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Molecular subtyping of nasopharyngeal
carcinoma (NPC) and a microRNA-based
prognostic model for distant metastasis
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Abstract

Background: Nasopharyngeal carcinoma (NPC) is a highly invasive and metastatic cancer, with diverse molecular
characteristics and clinical outcomes. This study aims to dissect the molecular heterogeneity of NPC, followed by
the construction of a microRNA (miRNA)-based prognostic model for prediction of distant metastasis.

Methods: We retrieved two NPC datasets: GSE32960 and GSE70970 as training and validation cohorts, respectively.
Consensus clustering was employed for cluster discovery, and support vector machine was used to build a classifier.
Finally, Cox regression analysis was applied to constructing a prognostic model for predicting risk of distant metastasis.

Results: Three NPC subtypes (immunogenic, classical and mesenchymal) were identified that are molecularly distinct
and clinically relevant, of which mesenchymal subtype (~ 36%) is associated with poor prognosis, characterized by
suppressing tumor suppressor miRNAs and the activation of epithelial-mesenchymal transition. Out of the 25 most
differentially expressed miRNAs in mesenchymal subtype, miR-142, miR-26a, miR-141 and let-7i have significant
prognostic power (P < 0.05).

Conclusions: We proposed for the first time that NPC can be stratified into three subtypes. Using a panel of 4
miRNAs, we established a prognostic model that can robustly stratify NPC patients into high- and low- risk groups of
distant metastasis.

Keywords: Nasopharyngeal carcinoma, Molecular subtyping, Consensus clustering, microRNA, Distant metastasis, Cox
regression model

Background
Nasopharyngeal carcinoma (NPC) is one of the five
major types of head and neck malignant tumor which
develops in the epithelial lining of the nasopharynx [1].
NPC differs significantly from other head and neck can-
cers in its occurrence, causes and treatment strategies.
According to the American Cancer Society, NPC is char-
acterized by its unique geographical and racial distribu-
tion with the incidence rate of 20 to 30 cases per
100,000 each year in Southeast Asia as compared with
less than 1 case per 100,000 in the United States. Several

key etiological factors including genetic [2], Epstein-Barr
virus (EBV) infection [3] and dietary [4] implicated as
the major causes of NPC. Although NPC is highly sensi-
tive to radiotherapy and chemotherapy, local recurrence
and distant metastasis are very common, it is estimated
that 15% to 60% of patients will develop local recurrence
[5, 6], and 30% to 40% of patients will develop distant
metastasis within 4 years after primary treatment [7, 8].
Thus identifying patients at high-risk of local and / or
distant metastasis would be crucial for personalized
treatment of NPC.
Like other malignancies, NPC is not a single disease

which is mainly caused by the intra-tumoral heterogen-
eity, thus the genetic complexity indeed pose a signifi-
cant challenge to the targeted therapies for NPC. Owing
to the heterogeneous character of NPC, it is necessary to
classify NPC patients into different groups which
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corresponding well with their molecular features as well
as clinical outcomes. To this end, not only it can help us
understand more about the underlying mechanisms of
the tumorigenesis of NPC, but also help us to develop
subtype specific therapies for NPC patients. Traditional
histopathologic classification of cancer has been carried
out by pathologists relies on the histologic appearance
and morphological features of the tumors, which only
partially reflect the heterogeneity character of cancers.
However, in reality, tumors with similar morphological
appearance may vary in response to therapy and have
distinct clinical outcomes [9]. Recent advancements in
genome wide molecular profiling have allowed re-
searchers to classify cancers into homogeneous groups
with improved diagnosis and prognosis than traditional
classification of cancers [10, 11].
MicroRNAs (miRNAs) are a class of highly conserved

noncoding, short regulatory RNAs (19–25 nucleotides)
cleaved from 70 to 100 nucleotides hairpin pre-miRNA
precursors and are negative regulators of gene expres-
sion [12]. MiRNAs are involved in diverse biological
functions, including development, differentiation, prolif-
eration, apoptosis and cancers [13]. MiRNA expression
signatures are informative, which have been shown to be
potential new biomarkers for cancer diagnosis, prognosis
and therapy prediction [14–16]. Various miRNA-based
classifiers have been built to classify breast cancer [17],
lung cancer [18], hepatocellular carcinoma [19], colorec-
tal cancer [20], kidney cancer [21] and myeloma [22]
into homogeneous groups based on the specific miRNA
expression patterns in cancers.
The recently widely used of miRNA arrays has enabled

the large scale profiling of miRNAs in NPC [23]. Here,
we analyzed two independent datasets (GSE32960 and
GSE70970) which consist of a total number of 558 NPC
patients with miRNA expression profiles. We employed
an unsupervised classification approach to stratify these
patients into three molecular and clinical distinct sub-
groups (immunogenic, classical and mesenchymal). Of
which mesenchymal subtype (~ 36%) is characterized by
suppressing tumor suppressor miRNAs and activation of
epithelial-mesenchymal transition (EMT). Compared
with the other two subtypes, patients classified into mes-
enchymal subtype have a higher risk of metastasis and
poorer distant metastasis-free survival (DMFS). While
immunogenic subtype accounts for a small portion of
the total NPC patients (~ 19%), they were found to have
enrichment in RNA binding and immune related gene
sets as well as have good clinical outcomes. Finally, clas-
sical subtype was found to be enriched in cell cycle re-
lated gene sets, and have an intermediate survival
compared with other two subtypes. We also classified
the 12 commonly used NPC cell lines into the three sub-
types, with six classical, five mesenchymal and one

immunogenic subtype, which provides a good in-vitro
platform for further subtype-specific studies.
Furthermore, out of the 25 most differentially

expressed miRNAs in mesenchymal subtype, miR-142,
miR-26a, miR-141 and let-7i have significant prognostic
power (P < 0.05), as determined by univariate Cox re-
gression analysis. We then built a Cox regression model
by using the selected 4 miRNAs. This model can be used
to separate the NPC patients into high-risk and low-risk
groups of distant metastasis. Thus, our study not only
provided a new classification system for NPC, but also
identified a panel of biomarkers which may have a great
potential to be applied in the clinic for predicting the
risk of DMFS.

Methods
Data curation and pre-processing
We first searched the Gene Expression Omnibus (GEO)
database (www.ncbi.nlm.nih.gov/geo) for all available
expression data related to NPC. We came across two
relevant datasets, one is in the accession number of
GSE32960 [24] which contains 312 non-distant-
metastatic paraffin-embedded NPC and 18 paraffin-
embedded non-cancer nasopharyngitis biopsy samples.
All these samples were collected between Jan 16, 2003,
and Feb 25, 2006 from the Sun Yat-sen University Can-
cer Center (Guangzhou, China), and the clinical staging
was classified according to the criteria of the American
Joint Committee on Cancer Staging Manual (Seventh
Edition). Patients median follow-up was 62.1 months
(IQR 47.7–71.5) [24]. Another dataset is in the accession
number of GSE70970 [25], which in total contains 246
NPC patients from the Princess Margaret Cancer Center
(Toronto, Canada). Those 246 tumor samples were col-
lected at two different time periods. We downloaded
normalized miRNA expression and clinical data from
GEO database and used the ComBat [26] to remove the
batch effects in this dataset.
In total, we collected altogether 558 NPC patients for

this subtyping study (Table 1). At which, the miRNA ex-
pression profiling of 86 stage II patients from GSE32960
was our training (discovery) dataset to build a classifica-
tion model. This is because that the expression data of
early stages patients are less noisy than the late stages
(stage III and stage IV) [27]. Expression noise, or un-
avoidable stochastic fluctuations [28] were increased
along tumorigenesis [27]. More specifically, Han et al.
[27] studied the changes of expression noise in different
human cancers and found that more than 53.7% genes
had increased noise in patients with late stage than early
stage cancers. This study showed that a noticeable loss
of expression control as cancer development and pro-
gression. In order to avoid impacts from ambient noise,
we had better use early stage patients’ data to build the
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model. Besides, since stage I patients are associated with
good clinical outcomes than other stages, and only ac-
count for a very small portion (< 4%) of total patients in
GSE32960, thus they were also excluded from the train-
ing dataset. The remaining 226 NPC patients from
GSE32960 and 246 NPC patients from GSE70970 were
used as two independent validation datasets. Only miRNA
features common to both datasets were remained for the
following analysis.

Identification of NPC subtypes
We first selected 300 most variable miRNAs by calculat-
ing the median absolute deviation (MAD) of each
miRNA across 86 patients from the training dataset, the
variable miRNAs were retained and row-normalized ex-
pression for the following analysis. Next, we performed
consensus clustering [29] consisted of 1000 iterations of
hierarchical clustering, with 0.9 subsampling ratio, and
agglomerative average linkage and Pearson correlation to
cluster these 86 patients. We used the gap statistic [30],
which is a measure of within-cluster dispersion to assess
the optimal number of clusters. Silhouette width was
computed to identify the most representative samples
within each cluster. Finally, we retained samples with
positive silhouette width (n = 77) to build a classifier for
NPC.

Cell culture
Human NPC cell line C17 was obtained through the
generosity of Dr. Pierre Busson (Institut Gustave Roussy,
France) and cultured in RPMI 1640 medium supple-
mented with 7.5% fetal bovine serum (FBS), 25 mM
HEPES and 7 μM ROCK inhibitor Y-27632. C666,
CNE2, HNE1, HK1, HONE1, NP69, NP460 were kindly
provided by Prof. George S.W. Tsao (The University of
Hong Kong, Hong Kong). C666, CNE2, HK1 and
HONE1 were cultured in RPMI 1640 medium supple-
mented with 10% FBS. HNE1 was cultured in cultured
in DMEM medium supplemented with 5% FBS and 5%
newborn calf serum. NP69 was cultured in Keratinocyte-
SFM medium supplemented with 0.05 mg/ml bovine
pituitary extract and 5 ng/ml epidermal growth factor.
NP460 was cultured in Defined Keratinocyte-SFM
medium and EpiLife Medium in 1:1 ratio. HK1-LMP1,
HK1-LMP1 Cis R, HONE1-EBV and HONE1-EBV Cis R
were gifts from Prof. Brigette B.Y. Ma (The Chinese Uni-
versity of Hong Kong, Hong Kong). These cell lines were
cultured as previously described [31]. All cells were
maintained at 37 °C and 5% CO2 humidified atmosphere.
All culture reagents were obtained from Thermo Fisher
Scientific. List of the NPC cell lines involved in our
study can be found at Table 2.

miRNA isolation and quantitative RT-PCR
Total RNA containing miRNA were extracted from cell
lines using miRNeasy Mini Kit (QIAGEN, USA), and
DNase I digestion were performed according to the
manufacturer’s instructions. Total RNA was eluted in
30 μL RNase-free water. RNA concentration was deter-
mined by NanoDrop One spectrophotometer (Thermo
Fisher Scientific, USA). cDNA was reverse transcribed
from 1 μg of total RNA using miScript II RT Kit (QIA-
GEN, USA). qPCR was carried out with miScript SYBR
Green PCR Kit (QIAGEN, USA) on the LightCycler 480
System (Roche, Switzerland). hsa-miR-26a, hsa-miR-29b,
hsa-miR-200b, hsa-miR-370, hsa-miR-622, hsa-miR-
1248, hsa-miR-1293, hsa-miR-2053, hsa-let-7d and hsa-
let-7 were predesigned primers (miScript Primer Assays
MS00029239, MS00009289, MS00009023, MS00045885,
MS00005117, MS00014238, MS00014539, MS00044569,
MS00003136 and MS00006489, QIAGEN, USA). Ampli-
fication reactions were done in triplicate for each exam-
ined sample. RNU6 snRNA (miScript Primer Assay
MS00033740, QIAGEN, USA) served as the endogenous
control for normalization. Cycling conditions were 95 °C
for 15 min, followed by 45 cycles at 94 °C for 15 s, 55 °C
for 30 s and 70 °C for 30 s. Relative quantification of tar-
get miRNA expression was calculated using the 2 -ΔΔCt

method.

Generation of the NPC classifier and classification
To build the NPC classifier, we also did a feature
(miRNA) selection process which involved two filtering
steps to select the most representative and predictive
miRNAs. First, we used the Significance Analysis of Mi-
croarrays (SAM) algorithm (R package siggenes version
1.42.0) to identify miRNAs significantly differentially

Table 2 NPC cell line classification results

Cell line name Cell line description Subtype

C666 Undifferentiated nasopharyngeal
carcinoma

Classical

HK1 Well differentiated squamous carcinoma Classical

HK1LMP1 HK1 with LMP1 transfected Classical

HK1LMP1CisR HK1-LMP1 with cisplatin resistance Classical

HONE1EBVCisR Poorly differentiated squamous carcinoma Classical

NP69 Immortalized nasopharyngeal-derived
epithelial cells

Classical

C17 EBV-positive metastatic NPC Mesenchymal

CNE2 Poorly differentiated squamous
carcinoma

Mesenchymal

HNE1 Poorly differentiated squamous carcinoma Mesenchymal

HONE1 HONE1 with EBV infected Mesenchymal

HONE1EBV HONE-1-EBV with cisplatin resistance Mesenchymal

NP460 Immortalized nasopharyngeal-derived
epithelial cells

Immunogenic
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expressed (false discovery rate (FDR) < 0.01) between
each subtype and the other two. Next, we calculated the
Area Under the Curve (AUC) (R package ROCR version
1.0–7) to assess each miRNA’s ability to separate two
clusters. The retained 10 miRNA with AUC > 0.9 were
trained by Support Vector Machine (SVM) to build a
classifier. The expression profiles of the two validation
datasets, and NPC cell line data were mean or median
centered across all samples and then subjected to classi-
fication using the classifier built based on the training
dataset.

miRNA target prediction and gene set enrichment
analysis (GSEA)
Differentially expressed miRNAs between each subtype
were identified by using the R package limma [32], with
absolute log2 fold change greater than 1 and Benjamini-
Hochberg-adjusted p-value less than 0.05. We then ob-
tained experimentally validated target genes of each dif-
ferential miRNA based on the miRWalk 2.0 database
(http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/)
[33]. GSEA is a widely used method to interpret expres-
sion data at the level of gene sets, that is, groups of
genes that share common biological function, or regula-
tion [34]. In this study, GSEA with annotated gene sets
from KEGG, Reactome and Gene Ontology (GO) was
done with Enrichr tool (http://amp.pharm.mssm.edu/
Enrichr/) [35].

Survival analysis
In the two datasets, DMFS were calculated from treat-
ment to the date to the first distant relapse, and disease-
free survival (DFS) to the first relapse at any site or
death from any cause, whichever occurred first, and
overall survival (OS) to death from any cause [24, 25].
Survival analysis was performed using the Kaplan-Meier
method, and the differences in time to an event (death
or recurrence) between curves were assessed by using
the log-rank tests. Adjusted P values were obtained by
Benjamini and Hochberg’s method of less than 0.05 were
considered to be statistically significant.

Cox regression model
In order to identify a miRNA signature associated with
risk of distant metastasis (DM), we did a differential
miRNA expression analysis between mesenchymal sub-
type and non-mesenchymal subtypes. In total, we identi-
fied 25 differentially expressed miRNAs (Table 3) (limma
package [36] in R) with a cutoff of absolute log2 fold
change greater than 1 and adjusted P value less than 0.05.
Among the 25 miRNAs, miR-142, miR-26a, miR-141 and
let-7i have significant prognostic power (P < 0.05) (Table
3), as determined by univariate Cox regression analysis.
For identification of high-risk distant metastasis, we built

a multivariate Cox regression model using the selected 4
miRNAs.

Results
Unsupervised clustering identifies three subtypes in NPC
Unsupervised clustering was applied to the 86 stage II
NPC patients from the GSE32960 dataset, which re-
vealed 2 to 4 well-defined clusters (Fig. 1a). GAP statis-
tics were calculated to determine the optimal number of
clusters, and a peak was found at k = 3 (Fig. 1a). Silhou-
ette width analysis was subsequently performed to select
the most coherent samples within each cluster. The
average silhouette width was 0.22 (range from 0.17 to
0.38), indicating the robustness of the classification. A
total number of 77 samples (~ 90%) with positive silhou-
ette width were retained to build the classifier. Next, we
selected 10 most predictive miRNAs (miR-622, miR-29b,
miR-1293, miR-1248, miR-26a, let-7d, miR-200b, let-7f,
miR-2053 and miR-370) as features to build a SVM clas-
sifier. The classifier can be used to classify the 86 NPC
patients into three subtypes: NPC1 (37 patients, 43%),
NPC2 (33 patients, 38%) and NPC3 (16 patients, 19%)
(Table 1).

Classification in the validation and cell line datasets
In order to investigate whether these three subtypes exist
in other datasets, we first performed classifications in the
two validation datasets. One is an internal dataset contains
the remaining 226 NPC patients from GSE32960 and an-
other is an external dataset contains 246 NPC patients
from GSE70970. Patients in these two datasets can be
classified into three subtypes with a similar proportion of
patients being distributed among subtypes (Table 1),
which may suggest a general inter-tumor heterogeneity
pattern exist in the NPC patients. Furthermore, we can
also classify the 12 commonly used NPC cell lines into the
three subtypes using our classification system, with six
classical, five mesenchymal and one immunogenic subtype
(Table 2). The cell line classification results may provide a
good in vitro platform for studying NPC biology and
finally developing subtype-specific therapies for the
patients.

Functional annotation of NPC subtypes
There are distinct miRNA expression patterns between
subtypes as observed in the heatmaps (Fig. 1b-d).
Among the 10 miRNAs, miR-1248, miR-29b, miR-26a,
let-7f and let-7d were specifically down-regulated in
NPC2 (mesenchymal subtype); while miR-622 and miR-
1293 were specifically down-regulated in NPC1 (classical
subtype); and the majority of miRNAs (80%) were up-
regulated in NPC3 (immunogenic subtype) compared to
the other two subtypes (Fig. 1b-d). We also compared
the 10 miRNAs expression patterns between non-cancer
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(n = 18) and cancer groups in the training (n = 86) and
validation (n = 226) datasets. Results show that there
exist clearly negative correlations between non-cancer
and mesenchymal groups. Specifically, miR-29b, let-7f,
let-7d and miR-26a were strikingly more highly-
expressed; and miR − 622 was lowly-expressed in the
non-cancer group (Additional file 1: Figure S1). The dis-
tinct miRNAs expression patterns between patient (espe-
cially in the mesenchymal subtype) and normal groups
also suggested that these 10 miRNAs are cancer-specific
dysregulated miRNAs, and can be investigated further to
develop personalized therapies for NPC patients.
To identify the association of biological pathways with

subtypes, we subsequently performed GSEA for the
enriched target genes in each subtype. In total, we ob-
tained 55 target genes in NPC1, 1, 241 target genes in
NPC2, 35 target genes in NPC3 and 251 target genes in
non-cancer group (Additional file 2: Table S1) by search-
ing the miRWalk 2.0 database [33]. Gene sets significantly

enriched for each subtype were displayed in Additional
file 3: Table S2, and in total there were 451 gene sets
that significantly enriched (adjusted P < 0.05) in at least
one NPC subtype (Additional file 3: Table S2). We then
used the k-means clustering method with k = 4 to clus-
ter these 451 gene sets, and a P value heatmap was
built to show the gene sets enriched in each subgroup
(Fig. 1e). EMT and metastasis related gene sets were
most highly enriched in NPC2, thus we named this
group of patients as mesenchymal subtype. Cell cycle
related gene sets were specifically enriched in NPC1,
which reflect a typical characteristic of the rapidly pro-
liferating tumor cells, therefore we name this subtype
as classical. Various RNA binding and immune related
gene sets were most enriched in NPC3. Although RNA
binding related gene sets are specifically enriched in
NPC3 (Fig. 1e), the biological functions of these gene
sets are still not fully understood, so we named NPC3
as immunogenic (Fig. 1e).

Table 3 Differentially expressed miRNAs in mesenchymal subtype

Limma analysis Cox regression analysis

ID logFC adj.P.Val Hazard ratio (95% CI) P value

ebv-miR-BART11-5p −1.54706 2.16E-25 0.9777 (0.8187242–1.167488) 0.803

hsa-let-7a −1.40183 8.66E-25 0.963 (0.7880834–1.176745) 0.711

hsa-let-7b − 1.06179 2.16E-25 0.9471 (0.7233448–1.239976) 0.691

hsa-let-7d −1.23859 2.46E-62 0.789 (0.5750843–1.081624) 0.141

hsa-let-7f −1.1923 2.45E-57 0.759 (0.5521583–1.042009) 0.0867

hsa-let-7i −1.3304 1.87E-56 0.735 (0.5547504–0.9745582) 0.0329*

hsa-miR-103 −1.21743 1.79E-43 0.87 (0.6585442–1.148594) 0.328

hsa-miR-1246 −1.08753 3.66E-27 0.857 (0.6564593–1.117855) 0.251

hsa-miR-1248 −1.34498 1.76E-38 0.89 (0.6972987–1.136929) 0.352

hsa-miR-1308 −1.21742 6.61E-23 0.98 (0.7887421–1.218035) 0.857

hsa-miR-141 −1.16218 1.26E-28 0.752 (0.5827463–0.9715151) 0.0291*

hsa-miR-142-3p −1.0139 3.21E-30 0.55 (0.397994–0.7602394) 0.000166*

hsa-miR-16 −1.12108 1.17E-16 0.879 (0.7166531–1.078863) 0.217

hsa-miR-1973 −1.22079 3.55E-19 1.0439 (0.8511332–1.280275) 0.678

hsa-miR-1975 −1.03043 1.01E-11 1.0092 (0.8323964–1.223649) 0.925

hsa-miR-19b −1.02683 1.09E-30 0.902 (0.6693412–1.216764) 0.5

hsa-miR-200b −1.08776 1.26E-28 0.799 (0.6070927–1.050777) 0.106

hsa-miR-21 −1.67241 7.01E-37 0.99486 (0.820039–1.206952) 0.958

hsa-miR-23a −1.19406 1.13E-46 0.796 (0.5968523–1.06213) 0.124

hsa-miR-24 −1.09488 6.93E-31 0.9481 (0.7189929–1.250106) 0.706

hsa-miR-26a −1.48288 8.51E-44 0.656 (0.5161167–0.8343482) 0.000469*

hsa-miR-29a −1.20827 8.57E-23 0.829 (0.670324–1.024992) 0.0857

hsa-miR-615-3p 1.051951 6.30E-36 1.113 (0.8244393–1.502931) 0.486

hsa-miR-767-5p 1.179607 1.24E-13 1.0842 (0.8985411–1.308245) 0.387

hsa-miR-922 1.154044 7.59E-12 0.9802 (0.8252847–1.164265) 0.819

Note: * Significant difference P < 0.05
logFC: log2 fold change; adj.P.Val: Benjamini-Hochberg-adjusted p-value
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Clinical characterization of NPC subtypes
Survival analysis by Kaplan-Meier for each subtype indi-
cated that mesenchymal subtype had the worst clinical
outcomes (significantly poorer DMFS) compared with
the classical and immunogenic subtypes (Fig. 2c, f, i).
There was no significant differences among the three
subtypes for other clinical endpoints such as OS and
DFS (Fig. 2 a-b, d-e and g-h), which suggested that these
subtypes only have DMFS differences both in training
and validation datasets.
The average age of the external validation dataset is

slightly older than the training dataset, and the ratio of
male patients in each subtype vary from 59% to 81%.
The detailed clinical information of these subtypes were
summarized in the Table 1. We also investigated the as-
sociation among the subtypes with other clinical factors,
such as age, sex and tumor stage, which revealed no sig-
nificant differences (Table 1). This analysis demonstrated
that other clinical factors cannot predict DMFS, and

supports the use of subtypes as a reliable prognostic fac-
tor in NPC.

Cox proportional hazards model can separate the NPC
patients into high-risk and low-risk groups of distant
metastasis
The Cox proportional hazards model is one of the most
popular used method to analyze survival data [37]. Out
of the 25 most differentially expressed miRNAs in mes-
enchymal subtype, miR-142, miR-26a, miR-141 and let-
7i have significant prognostic power (P < 0.05), as deter-
mined by univariate Cox regression analysis (Table 3).
For identification of high-risk distant metastasis, we
built a multivariate Cox regression model using the se-
lected 4 miRNAs. We calculated the risk scores based
on the model for each patients in the training dataset (n
= 312), a cutoff was determined by the median risk score
(0.027), and patients were classified into high-risk (>
0.027) and low-risk (< 0.027) groups. Survival analysis

a b

c d

e

Fig. 1 Unsupervised classification identified three molecular distinct subtypes of nasopharyngeal carcinoma. a Unsupervised classification of the
training dataset shows the optimal cluster number is three. A classifier was constructed (using 10 unique miRNAs) to categorize patients in each
of the subtypes; (b-d) The training dataset (86 patients), GSE32960 set (226 patients) and GSE70970 set (246 patients) were classified into three
subtypes according to the classifier, respectively. In the heatmaps, columns correspond to patients, and rows to 10 miRNAs (miR-1248, miR-29b, let-7f,
let-7d, miR-26a, miR-200b, miR-370, miR-2053, miR-1293 and miR-622). Expression values are represented by different colors, red means higher
expression values, and green for lower expression values. Note: IM is short for immunogenic; (e) A p-value heatmap to represent NPC
subtype enriched pathways (normal group was used as control), values in the heatmap equal to -log10 (p-value)
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were subsequently performed to investigate if there were
survival differences between these two groups, compared
with patients with low-risk scores, patients with high
risk scores in the training dataset had shorter DMFS
(hazard ratio [HR] 3.1, 95% CI 1.8–5.4; P = 1.2e-05), and
validation dataset DMFS (2.2, 1.1–4.5; P = 0.022)
(Fig. 3a-b).
We also investigated if other miRNA signatures, such

as Liu’s 5-miRNA signature (miR-93, miR-26a, miR-142,
miR-29c and miR-30e) [24], Bruce’s 4-miRNA signature
(miR-154, miR-449b, miR-140 and miR-34c) [25] and
randomly generated 4-miRNA signature (miR-653, miR-
766, miR-1302 and miR-505) were significantly associ-
ated with DMFS. Although Liu’s 5-miRNA signature has
significant prognostic power in the training dataset (P
= 1.7e-07), it performed worse with its p-value of 0.37
in the validation dataset (Fig. 3c-d). Bruce’s and ran-
domly generated 4-miRNA signatures all received poor

performances both in training and validation datasets
(Fig. 3e-f, and g-h).

Discussion
Like other cancer types, not all NPC patients will
present identical clinical outcomes after treatment, some
will result in relatively good treatment outcomes,
whereas some are not. The major reason for such
phenomenon is caused by the intra-tumoral heterogen-
eity. How to classify and select the right treatment strat-
egies for NPC patients become crucial tasks. Recent
genome wide molecular profiling provide an opportunity
to investigate the genetic changes during the develop-
ment and progression of cancers, and have been widely
used in the cancer classification studies [38, 39]. More
and more genome wide molecular profiling studies have
been carried out in NPC, and there are some gene

a b c

d e f

g h i

Fig. 2 Mesenchymal subtype have poor prognosis compared with other two subtypes. a-c Kaplan-Meier graphs depicting overall survival (OS),
disease-free survival (DFS) and distant metastasis (DMFS) within the training data set (86 patients) stratified by the NPC classification, and p values
are based on log-rank tests; (d-f) Kaplan-Meier graphs depicting OS, DFS and DMFS within the GSE32960 set (226 patients) stratified by
the subtype classifications; (g-i) Kaplan-Meier graphs depicting OS, DFS and DMFS within the GSE70970 set (246 patients) stratified by the
subtype classifications
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expression datasets available for NPC, however, number
of patients in each cohort is limited.
Unlike mRNA, miRNAs are short noncoding RNA

and are negative regulators of gene expression. MiRNAs
are involved in cancer by functioning as tumour sup-
pressors or oncogenes. MiRNA expression signatures are
informative and have been successfully used as diagnos-
tic and prognostic markers for various types of cancers
[17–22]. We found two big miRNA expression datasets
containing a total number of 550 NPC patients [24, 25],
and thus employed them in our subtyping study. Ac-
cording to the literature search, Liu et al. [24]
(GSE32960) dataset contains the largest NPC miRNA
profiling data (312 tumor and 18 normal control) so far,
while Bruce et al. [25] (GSE70970) dataset contains 246
NPC patients. More specifically, we used 86 stage II pa-
tients from GSE32960 as our training dataset, the
remaining patients from GSE32960 and GSE70970 were
used as two validation datasets. We identified three sub-
types in NPC: classical, mesenchymal and immunogenic
subtypes. We found that patients classified into mesen-
chymal subtype tend to have the worst clinical out-
comes, thus we put our emphasis on this subtype.
Mesenchymal subtype-specific miRNAs, such as let-7

family, miR-29b, miR-29a, and miR-26a, are the major
contributor to the poor prognosis of the mesenchymal
subtype. The let-7 family of miRNAs contain several
members: let-7 (−a, −b, −c, −d, −e, −f, −g, and -i), they
are highly conserved across animal species [40], and are
widely considered as tumor suppressor miRNAs. Let-7

miRNAs are frequently downregulated in various types
of cancers, including in NPC [41–43]. Wong et al. [42]
found that let-7 expression were downregulated in NPC
cells compared with normal nasopharyngeal cells, and
let-7 can inhibit cell proliferation through renal cell
down-regulation of c-Myc expression. Li et al. [43] in-
vestigated miRNA expression at different stages of NPC
tissue samples and found that different members from
let-7 family were dysregulated from early stage to the
late stage. In our study, we found that let-7 regulate
much more EMT and migration related genes than other
miRNAs, indicating it plays a critical role in the poor
prognosis characteristic of mesenchymal subtype. Other
mesenchymal subtype specific miRNAs include miR-
29b, miR-29a, and miR-26a. The miR-29 family consists
of three members: miR-29a, miR-29b, and miR-29c, dif-
fering only in few bases in the 3′ end nucleotides,
among them miR-29b is the most highly expressed
member [44]. The miR-29 family functioning as a tumor
suppressor in many types of cancers, which can regulate
apoptosis, cell proliferation and differentiation. MiR-29b
can regulate the expression of tumor suppressor p53,
and is recognized as an important regulator of EMT
[45]. Reduced expression of miR-29c has been reported
in several NPC studies [24, 46]. In our study, we found
that miR-29a and miR-29b were the mesenchymal sub-
type specific miRNAs, and they were significantly down-
regulated in mesenchymal subtype. Interestingly, we also
found that miR-29a was in our Cox model associated
with DMFS. MiR-26a has two precursors: miR-26a-1

a c e g

b d f h

Fig. 3 Cox model can separate NPC into high- and low- risk of distant metastasis groups. a-b Cox model built by using our signature (4 miRNAs:
miR-142, miR-26a, miR-141 and let-7i) can separate NPC into high- and low- risk groups of distant metastasis; (c-d) Cox model built by using Liu’s
signature (5 miRNAs: miR-93, miR-26a, miR-142, miR-29c and miR-30e) and performances; (e-f) Cox model built by using Bruce’s signature (4 miRNAs:
miR-154, miR-449b, miR-140 and miR-34c) and performances; (g-h) Cox model built by using randomly generated signature (4 miRNAs: miR-653,
miR-766, miR-1302 and miR-505) and performances

Zhao et al. Journal of Biomedical Science  (2018) 25:16 Page 9 of 12



and miR-26a-2, which located in chromosomes 3 and
12, respectively. MiR-26 is down-regulated in other can-
cers as well as in NPC [24]. Ma et al. [47] found that
miR-26a can inhibit the EMT by down regulation of
EZH2 expression, Liang et al. [48] found that miR-26a
can regulate the biogenesis of let-7d, and Slaby et al.
[49] had proved that miR-26a was associated with tumor
relapse in renal cell carcinoma, which all corresponds
well with the expression pattern of miR-26a in our study.
We also identified miR-1248, which has not been re-
ported to be associated with EMT in NPC.
In the era of precision oncology, molecular subtyping

of NPC is important. Not only it can stratify patients
into different subgroups, but also may help in triaging
treatment strategies for the patients in different sub-
groups. In our study, we identified some targets for mes-
enchymal subtype, which might have implication with
clinical values. In the meantime, we found that mesen-
chymal subtype patients have enriched for EMT and /or
migration related miRNAs and pathways, thus may ac-
count for the worst clinical outcomes of the mesenchy-
mal subtype. Compared to mesenchymal subtype,
classical subtype have better clinical outcome, and the
majority of patients (~ 42%) are classified into classical
subtype. Finally, we identified four prognostic miRNAs
(miR-142, miR-26a, miR-141 and let-7i) and build a Cox
regression model. The model can be used to separate
the NPC patients into high- and low-risk groups of dis-
tant metastasis. Among the four miRNAs, miR-142 and
miR-26a have been reported by Liu et al. [24] as prog-
nostic factors for DFS in NPC, which indicate that these
two miRNAs can be used to predict the risk of both
DFS and DMFS. As one member of the miR-200 family,
miR-141 was reported to be dysregulated in many can-
cers, participating in various cellular processes including
EMT, cell proliferation and migration [50]. MiR-141 ex-
pression has been proved to be negatively correlated
with survival in NPC [51]. In summary, the 4-miRNA
Cox model is strongly associated with NPC tumorigen-
esis, and has been demonstrated to be prognostic signa-
ture of DMFS in our study.
To our best knowledge, this is the first study to classify

the NPC patients into three molecular and clinical distinct
subtypes based on miRNA expression profiles. We also
classified the 12 commonly used NPC cell lines into the
three subtypes, which can provide in vitro platforms to
study subtypes of NPC. The present findings warrant, larger
patients datasets validation before applied into the clinic.

Conclusions
We proposed for the first time that NPC can be stratified
into three subtypes. Using a panel of 4 miRNAs, we estab-
lished a prognostic model that can robustly stratify NPC pa-
tients into high- and low- risk groups of distant metastasis.
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