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Abstract

Plasma free fatty acids levels are increased in subjects with obesity and type 2 diabetes, playing detrimental roles
in the pathogenesis of atherosclerosis and cardiovascular diseases. Increasing evidence showing that dysfunction
of the vascular endothelium, the inner lining of the blood vessels, is the key player in the pathogenesis of
atherosclerosis. In this review, we aimed to summarize the roles and the underlying mechanisms using the evidence
collected from clinical and experimental studies about free fatty acid-mediated endothelial dysfunction. Because of the
multifaceted roles of plasma free fatty acids in mediating endothelial dysfunction, elevated free fatty acid level is now
considered as an important link in the onset of endothelial dysfunction due to metabolic syndromes such as diabetes
and obesity. Free fatty acid-mediated endothelial dysfunction involves several mechanisms including impaired insulin
signaling and nitric oxide production, oxidative stress, inflammation and the activation of the renin-angiotensin system
and apoptosis in the endothelial cells. Therefore, targeting the signaling pathways involved in free fatty acid-induced

endothelial dysfunction could serve as a preventive approach to protect against the occurrence of endothelial
dysfunction and the subsequent complications such as atherosclerosis.
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Background

Cardiovascular diseases (CVDs), particularly coronary
heart disease (CHD), account for the major causes of mor-
tality worldwide [1]. The presence of atherosclerosis is a
very common characteristic in patients with CHD [1], and
that endothelial dysfunction (ED) is suggested as one of
the early events in the pathogenesis of atherosclerotic pro-
gression. The vascular endothelium is a tightly regulated
organ that forms a vast interface between the blood and
neighboring tissues, and is consisted of a monolayer of
endothelial cells (ECs). It regulates a wide range of func-
tions, including the maintenance of the balance between
vasodilation and vasoconstriction, the maintenance of
thrombosis and hemostasis, and other inflammatory re-
sponses in order to regulate the normal functioning in the
circulatory system. However, various harmful stimuli such
as oxidative stress and inflammation can alter the normal
endothelium functioning and lead to the onset of ED. ED
can be expressed as an imbalanced ratio of vasodilation to
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vasoconstriction induced by the endothelium, and such
impairment in vasodilation is mainly due to the dimin-
ished release of nitric oxide (NO), the most important
vasodilatory agent that is released by the ECs. Although
impaired NO production is the main characteristic feature
of ED, the production and/or utilization of other vasodila-
tory agents such as prostacyclin (PGI,) and bradykinin are
also compromised in the context of ED.

Free fatty acids (FFAs), or non-esterified fatty acids
(NEFAs), are well-known risk factors of CVDs [2], and are
closely related to the events of metabolic syndromes
(MetS), such as obesity and type 2 diabetes mellitus
(T2DM) [3]. Recent studies have shown that FFAs not only
are the major causes of insulin resistance [4, 5], but they
are also responsible for inducing inflammatory events in
the tissues targeted by insulin, such as ECs, liver and skel-
etal muscle [3, 6]. Therefore, elevated FFAs in blood are
considered as an important link between insulin resistance,
inflammation, obesity, T2DM and hypertension (HTN) [3].
The impairment of insulin-mediated glucose uptake is cor-
related to the circulating FFA levels, and such resistance to
insulin might be due to FFA-mediated inactivation of phos-
phoinositide 3-kinase (PI3K) [7]. Interestingly, cancer-
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related up-regulation of FFAs was also reported in several
types of cancer in many previous studies [8—11].

In addition, a growing body of evidence has suggested
the important role of FFAs in mediating ED. Specifically,
insulin resistance, oxidative stress, and inflammatory bur-
dens account for the substantial causes of FFA-induced
ED [12-14]. Generally, diabetes and other metabolic states
could give rise to elevated FFAs, which in turn impose a
direct effect on transcription factors that trigger inflam-
mation and oxidative stress in the endothelium [15]. Fur-
thermore, FFAs also facilitate apoptosis/necroptosis of the
ECs [16-18], and mediate many deleterious effects on
endothelial progenitor cells (EPCs) [19].

Biology of the endothelium and endothelial
dysfunction
Distribution, structure, and functions of the endothelium
The endothelium is a composition of a monolayer of ECs
which lines on the inner surface of the vascular lumen be-
tween flowing blood and vascular smooth muscle cells
(VSMCs) [20]. The endothelium has a thickness of <1 pm
and covers a surface area of 4000 m*> throughout the whole
circulation [21]. ECs are multifunctional; they are respon-
sible for a wide range of vital functions, including the
maintenance of vascular tone, blood fluidity and perme-
ability [21, 22]. The endothelium is also responsible for the
regulation of inflammatory responses and signals for the
regulation of hemostasis/thrombosis, fibrinolysis and
angiogenesis [20, 21, 23]. Thus, impairment of the endo-
thelial functions is suggested to play deleterious roles in
the development of several diseases, including inflamma-
tory angiitis syndrome, thrombotic embolism, disseminated
intravascular coagulation (DIC) disorder, and neovasculari-
zation, tumor progression and diabetic retinopathy [23].
ECs regulate various pathophysiological properties by
synthesizing and secreting various molecules relative of
the blood and/or to the extracellular matrix [24]. For ex-
ample, endothelium-secreted molecules such as angioten-
sin II (Ang II), endothelin-1 (ET-1), thromboxane A2
(TXA2), and prostacyclin H2 participate in vasoconstric-
tion, whereas, molecules such as NO, bradykinin, and hy-
perpolarizing factor contribute to vasodilation that helps
maintaining a balance between the vasoconstriction and
vasodilation [20]. The fine balance between these secreted
molecules is critical for a proper functioning of the endo-
thelium, and an imbalance of these molecules may contrib-
ute to failure in vascular auto-regulation, and influence the
structural and functional integrity of the circulation [24].

Importance and regulation of nitric oxide (NO) in
endothelial function

After the discovery of prostacyclin (or prostaglandin 12,
PGI,) and endothelium derived relaxing factor (EDRF),
NO was identified as the third endothelium regulator for

Page 2 of 15

vascular auto-regulation. In the endothelium, NO is syn-
thesized from L-arginine, a semi-essential amino acid, by
the endothelial nitric oxide synthase (eNOS), and L-
citrulline is the by-product of this pathway [25]. The bio-
synthesis of NO also requires many co-factors, such as
nicotinamide adenine dinucleotide phosphate (NADPH),
flavin mononucleotide (FMN), flavin adenine dinucleotide
(FAD), tetrahydrobiopterin (BH4), and calmodulin [25].
Following its synthesis, NO diffuses across the EC mem-
branes and enters the VSMCs where it activates guanylate
cyclase (GC). Activation of GC further gives rise to the
intracellular cyclic guanosine-3’,5-monophosphate (cGMP),
which, as a second messenger, mediates the biological ac-
tions of NO, including the control of vascular tone and
platelet aggregation [25—27]. Shear stress is a crucial factor
for the activation of eNOS under physiological circum-
stances; other signaling molecules such as bradykinin, ad-
enosine, vascular endothelial growth factor (VEGF), and
serotonin can also lead to the activation of eNOS [28].

Endothelial dysfunction: Pathogenesis and mechanisms
ED can be described as diminished production and/or
availability of NO, and an imbalance between the
endothelium-derived vasodilators and vasoconstrictors.
It is an event that accounts for the risk of CVDs and
precedes the development of atherosclerosis [20, 29].
Among the relevant mechanisms of ED pathogenesis,
proposed in previous studies, oxidative stress and in-
flammation account for the majority of them [12, 13,
29-31]. In particular, the inactivation of NO by oxidative
enzyme systems such as NADPH oxidase, xanthine oxi-
dase (XO), cyclooxygenases (COX), lipoxygenases
(LOX), myeloperoxidases (MPO), cytochrome P450
monooxygenase, uncoupled NOS, and peroxidases is
one of the critical mechanisms that leads to ED through
an elevated level of superoxide anion (O3) [31-33].
NADPH oxidase acts as an important source of O that
gives rise to vascular oxidative stress [31, 32], and ap-
proaches that could lower NADPH oxidase might have
reversing effects on ED [14].

Also, eNOS uncoupling is another mechanism of ED
that leads to increased O3 synthesis instead of NO syn-
thesis, in a scenario where BH4 is inadequate; restor-
ation of BH4 can reduce uncoupled eNOS and reverse
oxidative stress-induced ED [31, 34, 35]. Oxidative
stress-induced ED is a major concern observed in pa-
tients with CVDs and MetS [30, 33, 36]. Many studies
have suggested a role of inflammation in ED that under-
lies the pathogenesis of CVDs, obesity and T2DM. Ele-
vated levels of pro-inflammatory cytokines such as
tumor necrosis factor-alpha (TNF-a), interleukin-1beta
(IL-1P), interleukin-6 (IL-6), and interferon gamma
(IFN-y) were observed in age-related ED, both in ro-
dents and humans [37, 38], mainly via the activation of
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the NF-«B (nuclear factor-kappa B) pathway [37, 39, 40].
NF-kB, with the association of IKK, controls the global
pro-inflammatory response in ECs [41], and acts as an
effective “transducer for feed forward activation” of oxi-
dative stress and inflammatory signaling, subsequently
leading to ED by means of increased NADPH oxidase-
mediated ROS upregulation, and upregulation of the
pro-inflammatory cytokines such as IL-6 and TNF-a
[42, 43]. Therefore, NF-xB is considered as a potential
therapeutic target for the control and prevention of ar-
terial aging and atherosclerosis [41, 42].

In addition, ED can also be induced by many factors
such as dietary intake, drugs, and aging. For example,
high-fat diet (HFD) induces a downregulation of the
endothelial AMPK-PI3K-Akt-eNOS pathway which in
turn causes ED; such downregulation of the AMPK-
PI3K-Akt-eNOS pathway correlates with increased
plasma levels of FFAs and TG, and an impaired glucose
utilization [44]. Besides, uric acid (UA), which is a final
product derived from purine metabolism pathway, can
induce ED via the high mobility group box chromosomal
protein 1/receptor for advanced glycation end products
(HMGB1/RAGE axis). UA inhibits eNOS expression and
subsequent NO production in human umbilical vein
ECs (HUVECs:), by increasing intracellular HMGB1 ex-
pression and extracellular secretion of the protein. UA
also upregulates RAGE expression and other inflamma-
tory cytokines, possibly via the activation of NF-«xB tran-
scription factor [45]. A role of HMGBI in inducement
of ED, triggered by FFAs, has also been shown in a pre-
vious study [46], which will be further discussed later in
Section 4.3; other mechanisms by which FFAs can medi-
ate ED have been discussed in Section 4. Drug-induced
generation of ROS and inflammation also play a major
role in the onset of ED. Several classes of drugs, includ-
ing anti-cancer drugs, immunosuppressive drugs, anti-
retroviral drugs, and others, have been known to induce
ED. For example, doxorubicin (DOX) induces ED in a
VEGF-dependent manner, and targeting VEGF rescues
DOX-induced ED [47, 48]. Alteration in endothelial
markers such as PGH2, TXA2, NO, ET-1, thrombomo-
dulin and von Willebrand factor (vWF) are seen as aging
progresses. Notably, NO production is reduced in elderly
people which has also been seen in aged animals
through a downregulation of eNOS. On the other hand,
ET-1 expression is also increased with aging; ET-1 in-
hibits acetylcholine (ACh)-dependent platelet inhibition
in the endothelium and is a promoter of vWF expres-
sion. vWF is negative regulator of NO and a well-known
marker of ED [49]. More recently, Medin, a common
amyloidogenic protein in humans, especially in older in-
dividuals, has been shown to induce ED. In ex vivo hu-
man adipose and leptomeningeal arterioles, the protein
could decrease NO production, increase peroxynitrite,
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and superoxide production and enhance the expression
of the proinflammatory markers such as IL-6 and IL-8
as well as the NF-kB transcription factor. These effects
were shown to be mediated through RAGE and inhib-
ition of RAGE by its specific inhibitor, FPS-ZM1, could
reverse all such changes [50].

Several compounds with therapeutic value against ED,
in different diseased states, have been reported in the re-
cent years. Rosuvastatin, a lipid-lowering statin, has been
shown to improve endothelial function in patients with
inflammatory joint diseases, systemic sclerosis and
chronic heart failure (CHF) [51-53]. Particularly, in the
CHF patients, the drug improved the flow-mediated
dilation (FMD) by inducing antioxidant effects, neovas-
cularization and Akt phosphorylation [53]. Protective
roles of pitavastatin in obesity-related ED [54], by in-
creasing FMD and lowering triglycerides, and gliclazide
in T2DM-related ED [55], by increasing FMD and EPCs,
have also been reported. Pioglitazone, a peroxisome
proliferator-activated receptor gamma or PPARy agonist,
was shown to prevent ischemia-induced ED in healthy
subjects [56], and improve endothelial and adipose tissue
dysfunction in pre-diabetic patients with coronary artery
disease (CAD) [57]. In the CAD patients, the drug could
improve FMD, reduce TNF-a and other inflammatory
markers, and improve insulin sensitivity [57]. A synergis-
tic protective effect of pioglitazone with quercetin, a nat-
urally occurring plant polyphenol, on ED has also been
shown on isolated rat aorta with the characteristics of
T2DM [58]. A detailed meta-analysis on the effects of
thiazolidinediones on the FMD has been reported else-
where [59]. In a more recent study, it has been shown
that the drug could protect EPCs by upregulating long
non-coding RNA maternally expressed 3 (IncRNA
MEG3) in MetS patients [60]. However, it should be
noted that pioglitazone can induce heart failure in pa-
tients with underlying heart disease [61]. Efficacy of
dipeptidyl peptidase IV (DPP-1V) inhibitors against ED
has also been reported [62]. Efficacy of more drugs with
multifaceted mechanisms in different diseased states
with ED has been reviewed elsewhere [63]. Butyrate, a 4-
carbon FA, when given orally in ApoE™~ mice, can
lessen atherosclerotic development by reducing ROS
load in ECs and macrophage migration and activation at
the site of lesion; such reduction of ROS by butyrate is
mediated through downregulation of the oxidative en-
zymes such as NADPH oxidase and iNOS in athero-
sclerotic lesions [64].

In addition, protective roles of many natural products,
such as Traditional Chinese Medicines (TCM), have
been reported to improve endothelial function. Tongxin-
luo, a TCM against CVDs, mediates protective role
against ED in rats by means of lowering ET-1, and in-
creasing NO [65]. Danshensu, another TCM, which is a
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water-extractable component of the medicinal herb Sal-
via miltiorrhiza, protects the endothelium in rats with
hyperhomocysteinemia by modulating the abnormality
in the parameters such as NO, ET-1, and other inflam-
matory markers induced by hyperhomocysteinemia [66];
homocysteine is a byproduct of numerous biological
processes in the human body and, when elevated, it may
be associated with severe atherosclerosis and thrombotic
occlusions [67]. Some other types of TCM formulations
with potential effects on the endothelium have been de-
scribed elsewhere [68]. Other compounds having poten-
tial effects on endothelial function, which can be
disturbed by FFAs, have been discussed in the later
parts.

FFAs and their role in diseases

FFAs and their receptors

Fatty acids (FAs) are carboxylic acids with long aliphatic
chains containing a methyl group at one end, while a
carboxylic group at the other end. Depending on the
presence of double bonds, they are classified into satu-
rated fatty acids or SFAs with no double bonds, mono-
unsaturated fatty acids or MUFAs with only one double
bond and polyunsaturated fatty acids or PUFAs with at
least two double bonds [69]. SFAs are primarily derived
from animal and dairy products, coconut and palm oils,
whereas unsaturated FAs (UFAs) such as MUFAs and
PUFAs are found in olive oil, nuts and in some fatty
fishes [69].

FAs, depending upon their amino acid chain lengths,
can also be divided into three types: short-, medium-,
and long-chain FAs (SCFAs, MCFAs, and LCFAs, re-
spectively) [70]. SCFAs contain no more than 6 carbons,
while MCFAs contain 6-12 carbons, and LCFAs have
more than 12 carbons. Saturated FAs such as acetic acid
(C2:0), propionic acid (C3:0), butyric acid (C4:0), valeric
acid (C5:0) and caproic acid (C6:0) are examples of
SCFAs, while caprylate (C8:0), capric acid (C10:0) and
lauric acid (C12:0) are MCFAs; other SFAs such as myr-
istic acid (C14:0), palmitic acid or PA (C16:0) and stearic
acid or SA (C18:0), and all types of unsaturated FAs, in-
cluding MUFAs and PUFAs, fall under the category of
LCFAs [71].

The FFA sensing receptors (FFARs) belong to the G-
protein or guanine nucleotide-binding protein coupled
receptors (GPCRs) family [72]. Several GPCRs, includ-
ing GPR40 (FFAR1), GPR43 (FFAR2), GPR41 (FFAR3)
and GPR120 (FFAR4), have been found to be activated
by extracellular FFAs [70, 73]. While SCFAs bind to
FFAR2 and FFARS3, the other two subtypes, MCFAs and
LCFAs, bind to FFAR1 and FFAR4. The endogenous lig-
and potency (ECsp) of FFA2 and FFA3 for SCFAs is 0.1—
1.0 mM, while that of FFA1 and FFA4 for LCFAs is 1.0—
30 uM [73]. Detailed physiological and pathophysiological
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roles of these receptors have been described else-
where [72, 73].

FFAs and CVDs

SFAs are largely responsible for CVDs, while UFAs are
unlikely to cause CVDs, and rather UFAs are mostly
found to be protective against CVDs. SFAs increase low-
density lipoprotein (LDL), which is a major risk factor
for CVDs [74]. Studies suggest that LCFAs bear greater
risk for CHD than that by SCFAs or MCFAs [74]. The
most common LCFAs occurring in western diets are
myristic acid (14:0), PA (16:0) and SA (18:0). Previous
plasma metabolomic studies have confirmed PA as a
strong contributing factor to the development of athero-
sclerosis [75]. Several recent in vivo and in vitro studies
have revealed the mechanisms by which PA contributes
the pathogenesis of CVDs. A very recent study has
shown that PA is a promoter of inflammatory responses
and cellular senescence in cardiac fibroblasts which it
mediates via the activation of toll-like receptor 4 (TLR4)
and NLRP3 inflammasome, increasing mitochondrial
ROS load and mitochondrial dysfunction, and function-
ality loss of the cardiac fibroblasts [76]. Another study
has shown that PA could mediate apoptosis of the
VSMCs by inducing the TLR4 pathway and ROS gener-
ation [77]. The specific roles and mechanisms of FFAs,
in particular through mediation of ED, in the develop-
ment of CVDs have been discussed in the later parts of
this article (Section 4).

FFAs and insulin resistance: Role of oxidative stress and
inflammation

FAs possess different physiological roles - structurally
they contribute to the constituents of the membrane
lipids, including phospholipids and glycolipids, whereas,
functionally they are important as fuel molecules [78].
Although they are important sources of energy, particu-
larly during a fasting condition, abnormalities in FA me-
tabolism may contribute to the pathogenesis of MetS
[78], and may bear risks for developing atherosclerosis
[79]. In obesity, high levels of plasma FFAs are seen be-
cause of several reasons, such as release of more FFAs
by enlarged adipose tissue mass and that the FFAs clear-
ance may also be compromised in obesity [3, 80]. In
turn, higher levels of FFAs inhibit the anti-lipolytic ac-
tion of insulin, which further increases the rate of FFAs
release into the circulation [81]. Clinical studies have
shown that elevated level of FFAs leads to an insulin-
resistant state, and that lowering of FFAs can be benefi-
cial to insulin-stimulated glucose uptake [3]. Several
mechanisms underlie FFA-induced insulin resistance
such as intracellular accumulation of triglycerides (TG)
and diacylglycerol (DAG), activation of serine/threonine
kinases, reduced tyrosine phosphorylation of the insulin
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receptor substrate 1/2 (IRS 1/2) and impairment of the
IRS/phosphoinositol 3 kinase (PI3K) pathway, involved
in insulin signaling [3, 80]. By inducing an insulin-
resistant state in all major insulin target organs, includ-
ing the ECs, liver, and skeletal muscles [6, 80], FFAs
contribute to the progression of T2DM, HTN, dyslipid-
emia and nonalcoholic fatty liver disease (NAFLD) [80].
T2DM, which is manifested by a chronic insulin-
resistant state with progressive decline in functional sta-
tus of P-cells, is often associated with hypertriglyc-
eridemia or increased plasma concentrations FFAs [78].

FFAs are significant sources of reactive oxygen species
(ROS), which lead to the event of oxidative stress. Not
only in vascular cells [82], but also in other cells types,
such as hepatocytes [83], and immune cells [84], FFAs
lead to the generation of ROS, mainly through the acti-
vation of NADPH oxidase via protein kinase C (PKC)
[82, 84]. A role of PKC is also seen in FFA-induced in-
flammation; FFA-mediated inflammation also relates to
the IKK/NF-«B inflammatory signaling and leads to the
activation of TNF-a, IL1-B, and IL-6, and increased
plasma levels of the monocyte chemotactic protein-1
(MCP-1) [80]. All these inflammatory components play
a role in chronic inflammation that might cause insulin
resistance in the ECs [85, 86].

Interestingly, FFAs are also modulators of the NLRP3
inflammasome in the context of T2DM and obesity [87].
Inflammasomes act as both innate immune system re-
ceptors and sensors, and regulate a number of activities
such as the activation of caspase-1 and inducement of
inflammation; NLRP3 is the best characterized inflam-
masome [87] that can correlate to a number of human
diseases, including atherosclerosis, MetS and neurode-
generative diseases [88]. Palmitate or PA has been shown
to activate NLRP3, which in turn can enhance ROS gen-
eration in macrophages and subsequently weaken the
AMPK signaling, which is a negative regulator ROS gen-
eration and inflammation [89]. Using a mouse liver cell
line, it was also shown that palmitate is an inducer of
IL-1pB, which could suppress the insulin-induced Akt
phosphorylation, suggesting the development of insulin
resistance by FFA through the mediation of ROS and in-
flammatory signaling via the NLPR3 inflammasome.

Role of FFAs in inducing ED: Evidence from
clinical and experimental studies

FFAs induce ED via downregulation of the AMPK/PI3K/
Akt/eNOS signaling pathway

Insulin is a key mediator of NO-mediated vasodilation
[90], and 5" adenosine monophosphate-activated protein
kinase (AMPK) is important in insulin signaling that
serves as a target for against insulin resistance in MetS
and related diseases [91, 92]. Moreover, AMPK plays a
role in FA oxidation [93]. AMPK, which is a fuel-sensing
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enzyme, is activated by an increased AMP/ATP ratio fol-
lowing a number of stimuli such as exercise or its
pharmacological activators, and can further phosphoryl-
ate and inactivate Acetyl-CoA carboxylases (ACC),
which catalyzes the synthesis of malonyl-CoA and is im-
portant for FAs synthesis, a mechanism by which AMPK
increases the oxidation of FAs [86, 93], thus serving as a
target in MetS-related elevation in FAs. Not only so, but
also that AMPK can modulate both oxidative stress and
NF-kB-mediated inflammatory signaling [86]. FFAs
downregulate insulin-mediated production of NO and
peripheral blood flow via two mechanisms: 1) by redu-
cing tyrosine phosphorylation IRS-1/2 and 2) by inhibit-
ing the PI3K/Akt pathway, which not only controls
insulin-stimulated uptake of glucose but also regulates
eNOS — NO production in the ECs [80]. One study
showed that increased level of FFAs in the bloodstream
impairs endothelium-dependent vasodilation while the
endothelium-independent vasodilation remains unaffected
[94], suggesting FFAs have specific inhibitory roles on pro-
duction of NO in the ECs. Another study reported that in-
fusion of FFA in insulin-sensitive human subjects leads to
a significant reduction in NO synthase flux and an im-
paired shear stress-induced production of NO [95]. More
recently, effects of FFAs have been shown on eNOS activ-
ity by inhibiting eNOS mRNA expression in rat aortic ECs
and modulating eNOS activity through possible increases
in oxidative stress and inflammatory burdens [96]; a simi-
lar downregulation in insulin-mediated eNOS activity by
FFAs was shown through upregulation of PTEN (phos-
phatase and tensin homolog) and simultaneous inhibition
of Akt kinase [97]. The AMPK/PI3K/Akt/eNOS pathway
relative of ED has been extensively reported, which is di-
minished with the increasing level of FFAs, induced by
HFD [98]. Detrimental roles of the SFAs such as PA and
SA were shown in porcine aortic ECs (PAECs) through
the downregulation of eNOS [99]. Interestingly, even
though PUFAs have a protective role against ED [100],
their free circulating form could also mediate a negative
action on the endothelium by decreasing NO availability
and increasing ET-1 [101]. Storniolo and colleagues re-
ported that free forms of linoleic acid (LA), which is an ®-
6 PUFA, negatively regulate eNOS phosphorylation, and
consequently affect the level of intracellular NO availabil-
ity in ECV304 cells [102].

Protective role of several dietary constituents has been
shown in FFA-induced ED via the AMPK/PI3K/Akt/
eNOS pathway. For example, eicosapentaenoic acid
(EPA), which is an w-3 or n-3 PUFA, has a protective
role against PA-induced ED which is mediated via acti-
vation of the AMPK/eNOS pathway; EPA also mediated
its inhibitory effect on the PA-induced apoptosis of ECs
and activation of apoptosis-related proteins, such as
Caspase-3, p53 and Bax [18] (Table 1). Decreases in NO
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Table 1 Drugs/dietary constituents with beneficial effects against
FFAs-induced ED. This table shows the reported dietary nutrients/
drugs that have been shown to be effective against FFAs-induced

ED, and the potential mechanisms highlighted in these studies.
Two differently-colored texts in the table have been used to
highlight different studies on the same drug or the use of more
than one study model used within the same article

Drug/dietary constituent

Effects/relevant

Nature of the study

mechanisms

w-3 PUFAs (EPA) AMPK/eNOS In vitro study on
pathway 1 primary HUVECs [18]
iNOS |

Astragalus membranaceus

Cyanidin-3-O-glucoside

Dihydropyridine calcium
channel blockers (Nifedipine
and amlodipine)

L-carnitine

Losartan

Olive oil polyphenols

Perindopril

EC apoptosis,
Caspase-3,

p53/MAPK, Bax |

NADPH oxidase/
ROS |

NF-kB activation |
NO 1

Endothelium-
dependent

vasodilation 1
NF-kB |
Oxidative stress |

NF-kB activation
and adhesion

molecules |

Nrf2/EpRE
pathway 1

Forearm blood
flow responses to

ACh 1

Leucocyte
activation |

Oxidative stress |
NF-kB |
TNF-q, IL-6 |

IKKB/NF-k(3
phosphorylation |

IRS-1
phosphorylation |

NO production 1t

Endothelium-
dependent leg
blood flow t

Vasodilation 1
eNOS activity 1

IRS-1
phosphorylation |

eNOS activity 1
ET-1]

Vasodilation 1

Ex vivo study on rat
aortic rings [134, 141]

In vitro study on
primary HUVECs [131]

Clinical trial [128]

In vitro monocytic
cells [128]

In vitro study on
HUVECs [131]

Clinical trial [107]

Clinical study [139]

Study on rats [139]

In vitro study on
ECV304 cells [102]

Clinical study [141]
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Table 1 Drugs/dietary constituents with beneficial effects against
FFAs-induced ED. This table shows the reported dietary nutrients/
drugs that have been shown to be effective against FFAs-induced
ED, and the potential mechanisms highlighted in these studies.
Two differently-colored texts in the table have been used to
highlight different studies on the same drug or the use of more
than one study model used within the same article (Continued)

Salidroside eNOS activation,

NO production 1

AMPK/PI3K/Akt/
eNOS pathway,

Cellular AMP/ATP
ratio 1

In vivo study on
HFD-fed ApoE ™~
mice [106]

Atherosclerotic
lesion |

ROS, TNF-q, IL-6 |

IKKB/NF-kB
phosphorylation |

IRS-1
phosphorylation |

Withaferin A In vitro study on

primary HUVECs [129]

PI3K signaling 1

ET-1, PAILT | Ex vivo study on
Endothelium- rat aortic rings [129]
mediated

vasodilation 1

synthesis and increase in the level of ET-1 can be re-
versed by treatment with the olive oil polyphenolic com-
pounds [102]. There are many clinical studies reporting
the protective effects of EPA or olive oil constituents
such as oleic acid (OA) on FMD and other endothelial
markers [103-105], which, however, did not focus on
their effects on FFA-induced ED. Although the studies
by Lee et al. [18] and Storniolo et al. [102] have strong
implications that EPA and olive oil polyphenols can be
beneficial in FFA-induced ED, these studies were limited
to the use of in vitro models only; further animal or even
human studies should be carried out to support the ef-
fects of these compounds on FFA-induced ED. A role of
the mitochondria-related AMPK/eNOS pathway has also
been shown to alleviate ED and atherosclerosis in mice
fed with HFD [106]. Salidroside (SAL), an isolated phe-
nylpropanoid glycoside from the medicinal plant Rhodio-
larosea, mitigates ED and atherosclerosis by activating
the mitochondrial AMPK/PI3K/Akt/eNOS pathway and
promoting NO production [106]. Moreover, L-carnitine,
an important factor for FA transport/oxidation in the
mitochondria, attenuates FFA-induced obesity-related
ED in human subjects [107] (Table 1).

FFAs-induced ED through disruption of calcium signaling-
mediated NO production/release

Calcium signaling plays a crucial role in endothelial
function by facilitating the release of NO through
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activation of eNOS, which is a calcium-dependent en-
zyme [108]. Several receptor-operated agonists, such as
adenosine 5’-triphosphate (ATP) and bradykinin facili-
tate breakdown of phosphatidylinositol, leading to an in-
crease in the intracellular free calcium concentration
[109]. Intracellular calcium is important for mechano-
sensitivity responses of ECs [110], and that shear stress-
mediated release of NO largely depends on increases in
cytosolic calcium levels [111, 112]. Free forms of UFAs
such as oleic acid (OA) and linoleic acid (LA) diminish
ATP-induced mobilization and influx of intracellular cal-
cium in bovine aortic endothelial cells (BAECs) culture,
and thus impair production/release of NO [113]. Later
on, another study confirmed the deleterious effects of
FFAs on endothelial calcium signaling and subsequent
eNOS activity that led to diminished NO production
[114] (Fig. 1).

Role of the FFAs in mediation of oxidative stress and
inflammatory signaling in the endothelium

Oxidative stress-related ED is not only a critical mech-
anism that leads to CVDs [30], but it is also a major
contributor to the pathogenesis of MetS [3]. A dose-
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dependent increase of ROS is seen in monocytes ex-
posed to FFAs which leads to adhesion of the monocytes
to the ECs [115] - a critical mechanism in the develop-
ment of atherosclerosis at the earlier stages [116]. Inter-
estingly, FFAs-induced increases in CV risk factors,
characterized by elevated levels of endothelial markers,
is seen in healthy subjects, a possible mechanism in the
development of the CVDs [117]. Besides, HFD, which is
a large source of FFAs, also induces oxidative stress in
endothelium [118, 119]. Chinen and colleagues showed
that FFA induces overexpression of NADPH and medi-
ates oxidative stress in rats with characteristics of both
obesity and T2DM [120]. Events of ER stress induced by
FFAs have also been shown in ECs isolated from healthy
human subjects [121]. The study has shown that intrali-
pid infusion in healthy subjects could lead to 4.2-fold in-
creases in the level of FFAs which was associated with a
reduction of the hyperemic response in the leg without a
change in FMD of the brachial artery. They also have re-
vealed that mRNA levels of the genes ATF6 and IRE1,
which are responsible for early adaptive responses to ER
stress, had also been elevated in ECs; however, such
changes were only adaptive rather than apoptotic.
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FFAs may contribute to inflammatory states that lead
to enhance endothelial permeability [122]. One of the
major pathways leading to FFAs-induced ED is the acti-
vation of NF-«B, reported in many studies [123]. Intake
of trans fatty acids (TFAs), consumed through foods
made from partially hydrogenated vegetable oils, can ac-
tivate the NF-kB pathway, leading to increased endothe-
lial superoxide production and reduced NO production
[124]. The NF-kB pathway is a major player mediating
the deleterious effects of SFAs on human coronary ar-
tery ECs [125]. Surprisingly, FFAs of PUFA such as LA
also may play a role in inducing inflammatory responses
by increasing the levels of TNF-a, MCP-1, vascular cell
adhesion molecule 1 (VCAM-1), and intercellular adhe-
sion molecule 1 (ICAM-1) through the activation of NF-
kB and activator protein 1 (AP-1) [126], and affect the
release of NO [113]. Interestingly, a study has shown
that IKK-f, which is an activator of NF-«kB, can also di-
minish NO production [127] (Fig. 1). Moreover, a role of
the FFAs in inducement of the NLRP3 inflammasome
has been shown that could lead to an increase in the
endothelial permeability [122]. In microvascular endo-
thelial cells (MVECs), using palmitate, the authors have
showed that it could activate the NLRP3 inflammasome
with a resulting reduction in endothelial tight junction
proteins - zonula occludens-1 and -2 (ZO-1 and ZO-2).
Further exploring of the mechanisms, it had been found
that FFAs mediated such effects by triggering the pro-
duction of HMGB1 which might explain the early onset
of endothelial injury during obesity.

Protective effects of several drugs and other dietary/
natural agents through suppression of inflammation and
oxidative stress in FFA-induced ED have been reported
both in clinical and experimental studies. For example,
dihydropyridine calcium channel blockers such as nifedi-
pine and amlodipine possess preventive effects against
FFAs-induced ED, leucocyte activation and oxidative
stress as evidenced by studies in human subjects; by ex-
ploring the further mechanisms, through in vitro study,
the authors showed a role of NF-«B in such mediation
of FFAs-induced ED, and that the protective role of the
drugs were through the suppression of NF-kB p65 phos-
phorylation [128]. A role of Withaferin A (WA), a ster-
oidal lactone derived from Acnuistus arborescens [129],
against PA-induced insulin resistance and dysfunction of
the endothelium has been shown, mediated through its
anti-oxidant and anti-inflammatory properties [130].
Such inhibition of the inflammatory responses by WA
was through suppression of IKKB/NF-xp phosphoryl-
ation and decreased release of proinflammatory cyto-
kines, such as TNF-a and IL-6. Furthermore, insulin
sensitivity in the ECs was shown to be improved via the
PI3K signaling while inhibiting inflammation-stimulated
IRS-1 serine phosphorylation. Similar inhibitory effects
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on IKKB/NF-kf phosphorylation, and TNF-« and IL-6 up-
regulation, induced by PA in HUVECs, were shown to be
exerted by Diosgenin, a steroidal saponin extracted from
Dioscorea [131]. Diosgenin, in the same study, also report-
edly improved insulin signaling by modulating serine/tyro-
sine phosphorylation of IRS-1 and thereby inducing
insulin-mediated NO production. Cyanidin-3-O-glucoside
(C3GQ), an anthocyanin which is abundant in human diet,
was reported to provide protection to the endothelium
from PA-induced toxicity via suppression of NF-kB path-
ways and adhesion molecules [132]. Moreover, the com-
pound could mediate nuclear localization of Nrf2 and
thereby activating its related pathways to suppress oxida-
tive stress and increase the expression of the cytoprotec-
tive genes in HUVECs. In another study, recently reported
by the same authors, showed that the protective effects of
C3G in HUVEC:s via the modulation of PA-induced ED
(suppressed eNOS expression and NO release) was related
to the PI3K/Akt axis and that C3G was a direct activator
of Nrf2 [133]. Protective effect of Astragalus membrana-
ceus on FFA-induced dysfunction in ECs in an anti-NF-kB
manner has also been reported [134] (Table 1).

Evidence of renin-angiotensin system activation by FFAs

The renin-angiotensin system (RAS) is a crucial regulator
of the arterial blood pressure, and Ang II is known as a po-
tent vasoconstrictor. EC membrane expresses the angio-
tensin converting enzyme (ACE), which is required for
Ang II synthesis; Ang II causes vasoconstriction by stimu-
lation of ET and depletion of NO, and inhibition of ACE is
fruitful in boosting the NO pathway [135]. While Ang II
gives rise to FFAs through downregulation of the FA oxi-
dation pathway [136], FFAs, on the other hand, have also
been shown to be activators of the RAS [137]. Mice lack-
ing ACE (ACE™") show increased gene expression of en-
zymes related to lipolysis and FA oxidation [138], which
might explain the interplay between RAS and generation
of FFAs. Moreover, Ang II interferes with insulin signaling,
mainly by affecting insulin-induced tyrosine phosphoryl-
ation of IRS-1 [139]. Activation of the RAS by Ang II or
the activity of Ang II itself, has been implicated in the
pathogenesis of ED [140, 141]. While leukocytes activation
is deleterious for endothelial health, FFAs can activate leu-
kocytes and contribute to the adhesion properties of leu-
kocytes in an Ang II-dependent manner, leading to the
onset of ED [140], and inhibition of the RAS is preventive
against the FFA-induced ED in humans [141] (Fig. 1). In
the latter study, Watanabe and colleagues showed that a
single dose of either losartan, an Ang II receptor antagon-
ist, or perindopril, an inhibitor of ACE, could completely
prevent the FFAs-induced dysregulation of endothelium-
dependent vasodilation, suggesting the blockade of RAS
as an effective treatment for FFAs-induced ED. Interest-
ingly, a more recent report studying the effect of losartan
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on Goto-Kakizaki (GK) rats, which mimic the symptoms
of T2DM, showed that the drug could improve eNOS ac-
tivity, possibly by modulating Ang II-mediated increase in
phospho-IRS-1 [139].

Effects of FFAs on endothelial progenitor cells (EPCs)
EPCs participate in endothelial recovery following arter-
ial injury, and factors such as oxidative stress contribute
to dysfunction and apoptosis of the EPCs [142]. Dys-
functional EPCs are thought to be key regulators in the
pathogenesis of atherosclerosis and other CVDs [143].
PA, which is the most abundant type of FFAs in the cir-
culating blood, contributes to apoptosis of EPCs which
is facilitated via the p38 and J]NK/MAPKs pathways [19]
(Fig. 1). Another study also depicted a deleterious role of
PA on EPCs in MetS patients via regulating IncRNA
MEGS3 [144]. MEGS3 is required for human mesenchymal
stem cells (hMSCs) differentiation into ECs [145]; how-
ever, some studies showed that MEG3 may also interfere
with the proliferation and angiogenesis in VECs and its
expression may correlate with cardiovascular aging
[146]. These data raise a conflict of interest for which
the pathophysiological roles of MEG3 needs to be stud-
ied with a deeper understanding in both EPCs and ECs.

Perspectives
Targeting the AMPK/PI3K/Akt/eNOS signaling pathways:
Importance of insulin and other endogenous targets
The AMPK/PI3K/Akt/eNOS signaling pathways are im-
portant for NO synthesis, and disruption of this signaling
in the endothelium induces ED [98]. In the endothelium,
insulin induces production of NO via the IRS-1/IRS-2 sig-
naling. IRS1 activates the PI3K/Akt, which, in turn, phos-
phorylates eNOS at Ser1177, catalyzing the conversion of
L-arginine to L-citrulline and NO [147]. Moreover, insulin
protects the endothelium by inhibiting Caspase-mediated
ECs death and inducing antioxidant enzymes, such as
heme oxygenase 1 (HO-1) through the PI3K/Akt pathway
[147]. However, patients with obesity or T2DM show
higher levels of FFAs that lead to insulin resistance [4],
which further contributes to ED, a pivotal step in the initi-
ation and progression of atherosclerosis [148]. Thus, miti-
gating insulin resistance through the upregulated AMPK/
PI3K/Akt/eNOS pathway seems to be a crucial thera-
peutic opportunity to combat FFAs-induced ED and sub-
sequent CVD events. Additionally, a study with direct
infusion of insulin in the rats showed that hyperinsuline-
mia could mitigate FFA-induced ED in rat aortic rings
[149]; however, the direct effect of insulin infusion still re-
mains questionable as the article is in a non-English lan-
guage with unclear mechanisms.

Here, we propose that Exendin-4 and Irisin could be
two novel targets against FFAs-induced ED. Exendin-4,
also having its synthetic counterpart known as exenatide,
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a glucagon-like protein-1 (GLP-1) receptor agonist [150],
increases insulin sensitivity via a PI3K-dependent mechan-
ism [151]. Prevention of HFD-induced insulin resistance
by Exendin-4 has been shown to be mediated through an
increasing level of adiponectin [152]. It also mediates a
direct improvement of the endothelial function via the
cAMP or AMPK-eNOS pathways in isolated aortas from
obese rats [153]. As FFAs have a role in downregulation of
the AMPK-eNOS pathway, which is commonly observed
in obesity, it can be suggested that Exendin-4 might regu-
late the activity of FFAs in obesity and thus improve
obesity-related AMPK-eNOS pathway or endothelial func-
tion, which could be through the protective effects of
Exendin-4 on FFA-induced apoptosis of the pancreatic [3-
cells [154, 155]. A role of Irisin in improving endothelial
function via the AMPK-eNOS pathway is also noteworthy
in obese mice [156] and it also has a protective role
against ED and atherosclerosis in apolipoprotein E-Null
(apoE(-/-)) diabetic mice [157]. A recent study reported
that Irisin improves FA oxidation through the AMPK sig-
naling pathway and glucose utilization in mouse model of
T2DM [158]; in the same animal model, Irisin also report-
edly inhibited hepatic gluconeogenesis via the PI3K/Akt
pathway [159]. Moreover, a clinical study has suggested an
antagonistic effect of Irisin on fatty acid binding protein 4
(FABP4), the FA binding protein, which is associated with
an increased risk of obesity-related metabolic disorders
and HTN [160]. These collective data suggest a possible
protective role of Exendin-4 and Irisin on FFA-induced
ED that would require further validation (Fig. 2).

Nuclear factor erythroid 2-related factor 2 (Nrf2)/HO-1
pathway: A future therapeutic avenue against FFAs-
induced ED?

In this part, we propose that the Nrf2/HO-1 pathway could
be an important target pathway for the alleviation of FFA-
induced ED. This pathway is an important regulator of oxi-
dative stress, and its activation has been proved to be fruit-
ful in many diseases through the modulation of oxidative
stress, and inflammation [161-165]. Moreover, the path-
way improves diet-induced cognitive deficits and fatty liver
[166, 167]. Nrf2, which belongs to the subfamily of basic
region leucine zipper (bZip) transcription factors, is re-
sponsible for cellular defense mechanisms against oxidative
stress and is also crucial for suppression of signaling cas-
cades relative of inflammation [168]. It plays a protective
role on FFA-induced cardiotoxicity and ED [132, 169], pos-
sibly due to its direct effects on mitochondrial FA oxida-
tion [170, 171]. On the other hand, HO-1, which also
possesses anti-oxidative properties and is transcriptionally
regulated by Nrf2 [172, 173], is suppressed during oxidative
stress-induced EC injury [174], and inducing HO-1 in the
mouse endothelium is favorable against T2DM-induced
vascular injury, where HO-1 facilitates reendothelialization
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induced by FFAs, should be studied. The Nrf2/HO-1 axis, which is a modulator of oxidative stress, might also have great impact to overcome

FFAs-induced ED

by increasing the number of EPCs through AMPK-
mediated mechanism [175]. An anti-apoptotic role of HO-
1, as well as its isoform HO-2, is found in glutamate-
induced toxicity and oxidative stress in the cerebrovascular
endothelium [176], where it plays a defensive role against
disruption of the blood-brain barrier (BBB) and neuro-
logical deficits in stroke via the Nrf2 signaling [177]. Induc-
tion of HO-1 has been shown to improve FFA-induced ED
in rat aorta by activating the AMPK/PI3K/eNOS pathway
[178]. This study also showed that adiponectin, which is an
anti-inflammatory protein, is induced by HO-1. Interest-
ingly, adiponectin, which mediates its protective role in
cAMP-dependent alleviation of FFA-induced ED [179], is
endogenously regulated by HO-1 in obese and diabetic ani-
mal models [180, 181], suggesting an important role of
HO-1 in regulation of FFA-induced endothelial toxicity
through multifaceted mechanisms. Looking at the several
important roles of the Nrf2/HO-1 pathway, such as
suppression of oxidative stress and inflammation, improve-
ment of insulin resistance [166], inhibition of phosphoryl-
ation of PI3K/Akt [165, 167], inhibition of NF-kB [165], as
well as their individual suppressive role (independent of
each other) on FFA-induced ED [132, 178], it could be en-
dorsed that the pathway could be an avenue for future
therapy for FFA-related ED (Fig. 2).

Conclusions

ED is an early event in atherosclerosis and other CVDs.
FFAs, which are elevated in blood due to metabolic de-
fects under different diseased states, such as obesity,
and T2DM, contribute to ED and subsequent events of
CVDs, by means of several mechanisms such as de-
creased insulin signaling and NO production, impaired
endothelium/insulin-dependent vasodilation, and in-
creased oxidative stress and inflammation. Thus, early
intervention of FFA-induced ED could be beneficial
against the CVDs related to ED. Choosing the right life-
style, such as cutting HFD and eating foods rich in -3
or w-6 FAs or other dietary components that have
proven protective role on the endothelium, could be a
preventive approach against ED. However, as it is
proven that the circulating forms of w-3 or w-6 FAs
could also sometimes contribute to oxidative stress and
inflammation and thus cause ED, it is not completely
feasible to conclude the idea of taking more w-3 or w-6
FA-rich foods. Therefore, it would require a better un-
derstanding of this field and identify some better, pos-
sible targets that could be used to develop better
therapeutic approaches to intervene the early events of
ED-related health conditions and pave the way for a
better living.
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