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Abstract

The endoplasmic reticulum (ER) is the biggest organelle in cells and is involved in versatile cellular processes. Formation

and maintenance of ER morphology are regulated by a series of proteins controlling membrane fusion and curvature. At
least six different ER morphology regulators have been demonstrated to be involved in neurological disorders—including
Valosin-containing protein (VCP), Atlastin-1 (ATL1), Spastin (SPAST), Reticulon 2 (RTNZ2), Receptor expression enhancing protein 1

formation and morphogenesis.

(REEPT) and RAB10—suggesting a critical role of ER formation in neuronal activity and function. Among these genes,
mutations in VCP gene involve in inclusion body myopathy with Paget disease of bone and frontotemporal dementia
(IBMPFD), familial amyotrophic lateral sclerosis (ALS), autism spectrum disorders (ASD), and hereditary spastic paraplegia
(HSP). ATL1 is also one of causative genes of HSP. RAB10 is associated with Parkinson’s disease (PD). A recent study
showed that VCP and ATL1 work together to regulate dendritic spine formation by controlling ER formation and
consequent protein synthesis efficiency. RAB10 shares the same function with VCP and ATL1 to control ER formation and
protein synthesis efficiency but acts independently. Increased protein synthesis by adding extra leucine to cultured
neurons ameliorated dendritic spine deficits caused by VCP and ATL1 deficiencies, strengthening the significance of
protein synthesis in VCP- and ATL1-regulated dendritic spine formation. These findings provide new insight into the roles
of ER and protein synthesis in controlling dendritic spine formation and suggest a potential etiology of
neurodegenerative disorders caused by mutations in VCP, ATL1 and other genes encoding proteins regulating ER
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Background

The endoplasmic reticulum (ER) is a contiguous mem-
brane network extending from the nuclear envelope to
the entire cytoplasm and making contact with plasma
membrane [1-4]. It is responsible for protein synthesis,
modification and quality control. The ER also plays cru-
cial roles in carbohydrate metabolism, control of lipid
synthesis and delivery, formation of other membrane-
bound organelles and lipid droplet and calcium homeo-
stasis [1-3, 5]. The ER undergoes constant extension, re-
traction and membrane fusion [1, 6-8]. Biogenesis and
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maintenance of ER are complex and tightly controlled
processes [8, 9], and many factors regulating ER forma-
tion and morphology have already been identified [1, 7,
8, 10]. Interestingly, mutations in genes involved in the
regulation of ER biogenesis and maintenance, such as
Valosin-containing protein (VCP), Atlastin-1 (ATLI),
Spastin (SPAST), Reticulon 2 (RTN2), and Receptor ex-
pression enhancing protein 1 (REEPI) have been linked
to neurological diseases. ATLI, RTN2, SPAST and
REEP] are the causative genes of hereditary spastic
paraplegia (HSP) [8, 11, 12]. Mutations of the VCP (also
known as p97) gene have been identified in patients
with frontotemporal dementia [13, 14], amyotrophic
lateral sclerosis (ALS) [15-17], autism spectrum disorders
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(ASD) [18] and hereditary spastic paraplegia (HSP) [19].
These disease studies highlight the critical role of ER in
neuronal function and activity (see Table 1 for a summary).
Since ER is critical for many cellular processes, it is import-
ant to determine the precise mechanisms of ER involve-
ment in these neurological disorders since such studies are
foundation stones in designing potential therapeutics.

ER stress is well known to be relevant to neurodegenera-
tive disorders [20—22], making it an excellent downstream
candidate of the ER morphology deficits controlling neur-
onal function. Many excellent reviews have discussed the
role of ER stress in neurodegenerative disorders [20-22].
However, a recent study suggests that impairment of pro-
tein synthesis efficiency via dysregulation of ER biogenesis
and maintenance is critical for dendritic spine deficiencies
caused by mutations of three ER morphology regulators,
VCP, ATL1 and RABI10 [23]. This finding raises the possi-
bility that, in addition to ER stress, mutations of genetic fac-
tors involved in ER formation and the efficiency of
downstream protein synthesis may contribute to multiple
neurological disorders. In this review, the molecular func-
tions of VCP and ATL1 and their roles in controlling ER
formation and protein synthesis efficiency and dendritic
spine formation are reviewed and discussed.

VCP is involved in versatile cellular activities and
multiple neurological diseases

VCP, a member of the AAA+ (ATPases Associated with
diverse cellular Activities) protein family, acts as a mo-
lecular chaperon regulating multiple cellular processes
[24-26], including ER-associated protein degradation
[27, 28], the ubiquitin—proteasome system [24, 29], ER
and Golgi morphogenesis [30—32], chromatin-associated
processes, amongst others [24, 33, 34]. These diverse ac-
tivities are determined by the cofactors of VCP [26]. The
two most studied VCP cofactors are the ubiquitin fusion
degradation 1-like (UFD1L)-nuclear protein localization

Table 1 Molecular functions and disease associations of ER
morphology regulators

Disease Molecular functions

VCP  IBMPFD [13, 14]; ALS
[15-17]; ASD [18]; HSP

AAA+ ATPase; molecular chaperon;
cofactors guiding different functions

[19] [24-26]

ATL1  SPG3A [78] Dynamin-like GTPase; driving
homotypic membrane fusion by
dimerization [79].

RTN2  SPG12 [80] ER shaping protein; interaction with
spastin [80].

REEPT SPG31 [81] ER-shaping protein; acts together
with spastin and atlastin-1 [45].

SPAST SPG4 [82] AAA+ ATPase; microtubule-severing
protein [83].

RAB10 PD-associated [84] Small GTPase; controls ER tubule

extension and fusion [75]
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homolog 4 (NPL4) heterodimer [35] and P47 [36]. The
VCP-UFD1L-NPL4 complex is mainly involved in pro-
tein degradation [27, 28, 37] and chromatin-associated
processes [24]. When VCP binds to P47, it regulates
homotypic membrane fusion of ER and Golgi apparatus
[30, 31, 36, 38, 39]. Since VCP uses its N-terminal over-
lapping binding sites to interact with P47 and the
UFDI1L-NPL4 dimer [40], expression levels of VCP co-
factors may alter complex formation and thereby influ-
ence the function of VCP in cells [23].

In 2004, Kimonis and colleagues provided the first evi-
dence that mutations in the VCP gene result in inclusion
body myopathy with Paget disease of bone and fronto-
temporal dementia (IBMPFD), which is a multiple tissue
disorder associated with myopathy, bony defects and de-
mentia [13]. Later, whole exome sequencing further re-
vealed that VCP is associated with other neurological
disorders, including familial ALS [15], ASD [18], and
HSP [19]. It is unclear why mutations in a single gene,
VCP, result in various neurological disorders. Perhaps it
is due to the diverse activities of VCP in cells. Since the
functions of VCP are determined by its interacting co-
factors [26], the genetic diversity and/or expression
levels of VCP cofactors likely influence the outcome of
VCP deficiency, although direct evidence supporting this
hypothesis is lacking.

ATL1, a causative gene of SPG3A, acts as a
membrane fusogen controlling ER formation
Approximately 60% of HSP patients carry autosomal
dominant mutations in one of four genes: ATLI, SPAST,
RTN2 and REEPI [10-12, 41]. These four genes work to-
gether to drive homotypic ER membrane fusion and co-
ordinate microtubule interactions with the tubular ER
network (Table 1) [42-45]. ATL1 acts as a membrane-
anchored dynamin-like GTPase and directly interacts with
SPAST [46, 47]. The ATL1-SPAST complex also interacts
with RTN2 and REEP1 [45, 48, 49]. In addition, Drosoph-
ila Atlastin functionally associates with TER94 (Transi-
tional endoplasmic reticulum ATPase 94), the VCP
ortholog in Drosophila [50]. Mammalian VCP also co-
immunoprecipitates with ATL1 [23]—the member of the
Atlastin protein family predominantly expressed in the
brain [42]—suggesting a physical association of VCP with
ATL1 in mammalian brains. Since VCP mutation has been
identified in patients with HSP [19], it seems plausible that
VCP and ATL1 work together to control the function and
activity of neurons. We discuss evidence supporting this
possibility below.

Abnormal neuronal morphology as a feature of
neurological disorders

Neurons are highly differentiated cells with specialized sub-
cellular structures, including axon, dendrite and synapses.
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All these subcellular structures are essential for neurons to
transmit signals among neurons and required for neuronal
function and activity. In mammalian brains, excitatory
synapses are mainly localized at the tips of dendritic spines,
the tiny protrusions emerging from dendrites [51]. Thus,
the morphological features of neurons, such as the size and
density of dendritic spines, dendritic arbors and branching
level and axonal length, are highly relevant to the function
of neurons. The impairments of formation and/or mainten-
ance of these structures result in neuronal defects and
neurological disorders. Especially, synaptopathy, such as
dendritic spine pathology, is most relevant to many psychi-
atric, neurodevelopmental and neurodegenerative disorders
[52-54]. Morphological change (enlargement, shrinkage or
elongation) of dendritic spines and/or alteration (increase or
decrease) of dendritic spine density have been demonstrated
in various neurological disorders, including Alzheimer’s dis-
ease, frontotemporal dementia, schizophrenia, ASD, etc.
[52, 55, 56]. The morphological changes of dendritic spines
are directly related to synaptic strength and the spine loss
reflects a deficit of neuronal connectivity [57-59]. Though
electrophysiological studies are still recommended to con-
firm the conclusion of synaptic deficits, morphological and
density analyses of dendritic spines provides the easy and
reliable ways to assess synaptic deficits and the potential im-
pairment of neuronal activity. Dendritic spine deficits serve
as useful indicator to evaluate pathological condition in
various neurological disorders, including neurodevelopmen-
tal disorders as well as neurodegenerative diseases.

Vcp deficiency impairs neuronal morphology

Initial evidence supporting a role for VCP in regulating
neuronal morphology came from a study about neurofibro-
min, a protein product encoded by the neurofibromatosis
type I (NfI) gene [60-62]. Using a series of biochemical
analyses, VCP and P47 were shown to interact with neuro-
fibromin in rat brain extracts and HEK293 cells [60]. Ex-
pression of individual VCP- and neurofibromin-interacting
domains to disrupt complex formation of neurofibromin
and VCP reduced the density of dendritic spines [60]. Fur-
thermore, reduction of NfI and Vep expression decreased
dendritic spine density [60]. Thus, the neurofibromin-VCP
complex in neurons regulates the formation of excitatory
synapses. Since VCP overexpression rescues NfI haploin-
sufficiency [60] and because the subcellular distribution of
VCP is altered in NfI*’~ mouse brains [60], it would appear
that VCP acts downstream of neurofibromin in regulating
dendritic spine density.

In addition to dendritic spine formation in mammalian
brains, Drosophila Ter94 is required for dendritic pruning
during metamorphosis [63]. Ter94 deficiency results in
mislocalization and gain-of-function of the Drosophila
homolog of the human RNA-binding protein TAR-DNA-
binding protein of 43 k-Daltons. A protein degradation-
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independent pathway is suggested to be involved in the
role of Ter94 in dendritic pruning [63].

Taken together, the studies in both rodents and
Drosophila support the role of VCP in regulation of
neuronal morphology. The morphological defects
caused by VCP deficiency likely impair neuronal func-
tion and activity and result in pathological condition.
However, the above studies were still limited to in
vitro cultured neurons. More in vivo studies using
mouse models or patients’ samples are required to
verify the results of cultured neurons. It is also intri-
guing to explore where specific brain region(s) is
more susceptible to NF1 and VCP deficiency.

Involvement of ER morphology and protein
synthesis in regulating dendritic spine density
Given the fact that VCP is involved in multiple cellular
processes, it has been challenging to investigate the mo-
lecular etiology of VCP-related disorders. Since ubiqui-
tin- and VCP-positive protein aggregations in muscle are
a hallmark of patients with IBMPFD [13, 64], protein
degradation defects caused by VCP deficiency have been
recognized as an important pathogenic mechanism for
VCP-related disorders. However, accumulated evidence
suggests that the consequences of VCP deficiency in dif-
ferent types of cells vary. For instance, expression of
VCP IBMPFD mutants induces polyubiquitinated pro-
tein aggregation in mouse myoblast C2C12 cells [65] but
not in cultured hippocampal neurons [60], while still re-
ducing dendritic spine density [23, 60]. These results
suggest that another mechanism, in addition to the pro-
tein aggregation induced by VCP IBMPFD mutants, is
critical for dendritic spine impairment.

Since the functions of VCP are determined by its co-
factors, evaluating the roles of VCP’s cofactors in den-
dritic spine formation may reveal how VCP controls
dendritic spine formation. Based on this rationale, two
major cofactors of VCP—namely the UFD1L-NPL4 het-
erodimer and P47—have been knocked down individu-
ally in cultured hippocampal neurons. Although the
UFDI1L-NPL4 heterodimer is well-known to guide
VCP’s regulation of protein degradation and chromatin-
associated processes [24], knockdown of UFDI1L to dis-
rupt the function of the UFD1L-NPL4 heterodimer did
not influence the dendritic spine density of cultured
hippocampal neurons [23], suggesting that UFDI1L-
NPL4 heterodimer-dependent processes are not critical
to dendritic spine formation. In contrast, knockdown of
P47 reduced dendritic spine density [23]. Moreover,
P47 overexpression rescued the spine phenotype caused
by partially reduced VCP expression using a knock-
down approach in cultured neurons, suggesting that
P47 acts downstream in VCP-mediated dendritic spine
formation [23].
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Previous studies indicate a role for the VCP-P47
complex in homotypic membrane fusion of intracel-
lular membrane-bound organelles, particularly ER
[32, 36, 66]. Experiments using DsRed-ER (a red
fluorescent protein fused with ER-targeting and -re-
tention sequences) to label ER revealed that knock-
down of VCP or P47, or overexpression of VCP
IBMPFD mutants, indeed reduced the distribution of
ER along dendrites in cultured neurons as well as in
brains [23]. Further experiments using transmission
electron microscopy to analyze knock-in mice carry-
ing the R95G IBMPFD mutation in the Vcp gene
demonstrated that the length and amounts of rough
ER in soma are reduced by VCP IBMPFD mutation
[23], supporting that neuronal ER is impaired by Vcp
deficiency.

In addition to the reduced amounts of rough ER,
attachment of ribosomes to rough ER also decreased
under expression of VCP IBMPFD mutant [23]. Since
ER is critical for the synthesis of membrane, secreted
and cytosolic proteins [67-69], a reduction of riboso-
mal attachment on ER likely has a global effect on
the protein synthesis of neurons. The effect of VCP
deficiency on protein synthesis was directly investi-
gated by bioorthogonal non-canonical amino acid tag-
ging [70] and surface sensing of translation [71]; the
former uses L-azidohomoalanine to label newly syn-
thesized proteins, whereas puromycin is integrated
into newly synthesized proteins in the latter. Both of
these methods revealed that the amount of newly syn-
thesized proteins within 1 h of labeling was reduced
under VCP deficiency [23]. However, labeled protein
amounts after 4 or 6 h were not obviously different
between wild type and VCP-deficient neurons [23].
This finding indicates that VCP deficits impair the ef-
ficiency of protein synthesis but not total protein
levels, implying that unstable proteins may be more
sensitive to VCP deficiency.

By increasing protein synthesis to rescue the dendritic
spine deficits caused by VCP deficiency can further
strengthen the notion that inefficient protein synthesis is
indeed the key downstream outcome of VCP deficiency.
The branched-chain amino acid, especially the leucine,
is well-known to activate the mTOR pathway that upre-
gulates protein synthesis [72-74]. Adding extra leucine
in cultured media increased the protein synthesis of
VCP-deficient neurons [23]. Importantly, the dendritic
spine defects caused by VCP deficiency were also effect-
ively rescued to levels comparable to those of wild type
neurons by leucine supplements [23]. The results of
these leucine rescue experiments concluded that VCP
mutation or deficiency result in impairment of ER for-
mation and a reduction of protein synthesis efficiency
and, consequently, impair dendritic spine formation.
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Convergence of multiple ER formation pathways
to control dendritic spine formation

If ER malformation is sufficient to impair protein synthesis
efficiency and to result in reduced dendritic spine density,
it is reasonable to speculate that other regulators of ER
morphology also control protein synthesis efficiency and
dendritic spine density. In addition to VCP, many other
regulators of ER morphology have been identified. Two
other ER morphology regulators, ATL1 and RAB10, have
been assessed. RAB10, a small GTPase, regulates ER tu-
bule growth, which is independent of the membrane fu-
sion controlled by ATL1 [75]. Expression of the ATLI1
SPG3A mutant or the GDP-locked T23 N mutant of
RABI10 impairs ER formation in cultured neurons and re-
duces protein synthesis efficiency [23]. Importantly, den-
dritic spine density of cultured hippocampal neurons is
reduced by AtlI and Rabl0 deficiencies [23]. These stud-
ies support the hypothesis that normal ER formation is
critical for protein synthesis and for controlling dendritic
spine formation.

A previous study suggested that the VCP-P47 complex
acts with an unknown membrane fusogen to control
homotypic membrane fusion [76]. Since ATL1 functions
as an ER fusogen and because ATL1 interacts with VCP
[23], ATL1 is therefore an excellent candidate as an
interacting partner with VCP to control ER formation
and dendritic spine formation. Indeed, in VCP-
knockdown neurons, overexpression of wild-type ATL1
increases the density of dendritic spines of cultured hip-
pocampal neurons. Expression of disease-associated mu-
tants of both VCP and ATL1 does not further reduce
dendritic spine density compared with single transfected
neurons [23]. In contrast, expression of the GDP-locked
T23 N mutant of RAB10 further reduces dendritic spine
density of neurons expressing the VCP IBMPFD mutant
[23]. Taken together, these experiments suggest that ER
formation and associated protein synthesis efficiency is a
common downstream pathway of multiple upstream reg-
ulators (such as VCP-P47-ATL1 and RAB10) controlling
dendritic spine formation (Fig. 1).

Conclusion

Although VCP possesses multiple different functions in
cells, its regulation of ER formation is critical for control-
ling dendritic spine density. Among ER-dependent cellular
processes, protein synthesis is particularly important for
VCP-, ATL1-, P47- and RAB10-regulated dendritic spine
formation. Previous study indicated that tubular rough ER
is concentrated at the bases of dendritic spines to meet
their demands in response to synaptic stimulation [77].
The studies summarized above provide a mechanism
underlying the role of ER and protein synthesis in control-
ling dendritic spine formation. Nevertheless, several ques-
tions remain unanswered. First, whether apart from VCP,
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Fig. 1 ER formation and consequent protein synthesis efficiency function downstream of multiple factors to control dendritic spine formation.
RAB10 and the VCP-P47-ATL1 complex act independently to control tubular ER formation, though both influence protein synthesis efficiency and

ATL1, P47 and RABIO, other regulators of ER morph-
ology have a similar function in protein synthesis and den-
dritic spine formation. Second, are any specific proteins
particularly sensitive to ER malformation? For instance,
are short half-life proteins and/or membrane and secreted
proteins more susceptible to VCP-, ATL1-, P47- and
RAB10-related ER defects? Third, in vivo evidence to sup-
port the effect of ER malformation on dendritic spine for-
mation is still lacking. Fourth, since VCP acts downstream
of neurofibromin to regulate dendritic spine formation, it
would be intriguing to explore whether ER formation and
protein synthesis also contribute to neurofibromin-
mediated dendritic spine formation. Finally, leucine sup-
plementation seems to be potentially useful for increasing
dendritic spine density in vivo. Investigation of the benefi-
cial effects of leucine supplementation on mouse models
of VCP- and HSP-related disorders is warranted, poten-
tially providing research avenues for future therapeutics. If
protein synthesis efficiency is indeed involved in the eti-
ology of VCP- and HSP-related disorders, it suggests that
nutrient and genetic factors may have synergistic effects
on induction of these neurodegenerative disorders. Thus,
environmental factors, such as nutrients, should also be
taken into consideration when investigating VCP- and
HSP-related disorders.
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