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Abstract

(Kms). The uptake of ['*

those by control siRNA in TR-BBB cells.

Background: -Citrulline is a neutral amino acid and a major precursor of (-arginine in the nitric oxide (NO) cycle.
Recently it has been reported that -citrulline prevents neuronal cell death and protects cerebrovascular injury,
therefore, |-citrulline may have a neuroprotective effect to improve cerebrovascular dysfunction. Therefore, we
aimed to clarify the brain transport mechanism of | -citrulline through blood-brain barrier (BBB) using the conditionally
immortalized rat brain capillary endothelial cell line (TR-BBB cells), as an in vitro model of the BBB.

Methods: The uptake study of ['“C] L-citrulline, quantitative real-time polymerase chain reaction (PCR) analysis, and
rLAT1, system b%*, and CAT1 small interfering RNA study were performed in TR-BBB cells.

Results: The uptake of ["*C] | citrulline was a time-dependent, but ion-independent manner in TR-BBB cells. The transport
process involved two saturable components with a Michaelis—-Menten constant of 309 + 1.0 uM (Km;) and 1.69 + 043 mM
(] ~citrulline in TR-BBB cells was significantly inhibited by neutral and cationic amino acids, but not
by anionic amino acids. In addition, [14C]L—citru||ine uptake in the cells was markedly inhibited by 2-aminobicyclo-(2,2,1)-
heptane-2-carboxylic acid (BCH), which is the inhibitor of the large neutral amino acid transporter 1 (LAT1), B° B%" and
harmaline, the inhibitor of system b>*. Gabapentin and | -dopa as the substrates of LAT1 competitively inhibited the uptake
of ['*C] | citrulline. ICs, values for | -dopa, gabapentin, .-phenylalanine and -arginine were 501 pM, 223 uM, 689 uM and
334 mM, respectively. The expression of mRNA for LATT was predominantly increased 187-fold in comparison with that

of systen b%" in TR-BBB cells. In the studies of LAT1, system b®" and CAT1 knockdown via siRNA transfection into TR-BBB
cells, the transcript level of LAT1 and [*C] | ~citrulline uptake by LAT1 siRNA were significantly reduced compared with

Conclusions: Our results suggest that transport of |~citrulline is mainly mediated by LAT1 in TR-BBB cells. Delivery strategy
for LAT1-mediated transport and supply of L-citrulline to the brain may serve as therapeutic approaches to improve its
neuroprotective effect in patients with cerebrovascular disease.

Keywords: -Citrulline, Blood-brain barrier (BBB), Large amino acid transporter 1(LAT1), Nitric oxide (NO), -Dopa-Gabapentin

Background

L-Citrulline is a neutral and non-protein amino acid
which was first identified in the juice of watermelon,
Citrullus vulgaris Schrad [1]. p-Citrulline has usually
been known as a metabolic intermediate in the urea
cycle. Recently, | -citrulline has been investigated with a
focus on p-citrulline as a product of the nitric oxide
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(NO) cycle and as a precursor for arginine by nitric
oxide synthase (NOS) [2, 3]. L -Citrulline is converted to
L-arginine by argininosuccinate synthase and lyase in the
NO cycle [4]. As p-arginine can be recycled from | -cit-
rulline through the NO cycle in some cells such as intes-
tinal cells [5], p-citrulline plays an important role in NO
metabolism and regulation [3].

In the central nervous system (CNS), NO plays an
important role in the cell death or survival mechanisms
in brain cells [6, 7]. Neuronal NOS (nNOS) is expressed
in neuronal tissues such as neurons and synaptic spines.
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Inducible NOS (iNOS) can be synthesized by pro-
inflammatory cytokines or endotoxin. Endothelial NOS
(eNOS) is found in endothelial cells [8]. In general, NO
produced by eNOS regulates numerous physiological ac-
tions and is neuroprotective to the brain, whereas the
comparatively large amount of NO generated by iNOS
evokes oxidative stress and is clearly neurotoxic to the
brain [9]. nNOS is involved in modulating physiological
functions such as learning, memory, and neurogenesis,
and pathological condition in the CNS such as
Parkinson’s disease and Alzheimer’s disease [10]. Abnor-
mal elevation of NO causes brain damage following
cerebral ischemia during the subacute phase [11, 12].
Recently, the neuroprotective effect of -citrulline on
CNS disorders such as brain ischemia has been investi-
gated [13]. Previous studies have shown that 1 -citrulline
not only prevented neuronal cell death but it also pre-
vented capillary loss in the hippocampal region by cere-
bral ischemia. The cerebrovascular protective effect of
L-citrulline was associated with the restoration of endo-
thelial nitric oxide synthase (eNOS) expression in the
hippocampus [13]. Thus, -citrulline administration may
offer a potential therapeutic strategy not only for pa-
tients with impaired arginine metabolism and deficien-
cies but also for controlling NO metabolism disorders
and cell death in the CNS [3, 13].

Neutral amino acids such as p-citrulline are trans-
ported through cell membranes by several distinct
transport systems in different cell types, including mac-
rophages [14], rat aortic smooth muscle cells [15], neural
cells [16], bovine aortic endothelial cells [17], and intes-
tinal cells [2]. Systems B° and B®*, as Na*-dependent
transport systems for neutral amino acids, have been
identified [18]. Systems b®*, L, and y'L are Na*-inde-
pendent transport systems for neutral amino acids in
various cell types [19]. In addition, systems B®" and
b%*have also been found to be related to transport of
cationic amino acids in human intestinal epithelial
cells [2, 19] and proximal tubular cells [20], respect-
ively. System y'L, encoded by y'LAT1 and y'LAT2,
mediates the Na*-dependent transport of neutral
amino acids as well as the Na'-independent transport
of cationic amino acids [18]. However, the characteristics
of the ; -citrulline transport system across the blood-brain
barrier (BBB) are still unclear. Therefore, the purpose of
this study was to characterize the transport system for | -
citrulline through BBB using the conditionally immortal-
ized rat brain capillary endothelial cell line (TR-BBB cells),
as an in vitro model of the BBB [21].

Methods
Materials
[**C].-Citrulline ([**C] |-citrulline, 56.3 mCi/mmol) was
purchased from PerkinElmer (Waltham, Massachusetts,
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USA). 1-dopa and Donepezil hydrochloride were pro-
vided by Jeil Co. and Daewoong Co. (Seoul, Korea), re-
spectively. Quinidine was obtained from Tokyo Kasei
Kogyo Co. (Tokyo, Japan). -Amino acids were pur-
chased from Sigma-Aldrich (St. Louis, Missouri, USA).
All other chemicals and reagents were commercial prod-
ucts of reagent grade.

Cell culture

The TR-BBB cells established from transgenic rats har-
boring the temperature-sensitive simian virus 40 large
T-antigen, an in vitro BBB model, were cultured at 33 °C
as described previously (21). TR-BBB cells were received
from Professor Tetsuya Terasaki (Tohoku University,
Japan) and were cultured with Dulbecco’s modified
Eagle’s medium (Invitrogen, San Diego, CA), supple-
mented with 10% fetal bovine serum, 100 U/mL penicil-
lin, 100 pg/mL streptomycin (Invitrogen, San Diego,
CA) and 15 pg/L endothelial cell growth factor (Roche,
Mannheim, Germany) at 33 °C in a humidified atmos-
phere of 5% CO,/air. On rat tail collagen type I-coated
24 well culture plates (IWAKI, Tokyo, Japan) initial
seeding was carried out at 1 x 10° cells/well for the up-
take study. After incubation for 2 days at 33 °C, the cul-
tures became confluent and then they were used in the
transport study. -Citrulline free medium was used all
experiments except for experiments on saturation kinet-
ics of ["*C] -citrulline uptake (Fig. 2), Lineweaver-Burk
plots for [**C] -citrulline uptake (Fig. 4), or inhibitory
effect of ;-amino acids as a control (Table 2).

Uptake study in TR-BBB cells

The [**C] |-citrulline uptake study was performed ac-
cording to the previous report [22]. Briefly, extracellular
fluid (ECF) buffer containing [**C];-citrulline (44.4 pM)
in the presence or absence of unlabeled inhibitors was
added to the TR-BBB cells and then incubated at pH 7.4
and 37 °C for the designated time (5 min). Uptake was
terminated by the addition of ice-cold ECF buffer. A Na
* free transport medium was prepared by using LiCl,
choline chloride, sodium gluconate and KHCOj instead
of NaCl and NaHCO3, respectively. The cells were then
solubilized by incubation overnight in 750 puL of 1 N
NaOH at room temperature, and the measurement of
radioactivity was performed in a liquid scintillation
counter (LS6500; Beckman, Fullerton, CA). Cell to
medium ratio (uL/mg protein) was calculated as follows:
the radioactivity (dpm/uL) in the sample per milligram
cell protein (dpm/mg protein).

Data analysis

For kinetic studies, the Michaelis-Menten constant (K,,)
and the maximum uptake rate (V) of [**C] |-citrul-
line were estimated from Eq. (1):
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V= Vmax‘C/ (I(m + C) (1)

Where V and C are the initial uptake rate of [
p-citrulline at 5 min and the concentration of ;-citrul-
line, and V., is the maximum uptake rate for the satur-
able component.

To analyze the competitive nature of {-dopa and gaba-
pentin for [**C] -citrulline uptake, Lineweaver-Burk
plots were generated. The inhibitory constant (Kj) was
calculated from Eq. (2):

V =VmaxC/ [Kn-(1 + I/K;) +C] (2)

where I corresponds to the concentration of -dopa or
gabapentin, respectively.

Statistical analyses were carried out by one-way
ANOVA with Dunnett’s post-hoc test.

Preparation of rat cerebrum

An animal experiment was approved by the Committee
of the Ethics of Animal Experimentation of Sookmyung
Women’s University (SMWU-IACUC-1405-009). Three
male Sprague-Dawley (SD) rats (Koatech, Gyeonggi-do,
Korea) at aged of 8 weeks (250-350 g) were anesthetized
intramuscularly with 100 mg/kg ketamine (Yuhan, Seoul,
Korea). After SD rat was anesthetized, the rat was de-
capitated and the cerebrum was immediately removed.
The cerebrum was homogenized with 5 ml syringe (18
gage needle). These homogenized cerebrum tissues
(30 mg) were used to isolate total RNA for real-time
PCR analysis.

Real-time PCR analysis

Total RNA was isolated from cultured TR-BBB cells and
rat cerebrum tissues by using the RNeasy Mini Kit from
Qiagen (Qiagen, Valencia, CA) according the manufac-
turer’s instructions. Total RNA (2 pg) was reverse-
transcribed by using the High Capacity cDNA Reverse
Transcription Kit (Applied Biosystems, Life Technologies).
Real-time PCR was performed in 48-well plates with the
StepOne apparatus (Applied Biosystems, Life Technologies)
using the MGB Tagman probe assay. Probes for LAT1, sys-
tem b%*, CAT1 and endogenous control GAPDH were
purchased from Applied Biosystems (Rn00569313 ml,
Rn00588400_m1, Rn00565399_m1 and Rn99999916 _s1, re-
spectively). Each reaction contained 5 pl Tagman Universal
PCR Mastermix in a total volume of 10 pl, and 1 pl cDNA
was added to the reaction. Real-time PCR reactions were
performed at 50 °C for 2 min, 95 °C for 10 min, followed by
40 cycles of 15 s at 95 °C and 1 min at 60 °C. The results of
the analysis were calculated in relation to the GAPDH
product, and the results were calculated according to, and
expressed by an equation (27“") that gives the amount of
target, normalized to an endogenous reference and relative
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to a calibrator. Ct is the threshold cycle for target amplifica-
tion (Livak and Schmittgen 2001).

rLAT1, system b%*, and CAT1 small interfering RNA and
small interfering RNA transfection

Transient knockdown of rLAT1, system b** and CAT1
in TR-BBB cells was achieved by using small interfering
RNA (siRNA) from Dharmacon, GE (Landsmeer,
Netherlands). rLAT1, system b®*" and CAT1 were tar-
geted with a SMART pool containing 4 different siRNAs
and with each single siRNA individually. The final
concentration of siRNA was 200 nM. The rLATI, sys-
tem b%" and CAT1 or control siRNA was delivered indi-
vidually into TR-BBB cells by using Lipofectamine 2000
(Invitrogen, Carlsbad, CA, USA) according to the manu-
facturer’s protocol. Cells were used for quantitative real-
time PCR and [**C];-citrulline uptake was analyzed at
48 h after the initiation of transfection.

Results

Characterization of ['*C], ~citrulline transport by TR-BBB cells
To investigate the |-citrulline transport system at the
BBB, we first performed the [C], -citrulline uptake
study using TR-BBB cells, as an in vitro model of the
BBB. The uptake of [**C] -citrulline was increased in a
time-dependent manner and it was linear for 5 min
(Fig. 1). Therefore, [**C] | -citrulline uptake by TR-BBB
cells was assessed at 5 min in the subsequent kinetic and
inhibition studies. In addition, [**C] | -citrulline uptake
by TR-BBB cells showed no significant difference in the
absence of Na* or Cl™ in the uptake buffer (Table 1).
These results suggested that the transport of 1 -citrulline
in TR-BBB cells was mediated by a sodium- and chloride-
independent transporter.
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Fig. 1 Time-course of ["*C],itrulline uptake by TR-BBB cells. [“C], -citrulline
(444 uM) uptake was performed at 37 °C in ECF buffer. Each point

represents the mean + SEM. (n=3-4)
- J




Lee and Kang Journal of Biomedical Science (2017) 24:28

Table 1 lon-dependence of ["*C],citrulline uptake in TR-BBB cells

Substrate Uptake of ["“Cl ~citrulline
(% of control)

Control 100+£19

Choline Chloride 833+57

Licl 1162+52

Sodium gluconate 1039+ 638

["*CJ.-Citrulline uptake by TR-BBB cells was performed at pH7.4 and 37 °C for
5 min in the presence or absence of sodium and/or chloride. Each value represents
the mean £ SEM. (n=3-4)

To analyze the kinetics of [*C], -citrulline uptake by
TR-BBB cells, we examined the concentration depend-
ence of [**C]-citrulline uptake. The transport of [**C]
L-citrulline was saturable (Fig. 2). Kinetic analysis pro-
vided two components with a K,; value of 309+
1.0 uM and a K, value of 1.69 + 0.43 mM, which fitted
into the Michaelis-Menten equation. In addition, the
Vmax1 value was 185 nmol/mg/min, and the V .4, value
was 3.19 pmol/mg/min. The Eadie-Hofstee plot for [**C]
L-citrulline uptake showed two straight lines, indicating
two saturable processes. These data implied that  -citrul-
line transport in TR-BBB cells involved carrier mediated
transport system.

Effect of various (-amino acids on ['*C] ~citrulline transport
by TR-BBB cells

To examine the | -citrulline transport mechanism related
to p-amino acids in TR-BBB cells, [**C] i-citrulline

Page 4 of 10

uptake was measured in the presence of 2~20 mM
unlabeled | -amino acids. The uptake of [**C] | -citrulline
in TR-BBB cells was strongly inhibited by various neu-
tral amino acids such as p-phenylalanine and it was
significantly inhibited by cationic amino acids such as
L-arginine and 1-lysine. Substrates of system ASC such
as r-alanine, p-serine and i-cysteine also significantly
inhibited [**C] |-citrulline uptake in the cells. In con-
trast, anionic amino acids including -glutamate and
L-aspartate did not inhibit the uptake in TR-BBB cells
(Table 2). These results indicated that ; -citrulline trans-
port in TR-BBB cells is related to neutral and cationic
amino acid transport.

Effect of inhibitors of several transporters on [**C]  ~citrulline
transport by TR-BBB cells

To identify the transporters involved in i-citrulline
transport in TR-BBB cells, an inhibition study assessing
the effect of several transporter inhibitors on [**C] | -cit-
rulline uptake was conducted. [**C];-citrulline uptake
was markedly inhibited by BCH, which is the inhibitor
of systems L, B° and B%*. In addition, harmaline, the
inhibitor of system b®" significantly reduced the uptake
to 39% of the control. However, there was no inhibition
effect of -methylmaleimide, homoarginine, and N-
(methylamino) isobutyric acid (MeAlIB), which are the
inhibitors of systems y'L, y*, and A, respectively
(Table 3). These results implied that p-citrulline trans-
port in TR-BBB cells is related to systems L and b%".
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Fig. 2 Saturation kinetics of [MC) ~citrulline uptake by TR-BBB cells. Uptake of ['“C) ~citrulline was measured in TR-BBB cells with 5 min incubation
in the presence of 0-5 mM unlabeled |-citrulline at pH 7.4 and 37 °C. The data (insert) are shown as an Eadie-Hofstee plot. The values of v and s
represent the initial pseudolinear uptake (hnmol/mg protein/min) and | -citrulline concentration (uM), respectively. The data represent the
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Table 2 Effect of |-amino acids on uptake of ['“C],-citrulline in

TR-BBB cells
Substrate Concentration Uptake of [14C]L—citrulline
(mM) (% of control)
Control 10013
~Citrulline 2 36.0 £ 2.1%%*
-Valine 2 315+ 1.4%%
-Leucine 2 494 + 58%**
20 172 £3.9%
-Phenylalanine 2 13.7 £1.8%%*
20 134+ 1.4
-Glutamine 2 375+ 1.3%%
-Alanine 2 730+ 64%*
-Serine 2 79.7 +2.5%
-Cysteine 2 484+ 26"
-Arginine 2 599+ 6.6"*
20 532 £4.4%%%
-Lysine 2 745+ 90"
20 66.78 £ 2.1*
-Glutamate 2 102.8+7.8
-Aspatate 2 101.5+86

['“Cl ~Citrulline uptake by TR-BBB cells was performed at pH7.4 and 37 °C for

5 min in the presence or absence of 2-20 mM |- amino acids. Each value represents
the mean £ SEM. (n =3-4). *p < 0.05, **p < 0.01, ***p < 0.001; significantly different
from control

Inhibition of [**C] ,-citrulline uptake by several drugs in
TR-BBB cells

To investigate the transport effect between i-citrulline
and several drugs in TR-BBB cells, we conducted the in-
hibition study for [**C] |-citrulline uptake in TR-BBB
cells. 1 -dopa and gabapentin, which are the substrates of
system L, strongly inhibited the uptake of [**C] | -citrul-
line. In addition, verapamil and quinidine significantly
inhibited the wuptake of -citrulline. In contrast,

Table 3 Effect of several transporter inhibitors on uptake of
["C),~citrulline in TR-BBB cells

Substrate Concentration Uptake of (") ~citrulline
(mM) (% of control)
Control 100£1.3
BCH 2 253 £ 4.4%**
20 28.1 £ 11.6%*
Harmaline 2 61.0£105%
Methylmaleimide 2 103.2+£10.1
Homoarginine 2 9598+ 13.8
MeAIB 2 99.8+63

['“C],-Citrulline uptake by TR-BBB cells was performed at pH7.4 and 37 °C for

5 min in the presence or absence of 2-20 mM inhibitors. Each value represents
the mean £ SEM. (n =3-4). *p < 0.01, ***p < 0.001; significantly different

from control
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donepezil, tacrine, dopamine and riluzole had no effect
on [*C] | ~citrulline uptake in TR-BBB cells.

Inhibitory effect of several .-amino acids and drugs on
[**C],-citrulline transport by TR-BBB cells

The dose-response relationship for the inhibition of
[**C], -citrulline uptake by -phenylalanine, 1 -arginine, 1 -
dopa and gabapentin in TR-BBB cells is given in Fig. 3.
The IC5q values for 1 -dopa, gabapentin, 1 -phenylalanine
and p-arginine were 501 uM, 223 uM, 68. 9 pM and
33.4 mM, respectively.

Lineweaver—Burk plot for |-citrulline uptake in TR-
BBB cells showed the inhibitory effect of ;-dopa and
gabapentin (Fig. 4). [**C] |-Citrulline uptake in TR-BBB
cells was competitively inhibited by | -dopa and gabapen-
tin with K; values of 486 uM and 679 uM, respectively.

Expression of mRNA for LAT1 and system b®* in TR-BBB
cells

To evaluate which transport system was mainly used for
L-citrulline transport in TR-BBB cells, we performed
real-time PCR analysis of the mRNA expression of
LAT1 and system b®* in TR-BBB cells and rat whole
brain. The mRNA expression level of LAT1 was about
187 fold higher compared with system b%* in TR-BBB
cells. But, the mRNA expression level of LAT1 was 57.4
fold higher in comparison with system b%* in rat cere-
brum (Fig. 5). These results suggest that LAT1 is mainly
involved in | -citrulline transport in TR-BBB cells.

Effects of rLAT1, system b®* and CAT1 siRNA on transcript
levels of rLAT1, system b®* and CAT1 and ['*C] ,-citrulline
uptake in TR-BBB cells

In order to confirm whether LATI, system b%" and
CAT1 were involved in p -citrulline transport in TR-BBB
cells, we performed rLAT1, system b®" and CAT1
knockdown by siRNA transfection into TR-BBB cells.
The transcript level of each mRNA and [**C] | -citrulline
uptake were determined 48 h after siRNA transfection
into TR-BBB cells. The transcript levels of rLAT1, sys-
tem b%" and CAT1 were significantly decreased by 60,
28 and 65%, respectively, compared to that of control
siRNA on quantitative real-time PCR analysis (Fig. 6a).
On the other hand, [**C];-citrulline uptake in TR-BBB
cells transfected only with rLAT1 siRNA was signifi-
cantly reduced by 34% compared with that of control
siRNA (Fig. 6b), suggesting that LAT1 is mainly involved
in [**C], -citrulline uptake by TR-BBB cells.

Discussion

The purpose of this study was to investigate the transport
characteristics of -citrulline with use of various com-
pounds and drugs at the BBB. Brain endothelial cells are
the main component of the BBB and they express many
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Fig. 3 Dose-response relationship for the inhibition of [“C] citrulline uptake by several |-amino acids and drugs. Uptake of ['*C],-citrulline was
measured in TR-BBB cells with 5 min incubation in the presence of 0-20 mM unlabeled | -phenylalanine (open circle) and | -arginine (closed triangle),
0-5 mM -dopa (open triangle) and gabapentin (close circle) at pH 7.4 and 37 °C. The data represent the mean + SEM. (n = 3-4)

transporters for substances, such as drugs, chemical com- L-Citrulline transport has been reported to be medi-
pounds, amino acids, and proteins [23]. Due to the different — ated by Na* independent and/or Na" dependent trans-
structures and properties of substrates or drugs, it is im-  port system in different cell types such as rat intestinal
portant to understand the transport system in order to  Caco-2 cells, macrophages, etc. [19]. Our results showed
regulate their permeability from blood to brain. In the  that the uptake of [**C] -citrulline was a time-dependent
present study, we used TR-BBB cells which were estab-  (Fig. 1), but Na* and Cl -independent (Table 1) trans-
lished as an in vitro model of the BBB by Hosoya et al. [21].  port occurred in TR-BBB cells. In the kinetic uptake
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Fig. 4 Lineweaver-Burk plots for ['*C], citrulline uptake by TR-BBB cells showing competitive inhibition by ,-dopa and gabapentin. ['“C], -citrulline
(44.4 uM) uptake was performed in the presence of 300 uM |-dopa (close circle) and 300 uM gabapentin (close triangle) or in their absence (open circle)
in TR-BBB cells at pH 7.4 and 37 °C for 5 min. The data represents the mean + SEM. (n = 3-4)
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Fig. 5 LAT1 and system b®" mRNA expression was determined by Tagman real-time PCR analysis in the rat cerebrum and in TR-BBB cells. Total
RNA (2 pg) was reverse-transcribed and cDNA was amplified by real-time PCR. (+) and (-) represent the presence or absence of reverse transcriptase,
respectively. The results were calculated using the comparative Ct (2722 method for relative quantification based on GAPDH mRNA expression and
are shown as a fraction of relative LAT1 and system b%" expression in rat cerebrum and TR-BBB cells. Each value represents the mean + standard error
(SE) of three determinations

study of [YC], -citrulline, | -citrulline was transported by
two saturable carrier-mediated transport systems (Fig. 2).
These data suggested that transport of -citrulline in-
volves Na'*-independent carrier-mediated transport sys-
tems in TR-BBB cells. Regarding the interaction of
various amino acids with {-citrulline transport in TR-
BBB cells, the uptake of [**C];-citrulline was strongly
inhibited by neutral amino acids and it was significantly
inhibited by small neutral amino acids and cationic
amino acids (Table 2). However, there were no inhibition
effects of several anionic amino acids including | -glu-
tamate and p-aspartate (Table 2). These results were in

accordance with the results obtained in HK-2 cells in
the previous study by Mitsuoka et al. [20]. System Xxg
may not be involved in the transport of |-citrulline at
the BBB, as ;-citrulline is in a zwitterionic state at
physiological pH [24]. Thus, these data suggested that | -
citrulline transport is mediated by both neutral amino
acid and cationic amino acid transport systems. When
we investigated the inhibition effect of candidate inhibi-
tors of several transporters on p-citrulline transport in
TR-BBB cells, [**C]; -citrulline uptake was decreased by
about 75% with BCH (Table 3). BCH is an amino acid-
related compound that has been used as a selective
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inhibitor of system L including LAT1 and LAT?2 [25, 26].
It has also been reported as the inhibitor of systems B’
and B%* [27]. However, systems B and B%* are usually
related to the Na*-dependent transport system for neu-
tral amino acids [18]. Thus, these results indicated that
BCH acted as the inhibitor of system L for | -citrulline
transport in TR-BBB cells. In addition, harmaline, which
is the inhibitor of system b®* [27], significantly inhibited
the uptake of [C], -citrulline by about 40% in the cells
(Table 3). These data implied that -citrulline transport
systems in TR-BBB cells may involve systems L and b%*
as Na'-independent transport systems. Previous reports
have also mentioned that LAT1 is mainly expressed in
bovine brain capillaries [28, 29]. Based on these reports
and our results, we performed further studies to com-
pare the mRNA expression of LAT1 with that of system
b®* in TR-BBB cells by quantitative real-time PCR
(Fig. 5) in order to investigate which transport system is
mostly involved in |-citrulline uptake. We confirmed
that the mRNA expression level of LAT1 was predomin-
antly increased by about 187 fold compared with that of
system b®* in TR-BBB cells. Also, LAT1 expression was
highly increased by 57 fold in comparison with that of
system b** in rat cerebrum. Moreover, in the functional
study of LAT1 and system b%" knockdown using siRNA
transfection, quantitative real-time PCR results showed
that the transcript levels of rLAT1 and system b%*
siRNA were significantly reduced compared with that of
control siRNA (Fig. 6a), whereas [**C]; ~citrulline uptake
by TR-BBB cells transfected with only rLAT1 siRNA
was significantly reduced by 34% compared with that of
control siRNA (Fig. 6b). Therefore, our finding strongly
indicated that LAT1 is mainly involved in -citrulline
transport in TR-BBB cells, even though system b®" is
slightly expressed in the BBB. O’Kane RL et al. have re-
ported that harmaline is an inhibitor of system b%* [27],
but it was not considered to be a specific inhibitor of
system b”* only in TR-BBB cells because harmaline has
been reported to interact with numerous receptors as
well as ion exchangers and voltage-sensitive channels
[30]. In addition, based on our results of the inhibition
study with -arginine (Table 2.), we also confirmed
whether the cationic amino acid transporter 1 (CAT1) is
involved in -citrulline transport in TR-BBB cells by
performing CAT1 siRNA transfection (Fig. 6). CAT1
has been reported to be the main |-arginine trans-
porter in the BBB [31]. CAT1 transports such basic
amino acids, and its expression is concentrated in
brain capillaries [32]. The uptake study of [**C] |-cit-
rulline showed that there was no significant reduction
by CAT1 siRNA when compared with that by control
siRNA in TR-BBB cells (Fig. 6b). These results im-
plied that CAT1 is less relevant for |-citrulline trans-
port in TR-BBB cells.
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On the other hand, the K, values of LAT1 show about
10 ~ 100 uM of high affinity and 1 ~ 10 mM of low affin-
ity in the BBB [28, 33]. Actually, the K,,, values of | -cit-
rulline (K; =30.9 pM and K,» =1.69 mM) in TR-BBB
cells were in the similar range as the values of LAT1 in
previous studies. [-Arginine significantly inhibited the
uptake of [**C], -citrulline (Table 2) and the ICs, value
of -arginine was 33.4 mM (Fig. 3) in TR-BBB cells.
Especially, the reason why co-treatment with | -arginine
inhibited the transport of {-citrulline can be considered
to be the strong interaction between |-arginine and
L-citrulline due to their structural similarity [2]. In our
results, the ICsy value of | -arginine was relatively high
compared with those of -phenylalanine, -dopa and
gabapentin. These results implied that -arginine is
transported by a different transport system such as
CAT1 and system b%*. Moreover, |-arginine transport
may have a negligible effect on {-citrulline transport in
clinical conditions due to the high IC5y value with a mil-
limolar (mM) level for p-arginine in this study. It has
been reported that | -citrulline has better absorption and
systemic bioavailability than 1-arginine [34, 35] and it
did not induce osmotic diarrhea at high dosage com-
pared with p-arginine [36]. Also, if there is a different
transport system for | -arginine as shown by our results,
it can be considered that | -citrulline treatment is a more
effective therapeutic method for | -arginine deficiency in
clinical conditions. In addition, Shen L] et al. have
reported that argininosuccinate synthase (AS) activity
plays a pivotal role in intracellular citrulline-arginine re-
generation via eNOS for NO production [37]. Therefore,
to elucidate the clinical effect for NO pathway related to
L-citrulline transport in the BBB, further studies are
remained to measure several parameters in NO pathway
such as AS, NOS proteins and NO etc. related to -cit-
rulline transport in TR-BBB cells.

In the inhibition study between p-citrulline transport
and CNS-acting drugs such as donepezil, tacrine, dopa-
mine and riluzole in TR-BBB cells, donepezil and tacrine
had no significant inhibition effect on [**C] |-citrulline
uptake (Table 4). Donepezil and tacrine, which are AChE
inhibitors and have been used as therapeutic agents for
Alzheimer’s disease (AD), show a relatively high distribu-
tion in the brain [38—40]. These drugs show a competi-
tive inhibition of choline transport via OCT2 in TR-BBB
cells [41] and they are transported across the BBB to the
brain via the choline transport system, CHT1 [42, 43].
Due to the use of this transport system for donepezil
and tacrine in the BBB, it seems that these drugs do not
have inhibition effect for -citrulline transport in TR-
BBB cells. We also confirmed that dopamine, riluzole
and taurine had no significant effects on [**C] | -citrul-
line uptake in TR-BBB cells. Dopamine is a neurotrans-
mitter belonging to the family of catecholamines, and it
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Table 4 Effect of several drugs on uptake of ["C],~citrulline in

TR-BBB cells
Substrate Concentration Uptake of [14C]L—citrulline

(mM) (% of control)
Control 10013
-Dopa 0.5 52.1 £6.6%

2 21.6+2.8%*
Gabapentin 0.5 450+ 2.52%%*

5 296+ 273
Verapamil 0.5 309+ 0.3%**
Qunidine 05 52.5+3.0%*
Dopamine 2 1105+27
Donepezil 2 855+59
Riluzole 2 939+83
Taurine 2 90.5+44

['*C] ~Citrulline uptake by TR-BBB cells was performed at pH7.4 and 37 °C for

5 min in the presence or absence (control) of 2 mM drugs (except for 500 uM
quinidine, verapamil and 200 uM of riluzole). Each value represents the mean + SEM.
(n =3-4). *p < 0.01, **p < 0.001; significantly different from control

is a therapeutic agent for Parkinson’s disease (PD) in the
brain. In the BBB, dopamine is transported by rat plasma
membrane monoamine transporter (fPMAT) in TR-BBB
and TR-CSFB cells [44]. Transport of taurine, a beta-
amino acid and has neuroprotective effect, which is
mediated by TAUT in TR-BBB cells [22]. Riluzole
(2-amino-6-trifluoromethoxy benzothiazole) is a neuro-
protective drug approved for amyotrophic lateral scler-
osis [45] and activates GLT-1 and GLAST to enhance
glutamate uptake [46, 47], but there have been poor
mechanistic experiments to transport riluzole across the
BBB to the brain. {-Citrulline transport is not affected
by these two drugs via different transport systems in
TR-BBB cells. However, -dopa, gabapentin, verapamil,
and quinidine significantly inhibited the uptake of
[1*C], -citrulline (Table 4). It has been reported that -
dopa and gabapentin are transported across the BBB by
LAT1 [48, 49]. Therefore, we hypothesized that the
transport systems for [-citrulline might involve mainly
LAT1. The ICs, values for ;-dopa and gabapentin were
501 uM and 223 uM, respectively (Fig. 3) and they com-
petitively inhibited -citrulline uptake with 486 uM and
679 uM as the K; values for ;-dopa and gabapentin, re-
spectively in the Lineweaver-Burk plot analysis (Fig. 4).
These results indicated that p-citrulline may also be a
substrate of LAT1 in TR-BBB cells, as ; -dopa and gaba-
pentin compete with p-citrulline for the same binding
site on LAT1. However, the maximal plasma concentra-
tions (Cpax) of (-dopa and gabapentin at steady state
were 1~20 uM and 23 ~ 80 pM, respectively [50, 51].
These results demonstrated that the K; values for | -dopa
and gabapentin are several times higher than their C .
Therefore, these drugs may not significantly inhibit

Page 9 of 10

L-citrulline transport via LAT1 at the BBB in clinical
conditions. Kageyama et al. reported that ;-dopa is
transported by LAT1 in MBEC4 cells [48]. However,
there was no inhibition effect on {-dopa transport with
cationic amino acids including | -arginine and | -lysine in
their study. These results were not in agreement with
our results for p-citrulline transport in TR-BBB cells.
Therefore, for | -citrulline transport across the BBB, the
effects of cationic amino acids, not ; -dopa and gabapen-
tin in TR-BBB cells should be further studied. Further-
more, -citrulline transport across the BBB was also
inhibited by CNS-acting drugs such as -dopa and gaba-
pentin via LAT1. Thus, to understand the detailed
mechanism of the transport system in therapeutics for
CNS disorders across the BBB, further studies related to
amino acid transport systems are required.

Conclusions

Our results demonstrated that p-citrulline transport
might be mainly mediated by LAT1 in TR-BBB cells.
Understanding the transport characteristics of {-citrul-
line to the brain through BBB might contribute to
the transport strategy for -citrulline as a potential
therapeutic agent for cerebrovascular diseases such as
brain ischemia.
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