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Abstract

them promising targets for regenerative medicine.

Background: The Myristoylated Alanine-Rich C-kinase Substrate (MARCKS) and MARCKS-like protein 1 (MARCKSLT)
have a wide range of functions, ranging from roles in embryonic development to adult brain plasticity and the
inflammatory response. Recently, both proteins have also been identified as important players in regeneration.
Upon phosphorylation by protein kinase C (PKC) or calcium-dependent calmodulin-binding, MARCKS and MARCKSL1
translocate from the membrane into the cytosol, modulating cytoskeletal actin dynamics and vesicular trafficking and
activating various signal transduction pathways. As a consequence, the two proteins are involved in the regulation of
cell migration, secretion, proliferation and differentiation in many different tissues.

Main body: Throughout vertebrate development, MARCKS and MARCKSL1 are widely expressed in tissues derived
from all germ layers, with particularly strong expression in the nervous system. They have been implicated in the
regulation of gastrulation, myogenesis, brain development, and other developmental processes. Mice carrying
loss of function mutations in either Marcks or Marcksl1 genes die shortly after birth due to multiple deficiencies
including detrimental neural tube closure defects. In adult vertebrates, MARCKS and MARCKL1 continue to be
important for multiple regenerative processes including peripheral nerve, appendage, and tail regeneration, making

Conclusion: This review briefly summarizes the molecular interactions and cellular functions of MARCKS and MARCKSLT
proteins and outlines their vital roles in development and regeneration.
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Background

The Mpyristoylated Alanine Rich C-Kinase Substrate
(MARCKS) is a ubiquitous, highly conserved protein
among vertebrates, which is essential for postnatal survival
[1], and has been widely studied for its functions in the
brain and nervous system. Being highly expressed in ner-
vous tissue, particularly during early development but per-
sisting in the adult, it plays numerous roles related to
brain growth, neuronal migration, neurite outgrowth,
neurotransmitter release, and synaptic plasticity (reviewed
in [2]). In addition, the protein has been implicated in the
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regulation of other developmental events, including gas-
trulation [3], myogenesis [4], and vasculogenesis [5].
MARCKS protein has become established as a key
regulator of many molecular interactions, such as those
involving the dynamic actin cytoskeleton or membrane
phosphoinositides (reviewed in [2, 6-8]). Many of the
molecular characteristics of MARCKS are also shared by
MARCKS-related proteins, including proteins with sig-
nificant homology in the effector domain such as
MARCKS-like protein 1 (MARCKSL1) and other pro-
teins that have similar biochemical functions and local-
isation patterns, such as growth associated protein 43
(GAP43) and cytoskeletal-associated protein 23 (CAP23)
[9]. Whereas GAP43 and CAP23 have long been shown
to play important roles in neural regeneration [10, 11],
only recently have MARCKS and MARCKSL1 been
implicated in regeneration of neural and other tissues
[12-14]. This review focuses on the emerging roles of
MARCKS and MARCKS-like proteins in development
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and regeneration and explores possible mechanisms
underlying their function.

Main text

Domain structures and molecular properties

MARCKS is an abundant, rod-shaped protein of
35 kDa [15], with three highly conserved functional
domains [2, 16] (Fig. la). In the centre of the protein,
the effector domain (ED) is rich in positively charged ly-
sine residues, while multiple serine residues make it
susceptible to phosphorylation by protein kinase C (PKC),
or other protein kinases such as Rho kinase (ROCK)
[2, 15, 17, 18]. Adjacent to the ED are two highly
conserved regions. The first is the MARCKS Homology 2
(MH2) domain [19]. The second conserved region is the
N-terminal domain containing a myristoylation site, which
undergoes a reversible co-translational attachment of myr-
istic acid to its N-terminal glycine residue [20]. In its
non-phosphorylated state, the positively-charged ED
attaches to the negatively charged cytosolic face of
the plasma membrane [2] (Fig. 1b). As a result, the
N-terminal myristoylation site reversibly inserts into

Page 2 of 12

the plasma membrane, serving as a lipid anchor for the
protein [21, 22]. Once the ED is phosphorylated, it loses
its affinity for the plasma membrane, shifting MARCKS
back into the cytoplasm [2] (Fig. 1b). This translocation,
termed the ‘electrostatic switch’ [22], can also be achieved
through increased Ca®* levels, which enable calmodulin to
bind to the ED of MARCKS [23] (Fig. 1b).

MARCKS-like protein 1 (MARCKSL1), also known as
MARCKS-like protein (MLP), MARCKS-related protein
(MRP), Brain Protein F52, or MacMARCKS, shares
strong homology and functionality with MARCKS [24].
The 20 kDa protein has a very similar ED to that of
MARCKS, which also binds F-actin, Ca**/calmodulin, and
acidic phospholipids. In addition, MARCKSL1 contains
the same N-terminal myristoylation consensus sequence
found in MARCKS [25]. However, it is important to note
that MARCKSL1 has a lower alanine content than
MARCKS, resulting in potential functional differences,
and a distinct distribution pattern in the brain [24].

Depending on their phosphorylation state, MARCKS
or MARCKSL1 have been shown to engage in a number
of different molecular interactions. First, when the ED of
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Fig. 1 MARCKS protein structure and electrostatic switch. a MARCKS protein has three protein domains, the N-Terminal domain (ND), which can
be myristoylated (Myr), an MH2 domain (MH2D) and an effector domain (ED). The ED (amino acids 152-176 in human MARCKS) is magnified in
the inset showing that it is highly positively charged and has 4 potential phosphorylation sites, one of which (asterisk) is poorly phosphorylated.
b In the unphosphorylated state and in the absence of Calcium-calmodulin (CaM) binding, MARCKS is tethered to the membrane but becomes
released into the cytosol when phosphorylated by protein kinase C (PKC) or Rho kinase (ROCK) or after Calcium-CaM binding. Modified from [8]
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MARCKS is unphosphorylated and attached to the
plasma membrane, it achieves cross-linking of actin
filaments by directly binding to filamentous (F) actin
[26, 27] (Fig. 2a). In addition, MARCKS can promote
the polymerisation of actin [28]. In a similar way,
MARCKSL1 bundles and stabilises F-actin upon phos-
phorylation, increasing filopodium dynamics [29]. These
direct interactions with the cytoskeleton have been impli-
cated in the regulation of cell migration in various de-
velopmental contexts (see below) as well as in the
regulation of mucin secretion in the human bronchial
epithelium. The latter process, which is dysregulated
in asthma and other respiratory diseases, involves the
dephosphorylation of cytoplasmic MARCKS, promot-
ing its interaction with both F-actin and membrane
bound proteins of secretory vesicles and resulting in
increased mucin secretion [30, 31].

The electrostatic switch mechanism of MARCKS
and MARCKSLLI also has important consequences for
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their ability to interact with phosphatidylinositol 4,5-
bisphosphate (PIP,) [7, 32, 33]. PIP, is a membrane
component, with numerous cellular functions, includ-
ing second messenger generation and membrane-
anchoring of various proteins, including kinases and
proteins with MARCKS-like domains [34, 35]. PIP, is
either selectively hydrolysed by phospholipase C
(PLC), producing inositol triphosphate (IP3) and diac-
ylglycerol (DAG) [36], or is further phosphorylated by
phosphoinositide 3-kinase (PI3K) to form PIP;. These
three products act as second messengers in many
eukaryotic signal transduction cascades. For example,
DAG activates several PKC isozymes, stimulating the
phosphorylation of select proteins by PKC. On the other
hand, IP; regulates the cytoplasmic concentration of Ca**
by gating a Ca®" channel in the endoplasmic reticulum.
Furthermore, IP; functions as a rate-limiting substrate
in the synthesis of additional inositol polyphosphates,
which can stimulate various protein kinases, transcription,
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Fig. 2 Molecular interactions of MARCKS. Role of membrane- tethered, unphosphorylated MARCKS (a;-d;) is compared with its cytosolic, phosphorylated
form (a,-d,). Membranes are depicted in grey; phosphorylation is indicated by purple circles. a Direct actin binding of unphosphorylated MARCKS. b PIP,
sequestration of unphosphorylated MARCKS; upon phosphorylation of MARCKS, PIP, becomes accessible to PLC and PI3K. ¢ Phosphorylated MARCKS

binds to Tob resulting in activation of ErbB2 signalling. d Unphosphorylated MARCKS binds to Rab10 promoting exocytosis of vesicles. See text for details )
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and mRNA processing events [36—38]. PIP;, finally, is in-
volved in activating the AKT signalling pathway with a
plethora of diverse functions [39].

It has been recurrently shown that membrane-bound
MARCKS can isolate and sequester PIP, within specific
membrane micro-domains, or “lipid rafts”, for participa-
tion in later signal transduction events, suggesting that it
can modulate PIP,-dependent cellular processes by con-
trolling the spatial availability of the phospholipid for en-
zymes such as PLC and PI3K [34, 40-42] (Fig. 2b).
While PIP, is critical for the activity and localisation of
several membrane associated proteins, including focal
adhesion kinase (FAK) [34, 35] many of the PIP,-
dependent processes that MARCKS modulates remain
currently unknown. However, PIP, sequestration by
MARCKS and related proteins has been shown to pro-
mote axon outgrowth [43]. While the mechanism is not
completely resolved, it has been proposed that
unmasked PIP, interacts with and inhibits proteins pro-
moting actin dynamics (e.g. gelsolin, cofilin, profilin),
thereby indirectly stabilizing the cortical actin cytoskel-
eton. After sequestration of PIP, by MARCKS, these
proteins are released and now promote cell motility [43].

A further PIP,-dependent process that is affected by
MARCKS is the activation of phospholipase D (PLD)
[7, 44, 45], which is involved in cytoskeletal actin dy-
namics, membrane trafficking, cell migration, and mi-
tosis [46-51]. Since PIP, is required for PLD activation,
it has been proposed that MARCKS-mediated PLD activa-
tion results from the phosphorylation-induced release of
PIP, [7]. PLD acts by hydrolysing phosphatidylcholine
(PC), producing choline and phosphatidic acid (PA),
which serve as second messengers in many signal
transduction cascades [52, 53]. For instance, PA is
known to play a significant role in actin stress fibre for-
mation [54, 55], vesicular trafficking [56], cell proliferation
[57, 58], neurite outgrowth [59], and MAP-kinase activa-
tion [60]. In addition, PA can also be converted into DAG
and lysophosphatidic acid (LPA) [61], a potent signalling
molecule with functions such as neurite retraction [62]
and cell proliferation [63].

In addition to its PIP,-dependent modulation of vari-
ous signalling pathways, MARCKS affects other signal-
ling pathways by different mechanisms. As an example,
following phosphorylation by PKC, MARCKS activates
an ErbB2-mediated signal pathway, by binding to the
anti-proliferative negative cell-cycle regulator Trans-
ducer of ErbB2 (TOB2), thereby decreasing its affinity to
ErbB2 [64] (Fig. 2¢). This in turn, promotes cell prolifer-
ation and maintenance of normal radial glial identity
[65]. In addition, the exogenous overexpression of
ErbB2 induces mature astrocytes to become radial
glial progenitors in the adult mouse brain, promoting
both neurogenesis and targeted neuronal migration
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[66]. Furthermore, MARCKS has been associated with
polysialic acid (PSA), which influences neural differen-
tiation, migration [67] and axonal commissure forma-
tion [68—70]. When PSA is added to neural cell adhesion
molecules (NCAMs) as a post-translational modification, it
co-localises with  MARCKS in the plasma membrane,
stimulating neurite outgrowth [71]. Moreover, MARCKS
has recently been shown to modulate Netrin-1 - Deleted in
Colorectal Cancer (DCC) signalling by disrupting the local-
isation patterns of two of its subcellular mediators, proto-
oncogene tyrosine-kinase SRC and FAK. As a result, axonal
navigation in the corpus callosum becomes aberrant during
a crucial phase of mouse brain development [72].

The apical localisation of MARCKS in ependymal and
radial glial cells [73, 74] and the displacement of cell-
polarity proteins such as aPKC, PAR3, CDC42, as well
as p-catenin, prominin, and N-cadherin in Marcks '~
mouse embryos [73], suggest that MARCKS is also able
to interact with membrane-associated proteins related to
cell polarity and anchor them apically, although evidence
for direct protein-protein interactions is currently lack-
ing. However, radial glial cell polarity is perturbed in
Marcks™~ embryos, resulting in reduced proliferation,
changes in the proportion of asymmetric cell divisions,
and displacement of radial glia cells, which can act both
as neural progenitor cells and as pro-migratory scaffolds
for neurons in the developing cortex [2, 73]. In addition,
MARCKS may also affect cell polarity via PIP,-
dependent mechanisms [73, 75-77].

Finally, MARCKS has been shown to interact with
various vesicular proteins. Direct interactions with
Rab10 in plasmalemmal precursor vesicles (PPVs) pro-
vide membranes to outgrowing axons when the ED is
not phosphorylated [78] (Fig. 2d). Interactions with
other vesicle associated proteins such as synapsin [79] or
various chaperones [31] have been described and may
contribute to the role of MARCKS for secretion of
mucin, neurotransmitters, as well as inflammatory cyto-
kines [31, 80—83]. MARCKS probably affects secretion
by several distinct mechanisms, since the unphospho-
rylated form of the protein promotes mucin secretion
[30, 31], while the phosphorylated form promotes neuro-
transmitter release and gut peptide secretion [80, 81].

In summary, MARCKS interacts with numerous
molecular pathways. Much less is known about
MARCKSLI1, but the overall consequences of its inter-
actions appear to be similar to MARCKS. Most notably,
MARCKS affects cytoskeletal rearrangements, various sig-
nalling pathways, and vesicular trafficking. As a conse-
quence, the protein affects predominantly cellular
processes relying on these pathways during development
or in the adult such as cell migration, secretion and
phagocytosis, and cell proliferation and differentiation.
Cell migration is affected not only by MARCKS’ capacity
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for direct actin binding but also by multiple downstream
effects of PIP, sequestration [26, 27, 43, 44]. Secre-
tion and phagocytosis likewise appear to be modu-
lated by several MARCKS interacting factors [31, 78, 79].
Finally, cell proliferation and differentiation are modulated
by MARCKS interaction with various signalling pathways,
as well as possibly its interactions with cell polarity
proteins [64, 73, 84].

A large body of evidence indicates that the electro-
static switch mechanism between membrane bound
(unphosphorylated) and cytosolic (phosphorylated or
CaM-bound) MARCKS plays a crucial role in the regula-
tion of each of these processes. However, there is con-
flicting evidence for the precise role of membrane
bound versus cytosolic MARCKS. As discussed above,
secretion appears to be promoted by unphosphorylated,
membrane bound MARCKS in some contexts [30, 31]
but by phosphorylated, cytosolic MARCKS in other con-
texts [80, 81]. Similarly, unphosphorylated, membrane
bound MARCKS or MARCKSL1 have been shown to
promote lamellipodium formation, axon outgrowth and
cell motility in neurons and cancer cells in some studies
[29, 43, 85-87], whereas phosphorylated, cytosolic
MARCKS has been shown to promote cell motility in
other studies [88-92]. Moreover, neither phosphoryl-
ation of the ED nor myristoylation of MARCKS are neces-
sary for normal gross brain morphology in a transgenic
line of mice overexpressing MARCKS [93-95], whereas
myristoylation, but not phosphorylation, of MARCKS is
required for radial glial polarity and localisation [73].

While some of these apparently paradoxical findings
may be due to context-dependent interactions of
MARCKS with different binding partners, others may
reflect the dynamic requirement of both phosphorylated
and unphosphorylated forms of MARCKS. Indeed, phos-
phorylation of MARCKS in migrating muscle precursors
and neutrophils has been shown to be transient,
followed by rapid dephosphorylation. While the phos-
phorylated form permits initial adhesion, the dephos-
phorylated form of MARCKS supports later stages of
cell spreading [96, 97].

Role of MARCKS and MARCKSL1 in development

MARCKS and MARCKSLI are expressed almost ubiqui-
tously during vertebrate development, from early devel-
opmental stages and onwards, although there are some
differences in MARCKS and MARCKSL1 expression
patterns between species, developmental stages, tissues,
and the phosphorylation state of the proteins. MARCKS
and MARCKSL1 mRNA were shown to be maternally
supplied in anamniotes and continue to be expressed
throughout cleavage and gastrulation [16, 98, 99]. After
neurulation, expression of MARCKS and MARCKSLI is

Page 5 of 12

upregulated in the central (CNS) and peripheral nervous
system (PNS) of all vertebrates, but continues to be
expressed in many mesodermal and endodermal tis-
sues [16, 24, 98—102]. During embryonic development
of the CNS, MARCKS is first upregulated in the
neuroepithelial cells of the emergent neural tube
[100], before localising into the apical membranes of
ventricular-zone neural progenitor cells (NPCs) [73, 103].
Subsequently, it is found particularly enriched in axons
and dendrites [104, 105].

The nearly ubiquitous expression pattern of MARCKS
and MARCKSL1 suggests that they play a vital role dur-
ing vertebrate development and this is supported by
many functional studies. For example, five gene-
knockout studies in mice have shown that MARCKS
and MARCKSL1 are both required for embryogenesis
[1, 24, 100, 106, 107]. According to these reports, the ab-
sence of MARCKS and MARCKSLI1 interfered with
neural tube closure, leading to spina bifida and exence-
phaly, which resulted in perinatal lethality [108]. In
addition, the disruption of the Marcks gene led to severe
neuromuscular defects and decreased body size in mice
[1, 73, 93, 100]. Other neural embryonic defects included
agenesis of forebrain commissures (e.g. the corpus callo-
sum), neuronal ectopia, and abnormal retinal/cortical
laminations [1, 100].

Additional functional studies in frog and zebrafish
have shown that MARCKS plays an important role dur-
ing early embryonic events such as gastrulation [3]. For
example, by blocking MARCKS protein synthesis in
Xenopus embryos using antisense morpholino oligonu-
cleotides (MO), Ioka et al. reported impaired convergent
extension movements due to cytoskeletal deregulation
[3]. In zebrafish embryos, blocking the two MARCKS
paralogs marcksa and marksb also resulted in gross
phenotypic defects, including severely curved and trun-
cated tails, gill-formation abnormalities, skeletal muscle
deformities, and an abnormal brain architecture [16].

The neural abnormalities observed in MARCKS mu-
tants strongly suggest that MARCKS has multiple roles
in the developing nervous system. For example, it main-
tains normal radial glial cell polarity and cell adhesion in
the neocortex during brain development [73]. Since mice
with mutant non-myristoylatable MARCKS [94] were
only partially rescued from severe cranial defects and
perinatal death in comparison with mice lacking
MARCKS PKC-phosphorylation sites [109], it can be
speculated that the function of radial glial cells depends
on MARCKS myristoylation rather than phosphorylation
[73]. Similarly, in another study, a phosphorylation defi-
cient mutant form of MARCKS protein was able to res-
cue CNS defects observed in Marcks™~ knockout mice,
suggesting that phosphorylation of MARCKS is not
essential for CNS development [93].
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However, another study suggests that the phosphoryl-
ation status of MARCKS plays a significant role in spinal
cord development. In this study, Garrett et al. condition-
ally blocked the y-Protocadherin allele Pcdh-y, creating
high levels of PKC that phosphorylated MARCKS [110].
As a result, dendrite complexity and arborisation were
drastically reduced, having severe implications on CNS
development. To confirm these results, dendrite abnor-
malities were rescued by blocking PKC, PLC, and FAK,
the latter of which binds to y-Protocadherins.

Moreover, MARCKS has been implicated in the regu-
lation of neuronal migration and axon outgrowth during
PNS and CNS development by modulating growth cone
adhesion [85, 111] and the dynamics of the actin cyto-
skeleton [29, 43]. The latter results in the stimulation of
lamellipodia formation and neurite outgrowth by de-
phosphorylated MARCKS [29, 86, 112].

MARCKS and MARCKSLI are also implicated in cell
adhesion and migration of neural crest cells (NCCs).
NCCs are a group of transient migratory cells that ori-
ginate from the neural tube during embryogenesis and
give rise to a variety of different cell types, including sen-
sory neurons and glial cells of the PNS, cranial cartilage,
and bone [113, 114]. It has been suggested that migrating-
precursor cells of the PNS that originate from NCCs ex-
press a significantly higher amount of MARCKS in chick
embryos [102]. In addition, mice lacking MARCKSL1
have been shown to have impaired NCC migration, con-
tributing to severe abnormalities including exencephaly
and neural-tube defects [107]. For future experiments, it
would be interesting to trace the behaviour and fate of
MARCKS and MARCKSL1 in NCCs using cell-adhesion
and cell-migration assays to further elucidate their role in
development and regeneration.

In addition, MARCKS and MARCKSL1 are also in-
volved in modulating migration during development of
many other tissues. For example, by reversibly blocking
MARCKS-translocation and myoblast-fusion in chick
embryos, Kim et al. found that PKC-controlled
MARCKS translocation is a prerequisite for myoblast fu-
sion, a key cellular event that shapes the formation, fu-
sion, and repair of embryonic muscle cells [4, 109, 115].
Moreover, MARCKS regulates vascular endothelial cell
migration by influencing insulin-dependent signalling to
PIP,, which in turn affects actin assembly and cellular
development in the vascular endothelium [5]. MARCKS
has also been shown to play a critical role in
angiotensin-II signalling, which directly influences endo-
thelial cell motility [116].

As a whole, the role of MARCKS in cell migration, se-
cretion, proliferation and differentiation appears com-
mon to a diverse array of developmental functions, and
continues to be important in several adult tissues. For
example, as discussed above, adult MARCKS plays an
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important role in mucin secretion in the airways [30].
Moreover, in the mature nervous system, MARCKS and
MARCKSLLI serve a variety of functions, including the
promotion of neurotransmitter release and gut peptide
secretion [80, 81], as well as a role in synaptic plasticity
and learning and memory, possibly due to their ability to
promote dendritic spine maintenance [2, 105, 117]. In
addition, MARCKS and MARCKSL1 play important
roles in the immune system, where they promote migra-
tion of inflammatory cells and the secretion of cytokines
as discussed in more detail below. Dysregulation of
MARCKS or MARCKSL1 has also been implicated in
many different cancers, where they affect tumorigenesis,
metastasis and angiogenesis [8, 118].

Role of MARCKS and MARCKSL1 in regeneration

There is strong evidence for a role of the proteins
GAP43 and CAP23 in regeneration in both the PNS and
CNS [10, 11, 119-123]. These two proteins are structur-
ally and mechanistically related PKC substrates that
share numerous functions including PIP,- and- actin
cytoskeletal regulation with MARCKS [9, 43, 124]. Based
on these similarities, the trio of GAP43, MARCKS and
CAP23 is commonly referred to as GMC proteins.

For example, GAP43 and CAP23 are highly expressed
in mouse motor nerves during regeneration [120, 125]
and play a critical role in regulating nerve sprouting
[124, 126]. They have also been implicated in the regen-
eration of axons in the dorsal root ganglia and sciatic
nerves [43, 127], olfactory epithelia [128], retinal gan-
glion cells [129], and the cerebral cortex [130]. Co-
expression of these two proteins triggers a 60-fold
increase in dorsal root ganglion axon regeneration after
spinal cord injury in mice [131]. In the cerebellum, over-
expression of GAP43 induces axonal sprouting [132, 133],
while downregulation of GAP43 by RNAI interferes with
axonal regrowth after injury [134].

In contrast to other GMC proteins, MARCKS and
MARCKSL1 have only recently emerged as potentially
important players during the regenerative process. In
2000, McNamara et al. showed that MARCKS expres-
sion, like GAP43, is significantly upregulated in regener-
ating neurons after facial axonal lesions in rats [12].
Both proteins are also highly expressed during neurite
outgrowth of dorsal root ganglia and superior cervical
ganglia [123]. Furthermore, MARCKS is highly upregu-
lated during optic nerve regeneration [135] and during
axonal sprouting after brain stroke [126], suggesting that
MARCKS, like GAP43 and CAP23, may play an import-
ant role in axon outgrowth during regeneration in both
PNS and CNS, although disappointingly, functional
studies confirming this are still lacking. Outside of the
nervous system, MARCKS has also been shown to be
upregulated during lens regeneration [136] and during
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cardiac tissue regeneration following infarction [137],
while MARCKSLI1 is elevated during lungfish fin regen-
eration [14]. Using qPCR analysis on the fin blastema, a
collection of relatively undifferentiated and proliferating
cells capable of regeneration, it was shown that lungfish
Marcksll reaches its highest level of expression 1 day
post amputation, returning to basal levels at 3 weeks
post-amputation [14].

A recent publication by Sugiura et al. now suggests a
different and more pervasive role for MARCKSL] in re-
generation, by demonstrating that extracellularly re-
leased axolotl MARCKS-like protein (AxMLP) is
responsible for inducing the early proliferative response
in axolotl tail and limb regeneration [13]. Using a variety
of experimental strategies, these researchers identified
AxXxMLP as an extracellular factor that is strongly associ-
ated with cell proliferation and blastemal length. For in-
stance, in-vivo knock-down studies revealed that AXMLP is
necessary for the elevated levels of cell proliferation follow-
ing injury, while immunohistochemical analysis of AxMLP
distribution in epidermal and spinal cord tissues showed
that the protein is mostly cytoplasmic in uninjured tissue,
before translocating to the membrane following injury in
accordance with its proposed extracellular secretion.

Today, the mechanisms of AXMLP extracellular release
remain currently unknown. Confirmation and elucidation
of the mode of MARCKSLI1 secretion promises to provide
novel insights into unconventional protein secretion
mechanisms since it does not contain a signal peptide. In
addition, secretion of MARCKS or MARCKSLI so far has
only been reported in the highly regenerative axolotl but
has not been found in other vertebrates, raising the possi-
bility that secretion of these proteins may be linked to
their ability to promote regeneration.

Taken together with previous observations, this study
suggests that MARCKS and MARCKSLI play important
roles during regeneration. While the underlying molecu-
lar mechanisms are still unresolved, insights from mo-
lecular and developmental studies suggest some
candidate pathways, which will be discussed in the fol-
lowing sections. As summarized above, MARCKS and
MARCKSLI1 have important roles in the development of
multiple tissues, but they have also been shown to be
important in the inflammatory response to injury. This
suggests that MARCKS and MARCKSL1 may potentially
affect the regenerative response in two very different but
not mutually exclusive ways. First, by promoting the re-
generative process in the injured tissue itself and second,
by modulating the inflammatory response.

Potential direct roles in the injured tissue

The first response to limb- or tail amputation in species
capable of regeneration is the formation of a blastema,
involving the migration of cells, followed by cell-cycle
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re-entry and blastemal-cell proliferation. These cellular
mechanisms, including migration, proliferation, and dif-
ferentiation, are known to be conserved amongst most
species after injury [138]. MARCKS and MARCKSLI1
have been implicated in many of the processes under-
lying blastema formation, suggesting that they may play
multiple roles during this process. First, MARCKS has
been shown to promote proliferation, by activating the
ErbB2-mediated signal pathway or by interacting with
cell polarity proteins [64, 73]. As mentioned previously,
ErbB2 overexpression has also been shown to induce as-
trocytes to dedifferentiate and revert to a progenitor
state [66] and similar processes would be required dur-
ing blastema formation.

Second, MARCKS has been shown to induce cellular
migration, which is another critical component of regen-
eration [139-141]. As discussed above, MARCKS influ-
ences cell migration by a multitude of mechanisms,
including its interactions with actin, PIP, sequestration,
and the activation of various signalling pathways. In
addition, MARCKS has been shown to mediate the ef-
fects of the noncanonical Wnt pathway on cortical actin
dynamics during the formation of lamellipodia- and
filopodia-like protrusions [3]. This pathway has been
shown to promote regeneration in Xenopus and zebra-
fish, and is necessary for axolotl appendage regeneration
[142]. The established role of MARCKS in promoting
axon outgrowth via its effect on cell adhesion and actin
dynamics may also contribute to neural regeneration.

Potential indirect roles in modulating inflammation

The process of inflammation also plays a critical role in
the regeneration of injured tissue through a variety of
highly conserved pathways. Although severe inflammation
typically inhibits regeneration, a moderate and well-
regulated inflammatory response may actually be required
for the initiation of regeneration [143-145]. Depending on
the injury site and organism, cells such as macrophages
and neutrophils that infiltrate the wound and secrete cy-
tokines are characteristic of the inflammatory response
[139, 144, 146-150]. Macrophages, which are necessary
for salamander limb regeneration [151, 152], are known to
functionally depend on MARCKS and MARCKSLI.

The importance of MARCKS and MARCKSLI in in-
flammation is well established. MARCKSL1 was initially
termed ‘MacMARCKS’ due to its high level of expres-
sion in macrophages [153], and up to date, numerous
studies have associated MARCKS and MARCKSL1 with
normal macrophage function [154, 155]. For instance,
both  MARCKS and MARCKSL1 are implicated in
macrophage transmigration [156] through a process in-
volving phosphorylation, actin binding, and cytosol
translocation [90]. During the inflammatory response,
MARCKS has also been shown to act as a major
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regulator of human neutrophil migration and adhesion
[88], also promoting neutrophil secretion of inflamma-
tory cytokines [82, 83, 157, 158].

Finally, MARCKS upregulation is associated with micro-
glial activation and neuroinflammation after CNS injuries
[159]. Interestingly, although the mechanisms of micro-
glial activation during axonal regeneration remain disput-
able [160, 161], studies suggest that amyloid beta might be
responsible for promoting microglial activation by stimu-
lating PKC and MAPK to phosphorylate MARCKS [162].

Conclusions

Over the past three decades, major advances in research
have identified MARCKS and MARCKSLI as key players
during developmental and regenerative processes. These
include brain, kidney, blood-vessel, and muscle develop-
ment, as well as appendage regeneration. However, while
numerous molecular interactions of MARCKS-related
molecules, such as their interactions with the actin cyto-
skeleton and membrane phosphoinositides have been
unravelled, their respective role for various developmen-
tal and regenerative processes is very poorly understood.
Moreover, these multifaceted molecules probably con-
tribute to development and regeneration by additional
mechanisms which remain yet to be characterised.

For example, the phosphorylation-site domain (ED) in
MARCKS is homologous to a region in diacylglycerol kin-
ase zeta (DGK{(), which has been shown to bind to and
modulate the function of retinoblastoma protein (Rb)
[163—165]. Rb is implicated in cell cycle regulation and has
been shown to be important for cell cycle re-entry of newt
myotubes [166—168], but whether this function is
MARCKS or MARCKSLI1 dependent has not been investi-
gated yet. The ED also acts as a nuclear localisation signal,
suggesting that MARCKS may have unrecognized functions
in the nucleus, including potential roles in the modulation
of gene expression and of nuclear PIP, localisation [169].

Retinoic acid (RA) is another factor which has been
shown to affect MARCKS function in rat hippocampal
cells, where it leads to its translocation from the mem-
brane to the cytosol [170]. As a metabolite of vitamin A,
RA plays a significant role in numerous regenerative
processes such as nerve, auditory hair cell, fin/limb and
lung regeneration [171-177], but whether any of these
effects depend on MARCKS remains yet to be explored.
Finally, the demonstration that AXMLP acts as a se-
creted factor in axolotl limb regeneration suggests add-
itional and hitherto unknown modes of action.

Therefore, further research is required to assess the pre-
cise mechanisms by which MARCKS and MARCKSL1
contribute to development and regeneration, providing
professionals with the molecular tools that will help them
design new therapies for illnesses such as asthma, cancer,
and spinal cord injury [8, 131, 178].
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