig. 1c) except in cells treated with 60 uM androgra-
pholide. Cells treated with 15 pM of compound
showed growth inhibition only after 48 h of treat-
ment. ~50 % cell death was observed at a concentra-
tion of 30 uM at 48 h.

Effect of andrographolide on the cell and nuclear
structure of MDA-MB-231 cells

Involvement of apoptosis in andrographolide induced
cytotoxicity in MDA-MB-231 at ICs, dose was examined
using fluorescent DNA binding dye DAPI. Staining with
DAPI revealed characteristic apoptotic changes like
chromatin condensation, nuclear pyknosis, elevated
number of nuclear body fragments and irregular edges
around the nucleus in treated cells after 24 and 48 h
treatment; while round, clear edged, uniformly stained
cell nuclei were noted in the untreated control (Fig. 2,
upper panel).

When andrographolide treated MDA-MB-231 cells
were stained with AO/EtBr dye mixture, a major propor-
tion of cells showed condensed or fragmented chromatin
with bright orange fluorescence indicating apoptosis in
comparison with the control cells which showed green
fluorescence (Fig. 2, lower panel). The results indicated
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Fig. 1 Assessment of cell viability in response to andrographolide. a Three breast cancer cell lines, MDA-MB-231, MCF-7, T-47D and a normal
breast epithelial cell line MCF-10A were treated with andrographolide (5-100 uM) or vehicle control (0.1 % DMSO) for 24 h and 48 h. Time- and
concentration- dependent inhibitory effects of andrographolide were evaluated by MTT assay. b The ICso of andrographolide on MDA-MB-231
and MCF-7 were calculated by plotting the percentage of viable cells against log (concentration) of andrographolide. ¢ Effect of andrographolide
on proliferation kinetics of MDA-MB-231 cells. Cells (1 x 10%/well) in a 24-well culture plate were treated with varying concentrations of
andrographolide for different time points. Cell proliferation was evaluated using trypan blue. Values are mean +S.D. of three independent

that death induced by andrographolide of MDA-MB-231
cells was due to apoptosis.

Effect of andrographolide on cell cycle of MDA-MB-231 cells

Inhibition of cell cycle progression with 30 uM androgra-
pholide was evaluated at different time points in MDA-
MB-231 cells. Andrographolide treatment (30 uM) showed
an increasing trend in the cell number at S phase of MDA-
MB-231 cells with time and decreasing trend in the cell

Table 1 Cytotoxic effects of andrographolide at ICsy (UM)? on
three breast cancer cell lines after different exposure time

Time (h) MDA-MB-231 MCF-7 T-47D MCF-10A
24 51.98 61.11 1185 1379
48 30.28 36.90 726 106.1

ICso = Concentrations corresponding to 50 % growth inhibition

number at G;/Gq phase (Fig. 3). The increase in S popula-
tion after 24 and 36 h of treatment were found to be 9.91 +
0.3 % and 14.21 £0.2 %, respectively over the untreated
control set. There was no significant change in cell cycle ar-
rest profile beyond 36 h. In each treatment regime, a not-
able decrease in the cell number at the G;/G, phase was
observed; quantitatively it was 24.75+ 0.5 %, 28.86 £ 0.7 %
and 33.53 + 1.1 % for 24, 36 and 48 h of treatment respect-
ively over the control set. It was also evident that the S
phase arrest was accompanied with an increase of 12—14 %
in Go/M phase cells irrespective of increase of time points.

Andrographolide causes externalization of phosphatidyl
serine and apoptosis

The percentage of apoptotic cells in andrographolide
treated MDA-MB-231 cells were monitored using
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AO/EtBr

Treated (24 h)

Fig. 2 Assessment of cell morphology of MDA-MB-231 treated without or with andrographolide. Upper panel Effect of andrographolide in
MDA-MB-231 cells with condensation and fragmentation of the nuclei identified by DAPI by Fluorescence microscopy. Cells were treated with
ICs concentration of andrographolide for 24 and 48 h and stained with DAPI. The fragmented apoptotic nuclei were shown by arrow. Data
shown are from a representative of triplicate experiments. Lower panel Acridine orange/Ethidium bromide (AO/EtBr) staining of MDA-MB-231 cells
after treatment of 1Csy concentration of andrographolide for 24 and 48 h and compared with untreated control cells using fluorescence
microscopy. Cells showing bright orange fluorescence indicate apoptosis in comparison to control cells showing green fluorescence

Treated (48 h)

FITC-Annexin V and propium iodide (PI) double staining
by FACS. As shown in Fig. 4, andrographolide exposure
for 24, 36 and 48 h resulted in 16.76 + 0.51 %, 12.23 +
0.29 % and 5.89 + 0.67 % early apoptotic cells (annexin V*
and PI) respectively compared to control (<1 %), and the
amount of late apoptotic cells (annexin V' and PI*) were
32.2+£2.2 %, 60.06 + 0.6 % and 82.41 + 1.9 % for the same
treatment respectively. Untreated cells contained only
1.4 £ 0.08 % late apoptotic cells. Less than 1 % of cell
population underwent necrotic phase in all the
treated conditions.

Effect of andrographolide on apoptosis in MCEF-7
cells was also determined. Treatment for 48 h with
andrographolide increased the percentage of apop-
totic cells from 2.01 % in the control to 41.17 %
(Additional file 1), which indicated that androgra-
pholide could much efficiently induce apoptosis in
MDA-MB-231, triple negative breast cancer cells
compared to MCF-7.

Andrographolide induces ROS accumulation and reduces
MMP

Intracellular ROS generation was found to be related to
different stresses and could contribute on cell cycle ar-
rest or cellular apoptosis. To examine whether androgra-
pholide affects the oxidative function of the cell, ROS
generation was quantified in MDA-MB-231 at different
time points. Cells were loaded with the permeable and
redox-sensitive dye, DCF-DA. ROS production due to
andrographolide treatment (15, 30, 45 and 60 pM) was

measured at different time periods. Untreated set was
considered as control. ROS generation was found to be
at the basal level in untreated cells. On the contrary,
andrographolide treatment resulted increasing ROS
generation with longer exposure and elevated dose as
reflected by increasing DCF fluorescence (Fig. 5a).
Similar dose- and time-dependent effect on ROS
generation was also found in MCF-7 cells (Additional
file 2: Figure S2A).

The effect of andrographolide on MMP in MDA-
MB-231 cells was also investigated to determine whether
andrographolide induced-ROS production coincides with
loss of MMP (Aym), which is considered as an early
intracellular event during onset of apoptosis. MMP
was determined by incorporating a cationic fluores-
cent dye Rhodamine 123. Andrographolide caused a
significant (P <0.01) drop of MMP level with increas-
ing concentrations of compound in MDA-MB-231
cells at 24 and 48 h (Fig. 5b). Moreover, pretreatment
of cells with N-acetyl cysteine (NAC), an antioxidant,
suppressed andrographolide-induced ROS generation
(Fig. 5¢) and loss of Aym (Fig. 5d) at 24 as well as
48 h. Taken together, these data suggest that induc-
tion of apoptosis by andrographolide is likely to be
mediated by increased ROS production and loss of
Aym leading to an oxidative stress-dependent manner
of apoptosis in MDA-MB-231 cells. We also tested
the effect of andrographolide on MCF-7 cells and ob-
served similar dose- and time-dependent effect on
MMP loss (Additional file 2: Figure S2B).
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Fig. 3 Cell cycle histograms of the DNA content of MDA-MB-231 in response to andrographolide. Cells were incubated for 24 (b), 36 (c) and 48
(d) h time points in the absence (control, 48 h) (a) or presence of andrographolide (30 uM), prepared for FACS analysis, as described in Materials
and Methods, and analyzed in FACSVerse™ (Becton Dickinson, USA) flow cytometer. The number of cells in each phase of the cell cycle was

obtained by using FACSuite™ software. e The percentage of cells in each phase was shown as the mean + S.D. from three independent experiments
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Effect of andrographolide on cellular protein expression
and release of mitochondrial cytochrome ¢

The expression of various pro- and anti-apoptotic
proteins in MDA-MB-231 cells was investigated in
andrographolide-treated and untreated cells by Western
blot. The expression level of Bcl-xL, an anti-apoptotic
protein was significantly down-regulated to 1.47 + 0.06
fold compared to control after treatment with 50 %

inhibitory dose (30 uM) of andrographolide when ex-
posed for 48 h (Fig. 6a). An attempt was made to find
the state of proportion between cellular Bax and Bcl-2.
The treatment significantly up-regulated pro-apoptotic
protein Bax expression (by 2.39 +0.45 fold) and down
regulated anti-apoptotic protein Bcl-2 expression (by
1.96 + 0.14 fold) in MDA-MB-231 cells and as a result
Bax/Bcl-2 ratio was found to be increased (Fig. 6a). The
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Fig. 4 Flow cytometry analysis of andrographolide induced apoptosis in MDA-MB-231 cells. Cells were double stained with annexin V-FITC and PI
after treatment with andrographolide (30 uM) for 24 (b), 36 (c) and 48 (d) h and analyzed in a FACSVerse™ (Becton Dickinson, USA) flow cytometer.
Untreated cells for 48 h served as Control (a). The proportions of early apoptotic (Annexin V' PI') & late apoptotic cells (Annexin V* PI*)
were significantly increased following andrographolide exposure compared to Control. e Bar diagram showing increased proportion of
early and late apoptotic population after andrographolide treatment. Data are representative of three independent experiments

48 h

expression of another pro-apoptotic protein, Apaf-1
was also found to increase by 1.49 +0.17 fold (Fig. 6a).
Interestingly, we also observed a highly significant in-
crease in the expression (by 7.13 +1.17 fold) of cyto-
solic cytochrome ¢ whereas decrease in the expression
of cytochrome ¢ present in the mitochondrial fraction
(1.92 £ 0.05 fold) (Fig. 6b). Taken together, these data
suggest that andrographolide induced changes in Bax/
Bcl-2 ratio might trigger the release of cytochrome ¢
from mitochondria and enhance the deposition in cyto-
plasm which could bind to Apaf-1 and subsequently
lead to apoptosis.

Effect of andrographolide on caspase activities

Molecular events leading to apoptosis in MDA-MB-231
cells were further tested by measuring activation of
caspase-9 and caspase-3 in cells treated without

(control) or with increasing concentrations of androgra-
pholide. The results illustrated a gradual dose-dependent
activation of caspase-9 (Fig. 7a) and caspase-3 (Fig. 7b).
Andrographolide-induced cell death became lowered
when the cells were pretreated with the caspase inhibi-
tors Ac-LEHD-CHO and Ac-DEVD-CHO (Fig. 7c). This
finding demonstrates that andrographolide might induce
activation of intrinsic caspase pathway in MDA-MB-231
cells. Besides, caspase-9 (initiator caspase) and caspase-7
(effector caspase) activation in a dose-dependent manner
were observed in caspase-3 deficient MCF-7 cells after
treatment with andrographolide (Additional file 3).

In vivo pharmacokinetics: plasma levels of
andrographolide

The concentrations of test samples were determined
from the standard curve prepared by spiking 2 pl of
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different concentrations (0-60 uM) of andrographolide and incubated for 12, 24 and 48 h. 25 uM H,0, was used as a positive control. Cells were
stained with 2", 7"-dichlorofluorescein diacetate and the production of intracellular H,O, was measured using a spectrofluorometer as described in
materials and methods. Values are mean + S.D. and represent one of the three independent experiments (*P < 0.05, **P < 0.01 and ***P < 0.001).

b Effect of andrographolide on mitochondrial transmembrane potential (Aym) in MDA-MB-231 cells after treatment with different concentrations
(0-60 uM) of compound for 24 and 48 h. An uncoupling agent CCCP (20 uM) was served as positive control. MMP was measured by spectrofluorometer

using a fluorescent probe Rhodamine 123. Values are mean + S.D. and represent one of the three independent experiments (*P < 0.05, **P < 001 and
***p <0.001). c-d MDA-MB-231 cells were pretreated with or without 3 mM NAC for 1 h followed by 30 uM andrographolide for 24 and
48 h and quantified for ROS production (c) and loss of Aym (d). Fold changes were determined relative to control. Values are

mean + S.D. and represent one of the three independent experiments (*P < 0.05, **P <0.01 and ***P < 0.001)

working stock in 98 ul of blank plasma along with
the quality control samples (low, mid and high). The
linear equation of the standard curve was obtained by
regressional analysis of the peak area ratio of analyte
to internal standard versus nominal concentration
with a weighting factor of 1/X2. The calibration curve
was linear in the concentration range 2.44 (LLOQ) to
1250 ng/ml.

In our study, the pharmacokinetic parameters of
andrographolide were calculated based on non-
compartmental model using Win-Nonlin 6.3. The % bio-
availability (BA) of andrographolide was determined
after PO (50 mg/kg) and IV (5 mg/kg) administration
(Fig. 8a, b). AUC is one of the fundamental PK parame-
ters to correlate plasma exposure with oral bioavailability
of a drug. The results of PK study revealed poor oral
bioavailability (9.27 + 1.69 %) of andrographolide with a
Ciax of 0.73+£0.17 pumol/L and T, of 042+0.14 h

following oral administration (Table 2). Andrographolide
showed moderate terminal half lives (T;,5) of 1.86 +0.21
and 3.30+0.35 h following IV and oral administration
respectively. This compound was also observed to be
rapidly metabolized and quickly eliminated from the
central compartment with a high clearance (CL) of 5.51
+1.09 L/h/kg after IV administration while the total ex-
posure (AUCy—a) was found to be 2.33 £ 0.42 umol.h/L
and 2.51 £ 0.56 pmol.h/L following oral and IV adminis-
tration respectively.

Discussion

While radio- and/or chemotherapeutic treatments are
effective tools in treating certain cancers, a small popula-
tion of cancer stem cells (CSC) can evade therapy which
could be the reason for tumor recurrence and high rate
of mortality. These CSC have the ability to bring the ex-
istence of new tumors and these are frequently found as
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Fig. 6 Western blot analysis of some important apoptosis associated proteins in MDA-MB-231 cells. Cells were treated with vehicle control (0.1 %
DMSO) or with andrographolide (30 uM) for 48 h. Cells were then lysed and cell lysate were used for Western blot analysis as described in materials
and methods. Data shown are representatives of three independent experiments. a Western blot analysis of different pro- and anti-apoptotic proteins.
Expressions of Bax, Bcl-2, Bcl-xL and Apaf-1 in total cell lysate were detected after treatment. Band intensities were quantified by Image)
and normalized to B-Actin which was used as loading control. Data were expressed as a band intensity relative to control and shown
below [means+S.D., n=3; *P<0.05, **P<0.01, ***P<0.001 compared with control]. b Effect of andrographolide on expression of
cytochrome ¢ in cytosolic and mitochondrial fraction in Western blot analysis. 3-Actin and COX IV were detected as loading control
respectively. Band intensities were quantified by ImageJ and normalized to respective loading controls. Data were expressed as a band intensity
change compared to control and shown below [means+SD., n=3; *P < 0.05, *P < 0.01, ***P <0.001 compared with control]
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multi-drug resistance (MDR) [29]. Chemotherapeutic
drugs theoretically target the metastatic sites but current
treatments do not exert significant therapeutic benefits
in all cases [30]. Thus care should be taken to develop
an alternative therapeutic strategy. Plant derived antican-
cer drugs are being considered more effective and safer
for the patients, and do not have significant side effects
compared to synthetic drugs [31].

Considering public health due to increasing death rate
resulting from cancer, hunt for natural products for can-
cer therapy is now being considered as a global chal-
lenge; many of which are in different phases of
therapeutic trials [32]. According to a report of World
Health Organization, currently ~80 % of world popula-
tion relies on herbal medicine as its primary health care
need [33, 34]. In India, use of herbs as traditional medi-
cine is as old as 4000 BC [35]. Natural products were be-
ing used from ancient times in the treatment of cancer
and interestingly more than 60 % of currently used

cancer therapeutants are reported to be from the natural
sources [36].

Bioactive principles from A. paniculata have attracted
a lot of attention due to their anti-cancer and immuno-
stimulatory properties and several reports are available
on andrographolide-induced cellular apoptosis in differ-
ent cell lines [11, 37]. This study reports on in vitro
time-dependent and dose-dependent inhibitory effect of
andrographolide on the proliferation and apoptosis of
the human MDA-MB-231, a metastatic breast carcin-
oma cell line. The molecular mechanism of androgra-
pholide induced apoptosis has also been partially
elucidated in this clinically important cell line. Andro-
grapholide was primarily examined for its cytotoxicity
effects by MTT assay with MDA-MB-231 and with two
other breast carcinoma cell lines. The results indicate
that while andrographolide shows the most potent in-
hibitory effect on the survival of MDA-MB-231 cells
with an ICsy of 30 uM at 48 h, it has a minimal effect on
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Fig. 7 Caspase activity assay in MDA-MB-231 cells. Treated (0-60 pM) and untreated cells for 24 h were tested for fluoremetric assay to determine
the levels of activated caspase-9 and caspase-3. a caspase-9 and b caspase-3 activities were enhanced by andrographolide dose dependently.

c Cells were treated with andrographolide, or andrographolide + caspase inhibitors (50 uM) at the indicated dose and time period. All of the
caspase inhibitors significantly inhibited andrographolide-induced apoptosis. All data represent mean + S.D. from 3 independent experiments

MCEF-10A, a normal human breast epithelial cell line.
Andrographolide exhibits anti-proliferative activity on
these cells in a dose- and time-dependent manner. Fur-
ther, andrographolide induces cellular apoptosis via
changes in cellular morphology and occurrence of chro-
matin condensation, a hallmark of apoptosis, as reflected

in DAPI and AO/EtBr staining. These results exhibit
that andrographolide can restrain proliferation and
stimulate nuclear DNA fragmentation resulting in aug-
mentation of apoptosis in MDA-MB-231 cells. Addition-
ally, flow cytometry with Annexin V/PI staining was
conducted to detect apoptotic mode of cell death and to
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Table 2 Pharmacokinetic parameters calculated following oral
administration (PO: single dose of 50 mg/kg body weight) and
intravenous administration (IV: single dose of 5 mg/kg body
weight) of andrographolide in female BALB/c mice

PK parameters PO at 50 mg/kg IV at 5 mg/kg
AUC(-g) (Umol.h/L) 1.92£036 1.96 £0.38
AUC(g.ce) (HMOLW/L) 233+042 252+056
Crnax (umol/L) 0.73+0.17 ND

Trax (h) 042+0.14 ND

Co (MMol/L) ND 1457 £4.04
CL (L/h/kg) 62,68 +12.10 552+1.09
Terminal Ty, (h) 330£0.35 1.87+0.21
Bioavailability (%) 927 +1.69 ND

ND = Not determined; AUC(y.g) is the total area under the curve from time 0 to
8 h; AUC(y...) is the total area under the curve from time 0 extrapolated to
infinite time combined with an extrapolated value; C, is the drug concentration
at time 0; CL is the drug clearance; Terminal T,/, is the time for
concentration to decrease by one-half in the elimination phase; Cpay is
the maximum concentration observed; Tyax is the time at maximum
concentration observed; Bioavailability is the fraction of administered
drug that reached the systemic circulation

quantify apoptotic cells. It is evident from the result that
initiation of andrographolide-induced phosphatidyl
serine externalization took place after 24 h of treatment
and subsequently increased upon exposure time. The
number of apoptotic cells increased from 32 % after
24 h of exposure to 81 % after 48 h of exposure. This re-
sult further authenticated that andrographolide could in-
hibit the growth of breast cancer cells and subsequently
induce apoptosis.

DNA damage is a molecular event which is closely as-
sociated with cell cycle arrest and apoptosis. In this
study, andrographolide treatment resulted in an increase
of cell population at S/G,M phase which might be due
to the blockage in the cell cycle process from S phase to
G,/M phase, thus arresting mitosis and making the cell
cycle halted at S phase resulting in cellular apoptosis
[38, 39]. To date, several studies showed that androgra-
pholide effectively induces cell cycle arrest at Go/G;
stage in most of the cancer cells [40, 41], whereas our
findings with regard to cell cycle arrest at the G,/M
phase in MDA-MB-231 is novel. It may be due to differ-
ent cyclin-dependent kinase (CDKs) activities being reg-
ulated with the association of their cyclin partners,
kinases, phosphatases and specific inhibitors [42]. Fur-
ther research is needed to examine the detail mechanism
of cell cycle arrest in andrographolide-treated MDA-
MB-231 breast cancer cells.

Mitochondrial damage has been reported as an early
event of apoptosis [43] and is persistent with intracel-
lular reactive oxygen species (ROS) generation and
changes in mitochondrial membrane potential (MMP)
taking a crucial part in induction of apoptosis [44].
Several studies have suggested that increased amount
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of ROS initiates the depolarization of MMP resulting
in the release of cytochrome c¢ which activates the
apoptosome and therefore the caspase cascade [45].
This study reveals that andrographolide treatment sig-
nificantly promotes ROS levels and loss of MMP in a
time- and dose-dependent manner. Furthermore, pre-
treatment of MDA-MB-231 cells with an antioxidant
NAC attenuates andrographolide-induced intracellular
ROS production and loss of MMP, thus suggesting
that oxidative stress can induce apoptosis in the
breast cancer cells. Decreasing MMP may lead to the
change in expression of the anti-apoptotic and pro-
apoptotic effectors which involve a large number of
proteins [46]. Therefore, to gain insight into the
mechanism controlling apoptosis, the effect of andro-
grapholide on anti-apoptotic Bcl-2 family members,
such as Bcl-2 and Bcl-xL, as well as the pro-apoptotic
member, Bax was also investigated. Results obtained
from Western blotting analysis for Bax, Bcl-xL and
Bcl-2 proteins in this study corroborates with the fact
that the amount of pro-apoptotic protein Bax have
been up regulated along with down regulation of
anti-apoptotic protein Bcl-2 and Bcl-xL. Increase in
Bax/Bcl-2 ratio leads to the activation of intrinsic
mitochondria-mediated apoptotic pathway which is
associated with the release of cytochrome ¢ from
mitochondrial membrane to cytosol, formation of
Apaf-1/cytochrome ¢ complex that facilitates the for-
mation of apoptosome, activation of caspase 9 and
consequently activation of caspase 3 [47]. The obtained
data clearly shows that treatment with andrographolide
markedly increased the expression of Apaf-1 in addition
to cytosolic cytochrome ¢ along with a significant reduc-
tion of the same in mitochondrial fraction.

The activation of cysteine aspartate- specific proteases
(caspases) is generally considered to be one of the key
events in apoptosis pathway. A classical apoptotic mode
of cell death occurs only if the execution of death de-
pends on caspase activity [48]. Caspases can be broadly
divided into the group of upstream initiator caspases in-
cluding caspases -8 and -9, and into the group of down-
stream executioner caspases including caspases-3 [49].
Caspase-dependent pathway can further be subdivided
into extrinsic or intrinsic pathway, depending on the role
of caspase-8 or caspase-9, respectively. It seems that
apoptotic signaling elicited by andrographolide might be
related to the mitochondrial pathway, thus caspase-9
and caspase-3 activation was studied during the induc-
tion of apoptosis. We observed activation of caspase-9
and caspase-3 after treatment of andrographolide. Inhib-
itors specific to these caspases could restore the cells
from cell death. From these observations, it may be sug-
gested that once activated, this initiator caspase (cas-
pase-9) can cleave and stimulate caspase-3 and other
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effector caspases, thereby turning on a cascade of events
expediting DNA fragmentation and cell death [50].
Thus, the findings, as schematically presented in Fig. 9,
indicate that accumulation of ROS, up-regulation of Bax,
down-regulation of Bcl-2 and Bcl-xL, Apaf-1/cyto-
chrome ¢ apoptosome development and activation of
caspase-9 and -3 may be the molecular mechanism by
which andrographolide induces apoptosis in the highly
metastatic MDA-MB-231 cells which are ER-negative
and contains mutated p53. Other researchers also have
reported that andrographolide inhibits cell proliferation
and induces apoptosis in breast cancer cells (like MCF-7)
which are ER-positive and possess wild type p53 [16, 37].
Earlier, Satyanarayana et al. [17] reported that androgra-
pholide could block the cell cycle at Go-G; phase on
MCE-7 cells. Our findings for andrographolide in MCEF-7
also indicate that this agent is capable of enhancing ROS
accumulation, loss of MMDP, externalization of phosphati-
dyl serine and activation of caspase-9 and -7. Current ob-
servations suggest that the mode of action is primarily
similar in MCF-7 cells to that of MDA-MB-231 except
the cell cycle phase arrest. Therefore, it could be con-
cluded that the effects of andrographolide on inhibition of
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cell proliferation and induction of apoptosis are irrespect-
ive of ER and p53 status.

In vivo pharmacokinetics study with andrographo-
lide showed that it is rapidly absorbed in plasma al-
though it has poor bioavailability in mice (<10 %).
The observed reduced AUC from zero to 8 h was
probably due to relatively rapid elimination of andro-
grapholide from the body. Plasma exposure at 24 h
was below lower limit of quantitation in both PO and
IV arms. The total exposure AUCyg and AUCj.«a
were 1.92 and 2.33 umol.h/L respectively after oral
administration. Terminal half life of andrographolide
in PO arm was two times higher than IV arm. All
these parameters performed in mice indeed correlate
with the values obtained from earlier studies per-
formed in rats [51]. Therapeutic potency of any drug
depends on its bioavailability and poor solubility of
andrographolide in water affects its bioavailability.
However, it was evident from previous reports that
andrographolide is extremely nontoxic even at high
doses [7, 52]. The LDs, of andrographolide in male
mice was noted to be 11.46 g/kg via intraperitoneal
route [53]. Andrographolide showed no cytotoxic
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Fig. 9 A proposed mechanism for apoptotic effects of andrographolide on the triple negative human breast cancer MDA-MB-231 cells

S-phase inhibition




Banerjee et al. Journal of Biomedical Science (2016) 23:40

effect on platelets after administering it at concentra-
tions between 35 and 150 mM [54]. Moreover, an in-
clusion technique has recently been developed to
transform its physical and chemical properties so as
to increase its bioavailability and prevent its degrad-
ation in neutral and alkaline environment of gastro-
intestinal tract [55]. It has been shown that, when
taken as Kan Jang tablets, a therapeutic formulation
of A. paniculata extract, andrographolide is quickly
absorbed in blood [56]. Besides, drug discovery of
andrographolide analogues can lead to an effective
way out in this context.

On that basis along with our results, andrographolide
seems to have a potential role as an ideal chemopreven-
tive agent for breast cancer although it deserves further
in-depth studies in order to explore its precise mechan-
ism of action as an anticancer agent in vivo.

Conclusions

These findings confirm that andrographolide induces
apoptosis effectively in the mutant p53, triple negative
MDA-MB-231 human mammary epithelial carcinoma
cells in vitro. It has anti-proliferative activity through the
mitochondria dependent caspase mediated pathway. Cell
cycle arrest at G,/M phase by andrographolide is a
major finding of this work. Moreover, our work estab-
lishes that ROS, MMP and caspase-3 & -9 are the
known key players involved in andrographolide induced
apoptosis. It seems that andrographolide might be a
good contender as cancer therapeutant from a natural
source for human breast cancer. It also warrants further
in-depth investigation at pre-clinical and clinical levels for
establishing it as a potential agent for cancer therapy and
a toxicological study in higher animals and humans is also
essential to design a scientifically defensible fact profile for
the purpose of risk assessment prior to formulation.

Additional files

Additional file 1: Andrographolide-induced externalization of
phosphatidy! serine and apoptosis in MCF-7 cells. Figure S1. Effect of
andrographolide treatment on apoptosis in MCF-7 cells. Cells were
treated with ICso concentration of andrographolide for 48 h, double
stained with annexin V-FITC/PI and analyzed in a FACSVerse™ (Becton
Dickinson, USA) flow cytometer. The percentage Annexin V-positive
population refers apoptosis induction (region 2 and 4). Data are
representative of three independent experiments. (PDF 88 kb)

Additional file 2: Andrographolide-induced ROS accumulation and
MMP loss in MCF-7 cells. Figure S2. (A) Effect of andrographolide
treatment on ROS generation in MCF-7 cells. Cells were pretreated
with or without 5 mM NAC for 1 h followed by different concentrations
(0, 20, 40, 60 and 80 uM) of andrographolide and incubated for the
indicated times (24 h and 48 h). Intracellular ROS production was
monitored by spectrofluorometer, using 2', 7"-dichlorofluorescein
diacetate (DCF-DA). (B) Loss of MMP (Agm) in MCF-7 cells upon
treatment with andrographolide (0-80 pM) in presence and absence
of NAC. MMP was measured by spectrofluorometer using a fluorescent
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probe Rhodamine 123. Results shown are representative of three
independent experiments. *P < 0.05, **P < 0.01 and ***P < 0.001, when
compared with control. (PDF 116 kb)

Additional file 3: Effect of andrographolide on caspase-9 and caspase-7
activities in MCF-7 cells. Figure S3. Activation of caspase-9 (A) and
caspase-7 (B) after treatment with different concentrations (0, 20, 40, 60
and 80 uM) of andrographolide in MCF-7 cells for 24 h. Results shown
are representative of three independent experiments. *P < 0.05, **P < 0.01
and ***P < 0.001, when compared with control. (PDF 43 kb)
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