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Perinatal Pb2+ exposure alters the
expression of genes related to the
neurodevelopmental GABA-shift in
postnatal rats
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Abstract

Background: Lead (Pb2+) is an environmental neurotoxicant that disrupts neurodevelopment, communication, and
organization through competition with Ca2+ signaling. How perinatal Pb2+ exposure affects Ca2+-related gene
regulation remains unclear. However, Ca2+ activates the L-Type voltage sensitive calcium channel β-3 subunit
(Ca-β3), which autoregulates neuronal excitability and plays a role in the GABA-shift from excitatory-to-
inhibitory neurotransmission.

Method: A total of eight females (n = 4 Control and n = 4 Perinatal) and four males (n = 2 Control and n = 2
Perinatal) rats were used as breeders to serve as Dams and Sires. The Dam’s litters each ranged from N = 6–
10 pups per litter (M = 8, SD = 2), irrespective of Pb2+ treatment, with a majority of males over females. Since
there were more males in each of the litters than females, to best assess and equally control for Pb2+− and
litter-effects across all developmental time-points under study, female pups were excluded due to an
insufficient sample size availability from the litter’s obtained. From the included pup litters, 24 experimentally
naïve male Long Evans hooded rat pups (Control N = 12; Pb2+ N = 12) were used in the present study. Brains
were extracted from rat prefrontal cortex (PFC) and hippocampus (HP) at postnatal day (PND) 2, 7, 14 and 22,
were homogenized in 1 mL of TRIzol reagent per 100 mg of tissue using a glass-Teflon homogenizer. Post-
centrifugation, RNA was extracted with chloroform and precipitated with isopropyl alcohol. RNA samples were
then re-suspended in 100 μL of DEPC treated H2O. Next, 10 μg of total RNA was treated with RNase-free
DNase (Qiagen) at 37 °C for 1 h and re-purified by a 3:1 phenol/chloroform extraction followed by an ethanol
precipitation. From the purified RNA, 1 μg was used in the SYBR GreenER Two-Step qRT-PCR kit (Invitrogen)
for first strand cDNA synthesis and the quantitative real-time PCR (qRT-PCR). The effects of perinatal Pb2+

exposure on genes related to early neuronal development and the GABA-shift were evaluated through the
expression of: Ca-β3, GABAAR-β3, NKCC1, KCC2, and GAD 80, 86, 65, and 67 isoforms.
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Results: Perinatal Pb2+ exposure significantly altered the GABA-shift neurodevelopmental GOI expression as a
function of Pb2+ exposure and age across postnatal development. Dramatic changes were observed with
Ca-β3 expression consistent with a Pb2+ competition with L-type calcium channels. By PND 22, Ca-β3 mRNA
was reduced by 1-fold and 1.5-fold in PFC and HP respectively, relative to controls. All HP GABA-β3 mRNA
levels were particularly vulnerable to Pb2+ at PND 2 and 7, and both PFC and HP were negatively impacted
by Pb2+ at PND 22. Additionally, Pb2+ altered both the PFC and HP immature GAD 80/86 mRNA expression
particularly at PND 2, whereas mature GAD 65/67 were most significantly affected by Pb2+ at PND 22.

Conclusions: Perinatal Pb2+ exposure disrupts the expression of mRNAs related to the GABA-shift, potentially
altering the establishment, organization, and excitability of neural circuits across development. These findings
offer new insights into the altered effects Pb2+ has on the GABAergic system preceding what is known
regarding Pb2+ insults unto the glutamatergic system.

Keywords: GABA-shift, Lead exposure, Neurodevelopment, Neurotoxicant, mRNA patterns, Prefrontal cortex,
Hippocampus, Postnatal development, L-type calcium channels, Frontoexecutive dysfunction

Background
Lead (Pb2+) is a well-established environmental neurotoxi-
cant, which at low levels of exposure causes deleterious ef-
fects to neurodevelopment. The immature brain is
particularly vulnerable to Pb2+ given that young mammals
have a higher absorption of minerals than adults [1], as
well as the fact that the blood brain barrier is still develop-
ing [2]. Pb2+ exposure dose-dependently induces brain re-
gion specific effects on transcriptome gene expression [3,
4]. Moreover, behaviorally naive rats exposed developmen-
tally to Pb2+ show sex-based altered gene expression
changes in the HP of aged rats [5], suggesting that peri-
natal exposure can disrupt genetic programs in the ab-
sence of sensory and behavioral experience. These studies
are consistent with neurodevelopmental Pb2+ exposure al-
tering later life cognitive outcomes damaging the pre-
frontal cortex (PFC) and hippocampus (HP) as a function
of gender and time-period of exposure.
Notably, most studies investigating neurodevelopmen-

tal Pb2+ exposure restricted their focus to adult out-
comes [3–8] warranting earlier investigation of the
underlying mechanisms producing this developmental
neuropathology. Interestingly, even low blood lead levels
(BLLs) can produce frontoexecutive dysfunctions and
neuropathologies in children, which persist across the
lifespan [2, 9, 10]. This highlights the need for early bio-
markers of neuropathological disease that can predict
developmental Pb2+ exposure problems early in postna-
tal life and that can be tracked across the lifespan. For
example, Pb2+ exposure alters the levels of hippocampal
NMDA receptor mRNA transcription and translation
with associated learning and memory defects in adult
rodents [3–8].
It is likely that perinatal Pb2+ exposure alters the expres-

sion of additional genes related to synaptic connectivity
and function given the widespread effect of Pb2+ on the
neurodevelopmental transcriptome [3, 4]. One possible

mechanism by which Pb2+ might affect neurodevelopment
is during the “GABA-shift” [11]. The GABA-shift is a
crucial neurodevelopmental event in which GABA is con-
verted from an excitatory to an inhibitory neurotransmit-
ter. The initial depolarizing effect of GABA is due to the
high intracellular concentration of chloride ions during
the early postnatal period. Thus, the GABA-shift is an im-
portant neurodevelopmental event that plays a crucial role
in activating and wiring the neural circuitry necessary for
lifelong learning and memory [11]. Alterations in the
levels of genes that regulate the GABA-shift could result
in developmental neuropathological disorders [12]. In par-
ticular, the beta-3 subunit of the L-Type voltage sensitive
calcium channel (Ca-β3), has been shown to autoregulate
its own channel activity through excitation-transcription
coupling as a function of neuronal excitability [13]. Since
the Ca-β3 subunit has been shown to be responsible for
driving gene expression in neurons, especially in early de-
velopment when most other neurotransmitter systems are
either less expressed of functionally inactive, the Ca-β3 ex-
pression levels naturally occurring in development serve a
unique role in regulating the dynamic function of neuronal
activity. This Ca-β3 functional regulation of gene expres-
sion different from the L-Type voltage sensitive calcium
channel alpha-1 subunit (Ca-α1) pore forming subunits,
that regulate neuronal activity and less of gene expression
[13, 14]. Moreover, Ca-α1 have been shown to be disrupted
by Pb2+, yet less is known regarding its impacts on Ca-β3
and how Pb2+ may affect gene expression related to the
GABA-shift. We therefore investigated the effects of peri-
natal Pb2+ exposure on the neurodevelopmental patterns of
the genes regulating the GABA-shift in rat prefrontal cortex
(PFC) and hippocampus (HP) during the time-frame span-
ning the GABA-shift. The genes of interest (GOI) were as
follows: the beta-3 subunit of the L-Type voltage sensitive
calcium channel (Ca-β3), the γ-amino butyric acid receptor
A-beta-3 receptor subunit (GABA-β3); the Na+-K+-Cl−Cl−
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cotransporter (NKCC1); the K+-Cl−Cl−cotransporter potas-
sium/chloride co-transporter-1 (KCC2); and glutamic acid
decarboxylase (GAD) early 80/86 and late 65/67 isoforms.
We found that perinatal Pb2+ exposure alters the expres-
sion of these genes in a way that could have an impact on
the timing and magnitude of the GABA-shift.

Method
Subjects
One month prior to pairing 10–14 week old behaviorally
naïve Long Evans Hooded rats (N = 12) purchased from
(Taconic, NJ) were randomly selected for breeding from to
establish an in-house breeding colony to be designated as
either receiving Control or Perinatal Pb2+ treatments, re-
spectively. A total of eight females (n = 4 Control and n = 4
Perinatal) and four males (n = 2 Control and n = 2 Perinatal)
rats were used as breeders to serve as Dams and Sires. The
Dam’s litters each ranged from N = 6–10 pups per litter (M
= 8, SD = 2), irrespective of Pb2+ treatment, with a majority
of males over females. Since there were more males in each
of the litters than females, to best assess and equally control
for Pb2+ − and litter-effects across all developmental
time-points under study, female pups were excluded due to
an insufficient sample size availability from the litter’s ob-
tained. From the included pup litters, 24 experimentally
naïve male Long Evans hooded rat pups (Control N = 12;
Pb2+ N= 12) were sacrificed under the College of Staten Is-
land IACUC approval procedures. Rats were maintained
under controlled temperature (24 ± 1 °C) and humidity (55
± 5%), on a 12 h:12 h light: dark reversed cycle.

Experimental design and procedures
The breeders were paired as two female Dams with one
male Sire for 3 weeks as a timed pregnancy, which was
assessed upon observation of the Dam’s copulatory plug.
Following the 3 weeks of pregnancy, the Dams were
then separated into individual cages from the Sires.
Once the pups were born, which was defined as postna-
tal day (PND) 0, male pups were randomly sampled by
selecting one male pup from each litter at each develop-
mental time-point (i.e., PND 2, 7, 14, and 22) to control
for any individual litter effects as an extraneous variable.
Thus, for each developmental time-point an (N = 6) pups
were sacrificed, brain regions of interest removed, and
subsequently used for mRNA analysis.

Materials and Pb2+ administration
Control Dams were administered Purina RMH 1000
chow (Dyets, Inc.) absent of any lead source ad libitium
for the duration of the experiment. In contrast, Lead
treated Dams were administered the same food with lead
acetate that was commercially engineered within the
Purina RMH 1000 chow (Dyets, Inc.) containing 30 g/kg
maltose dextrin, 1.5 g/kg Pb2+ (C2H3O2)2, and 0.1 g/kg

yellow dye], which reflected a 996 ppm lead acetate ex-
posure. Thus, Dams were administered lead acetate
through their only food source ad libitium from 2 weeks
prior to pairing and continued throughout gestation
until the sacrifice of their pups at each developmental
time-point (i.e., PND 2, 7, 14, and 22) defining a peri-
natal period of exposure (i.e., − PND 34 to PND 22). At
PND 0 when the pups were born, they were continually
administered lead acetate via the Dam’s lactation as their
source of Pb2+ exposure from PND 0 to PND 13. When
the rat pups were able to each from the food hopper in-
dependently at PND 14 to PND 22, they then obtained
Pb2+ exposure from two sources, both the Dam’s lacta-
tion and the food ad libitium.

Blood lead level analyses
At the indicated PND of development time-point sacri-
fice, blood samples were collected with a 2 mL
anti-coagulant EDTA coated syringes (Sardstedt,
Germany), mixed to prevent coagulation, and then fro-
zen at − 80 °C. Blood samples were sent out for commer-
cial analysis by Magellan Diagnostics (North Billerica,
MA) to determine the amount of lead in the blood by
electrochemical anodic stripping voltammetry (ASV) to
eliminate any potential for experimenter bias. Briefly, the
ASV procedure lyses red blood cells (RBCs) so that Pb2+

are liberated. Then a negative electrochemical potential
that was pre-applied to the test sensor strip was used to
attract and aggregate the Pb2+ ions as a reduction step.
Sequentially, an oxidation reaction was used to strip the
aggregated Pb2+ ions by reversing the sample to a posi-
tive electrochemical potential and the amount of Pb2+

was then determined from the sample volume and cal-
culated as the area under the curve. Therefore, the blood
lead levels (BLLs) were processed using the ASV method
by taking 50 μL of whole blood mixed with 250 μL of
hydrochloric acid solution (0.34 M) and then applying
the final mixture to the lead sensor strip and inserted
into an ESA LeadCare II Blood Lead Analyzer system
(Magellan Diagnostics, North Billerica, MA). After
3 min, the BLLs were reported from the instrument in
μg/dL with lower sensitivity cut off value of 3 μg/dL and
a high sensitivity cut off value of 65 μg/dL, with a stand-
ard error sensitivity detection level of ±1.5 μg/dL. If a
BLL value were to occur below the lower limit, it was re-
ported as < 3 μg/dL and if a BLL value were to occur
above the higher limit, it was reported as > 65 μg/dL.
Once all samples were commercially processed, the BLL
data reports were generated and sent back to the
researchers.

Tissue sample collections
At PND 2, 7, 14 and 22 rats were randomly sampled
from three different litters for each treatment condition,
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sacrificed, and their frontal cortices and hippocampi ex-
tracted under two-minutes, frozen, and stored at − 80 °C.

RNA preparation
The PFC and HP total RNA was prepared using TRIzol
Reagent (Invitrogen) consistent with our prior work [15,
16]. Briefly, 50–60 mg of wet brain tissues were homoge-
nized in 1 mL of TRIzol reagent per 100 mg of tissue
using a glass-Teflon homogenizer. Post-centrifugation,
RNA was extracted with chloroform and precipitated with
isopropyl alcohol. RNA samples were then re-suspended
in 100 μL of DEPC treated H2O.

Preparation of cDNA and quantitative real-time PCR
analysis
Next, 10 μg of total RNA was treated with RNase-free
DNase (Qiagen) at 37 °C for 1 h and re-purified by a 3:1
phenol/chloroform extraction followed by an ethanol

precipitation. From the purified RNA, 1 μg was used in
the SYBR GreenER Two-Step qRT-PCR kit (Invitrogen)
for first strand cDNA synthesis and the quantitative
real-time PCR (qRT-PCR). The qRT-PCR primers are
listed in Table 1. All experiments were performed in
triplicates and repeated twice for each experiment. All
qRT-PCR reactions were analyzed through an ABI 7500
sequence detection system (Applied Biosystems).

Target DNA sequence estimations
Target DNA sequence quantities were estimated using
Zhang et al. [15] and Shen et al. [16] procedures. Briefly,
the target DNA sequence quantities were estimated from
the threshold amplification cycle number (CT) using a
7500 Sequence Detection System Software. The ΔCT

values were obtained by subtracting the respective GOI
primer CT values from the corresponding housekeeping
gene glyceraldehyde 3-phosphate dehydrogenase (GAP
DH) CT values to normalize the cDNA differences. Rela-
tive mRNA levels were expressed as 2(−Δ CT) X 100% of
GAPDH. Data were then transformed using a Log10 cal-
culation to assess relative fold changes across all GOIs
under investigation to characterize their neurodevelop-
mental expression patterns as a function of age,
treatment, and brain region.

Statistical analyses
Data were analyzed with IBM SPSS version 24. A
multi-factorial ANOVA with a Tukey’s HSD post hoc
comparisons test and a partial Eta squared ( η2p ) were

used to assess Age, Treatment, and Age X Treatment
interaction effects for each GOI per brain region. Signifi-
cance levels were set at α = 0.05 and a CI of 95%. Data
are presented as the mean ± SEM for both BLLs and all
mRNA comparisons.

Results
Pup and dam BLLs
BLLs were determined from the pups and dams simul-
taneously. The average pup BLL was 44.67 μg/dL (SEM
= 0.48; n = 4), 36.00 μg/dL (SEM = 0.63; n = 4), 30.33 μg/
dL (SEM = 0.67; n = 4), and 37.33 μg/dL (SEM = 0.58; n
= 4) for PND 2, 7, 14 and 22 respectively. The average
dam BLL was 37.00 μg/dL (SEM = 0.58; n = 4), 41.33 μg/
dL (SEM = 0.72; n = 4), 39.33 μg/dL (SEM = 0.93; n = 4),
and 43.67 μg/dL (SEM = 0.86; n = 4) for dams at PND 2,
7, 14 and 22, respectively. All control dams and pups
were Pb2+ negative. Notably, the Dam’s nor the pup’s
body weights were not significantly different from one
another at each developmental time-point as a function
of Pb2+ lead treatment (data not shown).

Table 1 Oligonucleotides used in the real-time qRT-PCR
reactions

GAPDH ORF

Forward primer 5’-ACAGGGTGGTGGACCTCATG-3′

Reverse primer 5’-GTTGGGATAGGGCCTCTCTTG-3’

GABAA β3 ORF

Forward primer 5’-CCACGGAGTGACAGTGAAAA-3’

Reverse primer 5’-CACGCTGCTGTCGTAGTGAT-3’

CACNB β3 ORF

Forward primer 5’-TGGATCGGGAGGCTAGTGAA-3’

Reverse primer 5’-CACGCTGCTCGTAGTGAT-3’

NKCC1 ORF

Forward primer 5’-ATGAGTCTTCCAGTTGCCCG-3’

Reverse primer 5’-GCAACGTGTCCATGTGCTTT-3’

KCC2 ORF

Forward primer 5’-GGACCCCCGCATACAAAGAA-3’

Reverse primer 5’-CCTCCAGACCTTGTGGTGAC-3’

GAD 80 ORF

Forward primer 5’-AGTGTGGCCTCCAGAGGTTC-3’

Reverse primer 5’-TGGATATGGCTCCCCCAGGAG-3’

GAD 86 ORF

Forward primer 5’-TGGCCTCCAGAGGTGATGGT −3’

Reverse primer 5’-TGGATATGGCTCCCCCAGGAG −3’

GAD 65 ORF

Forward primer 5’-GGCTCTGGCTTTTGGTCCTTC -3’

Reverse primer 5’-TGCCAATTCCCAATTATACTCTTGA −3’

GAD 67 ORF

Forward primer 5’-GCTGGAAGGCATGGAAGGTTTTA-3’

Reverse primer 5’-AATATCCCATCACCATCTTTATTTGACC -3’
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Pb2+ effects on Caβ3 and GABA-β3 mRNA
Postnatal changes in the expression of the potassium/
chloride co-transporter (KCC2) and the sodium/potas-
sium chloride co-transporter (NKCC1) regulate the
GABA-shift from excitatory-to-inhibitory neurotrans-
mission. Perinatal Pb2+ exposure could disrupt this shift
by its action on L-type calcium channels and down-
stream effects on KCC2 and NKCC1 expression levels.
We therefore compared pup brain mRNA expression
levels of Ca-β3, NKCC1, KCC2, GABA-β3, GAD 80/86,
and 65/67 from control and maternally Pb2+ exposed
rats at various time points after birth.
In PFC, Ca-β3 was dynamically regulated during post-

natal development in control animals, decreasing in ex-
pression by nearly 1.5 fold as an Age effect between
PND 2 and 7 F(3,20) = 24.51, p < 0.001***, η2p = 0.821

(Fig. 1a). Expression levels recovered between PND 7
and 14, and then decreased slightly at PND 22. Perinatal
Pb2+ exposure completely blunted this regulation with
Ca-β3 at similar levels initially at PND 2, with a gradual

decrease in expression over the time course evidencing
an Age X Treatment interaction F(3,1,20) = 17.03,
p < 0.001‡‡‡, η2p = 0.762. Contrastingly, in HP, Ca-β3
mRNA exhibited an Age effect as a steady gradual
decline in levels from PND 2 to 22 F(3,20) = 17.46,
p < 0.001***, η2p = 0.766 (Fig. 2b). Pb2+ exposure de-

creased the expression levels of Ca-β3 at each time point
with a significant Treatment effect F(1,20) = 49.27,
p = 0.001###, η2p = 0.755 and an Age X Treatment inter-

action F(3,1,20) = 5.28, p = 0.01‡‡, η2p = 0.498. Thus, these

results suggest that Pb2+ exposure causes the neurodeve-
lopmental misregulation of Ca-β3 in both PFC and HP.
In PFC, GABA-β3 (Fig. 1c), similar to Caβ3, was dy-

namically regulated in control animals with increased
expression at PND 2 and 14 and reduced expression at
PND 7 and 22 as an Age effect F(3,20) = 98.01,
p < 0.001***, η2p = 0.948. Treatment with Pb2+ F(1,20) = 7.08,

p < 0.02#, η2p = 0.307 significantly altered this regulation in a

manner distinct from that in the control pups and further

Fig. 1 Illustrates the PFC (a & c) and HP (b & d) neurodevelopmental expression of Ca-β3 (upper panel) and GABAAR-β3 (lower panel) mRNA
between Control and Pb2+ exposed rats. Perinatal Pb2+ exposure alters the expression of Ca-β3 mRNA with increased vulnerability in the PFC at
PND 7 and 14, and in the HP at PND 7 and 22. Pb2+ exposure resulted in an altered regulation of GABAAR-β3 mRNA expression at PND 7 and
22 in the PFC and a down regulation from PND 7–22 in the HP. Data are presented as ± SEM and Tukey’s post hoc analyses are denoted as a
significant difference in Control rats (p < 0.05*, p < 0.01**, p < 0.001***) as a function of Age, and denoted as a significant difference between
Pb2+ vs. Control (p < 0.05#, p < 0.01##, p < 0.001###) as a function of Age and an Age X Treatment interaction for each developmental time-point
(p < 0.05‡, p < 0.01‡‡, p < 0.001‡‡‡)
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evidenced an Age X Treatment interaction F(3,1,20) = 19.89, p
< 0.001‡‡‡, η2p = 0.798. Although Pb2+ did exhibit a trend to-

wards blunting the decrease in GABA-β3 expression from
PND 2 to 7, this change was not as dramatic as seen with
Caβ3 in PFC between these two time points. At PND 14,
Pb2+ did not cause a further decrease in GABA-β3 as it did
for Caβ3; indeed expression recovered in a manner similar
to control animals. GABA-β3 mRNA levels showed a simi-
lar response to Pb2+ as Caβ3 in HP, levels were reduced at
each time point examined (Fig. 1d) with a significant effect
of Age F(3,20) = 5.79, p < 0.01**, η2p = 0.521 and a Treatment

effect F(1,20) = 14.52, p < 0.001###, η2p = 0.476. Overall, the re-

sults show that Pb2+ treatment altered the expression levels
of Caβ3 and GABA-β3 at many developmental time points
in both PFC and HP.

Pb2+ effects on NKCC1 and KCC2 mRNA
In control PFC, NKCC1 mRNA exhibited a biphasic
regulation similar to that of Ca-β3 mRNA with down-
regulated expression as an Age effect F(3,20) = 82.29,

p < 0.001***, η2p = 0.939, at PND 7 that recovered by

PND 14 to approximately the same levels at PND 2 (Fig. 2a).
In contrast, to Ca-β3 however, there was a significant Treat-
ment effect F(1,20) = 13.75, p < 0.01##, η2p = 0.462 with a not-

able increase in NKCC1 mRNA at PND 2 in the Pb2+

treated animals. In HP, NKCC1 mRNA remained fairly con-
stant, but evidenced a significant Age effect from PND 2
through 22 F(3,20) = 3.40, p < 0.04*, η2p = 0.389 and Pb2+

treatment did not alter this expression profile to a significant
extent (Fig. 2b). KCC2 mRNA in PFC exhibited a pattern of
regulation similar to that of NKCC1 in control animals and
this was not significantly altered in Pb2+ treated animals
(Fig. 2c). Contrastingly in HP, KCC2 mRNA was signifi-
cantly downregulated in Pb2+ treated animals with an Age
effect most notable at PND 7 F(3,19) = 3.95, p < 0.03*, η2p =

0.286, with a Treatment effect F(1,19) = 6.00, p < 0.03#, η2p =

0.441, and an Age X Treatment interaction F(3,1,19) = 9.50,
p < 0.001‡‡‡, η2p = 0.655 (Fig. 2d). Overall, the results sug-

gest a lesser, and perhaps indirect response, in mRNA

Fig. 2 Illustrates the PFC (a & c) and HP (b & d) neurodevelopmental expression of NKCC1 (upper panel) and KCC2 (lower panel) mRNA
between Control and Pb2+ exposed rats. Perinatal Pb2+ exposure resulted in an upregulation of NKCC1 in the PFC at PND 2, whereas in the HP
NKCC1 was slightly upregulated at PND 2 and down regulated at PND 7. At PND 2 and 14 KCC2 was upregulated by Pb2+ exposure. However,
Pb2+ exposure caused a down regulation of KCC2 mRNA expression at PND 2 and 7, followed by an upregulation at 14 in the HP. Data are
presented as ± SEM and Tukey’s post hoc analyses are denoted as a significant difference in Control rats (p < 0.05*, p < 0.01**, p < 0.001***) as a
function of Age, and denoted as a significant difference between Pb2+ vs. Control (p < 0.05#, p < 0.01##, p < 0.001###) as a function of Age and an
Age X Treatment interaction for each developmental time-point (p < 0.05‡, p < 0.01‡‡, p < 0.001‡‡‡)
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regulation to Pb2+ for NKCC1 and KCC2 versus the sig-
nificant direct changes in Caβ3 and GABA-β3 mRNA in
Pb2+ treated animals.

Pb2+ effects on GAD 80/86 and 65/67 mRNA
In PFC GAD 80 mRNA expression revealed a significant ef-
fect of Age F(3,20) = 7.78, p < 0.01**, η2p = 0.593 and a Treat-

ment effect F(1,20) = 5.38, p < 0.05#, η2p = 0.252 (Fig. 3a). We

also observed similar outcomes in PFC GAD 86 mRNA with
a significant effect of Age F(3,20) = 19.09, p < 0.001***,
η2p = 0.782, and a Treatment effect F(1,20) = 16.25,

p < 0.001###, η2p = 0.504 (Fig. 3b). In contrast, HP GAD 80

mRNA revealed only an Age X Treatment interaction
F(3,1,20) = 7.06, p < 0.01‡, η2p = 0.570 (Fig. 3e). HP GAD 86

mRNA revealed only a significant effect of Age F(3,20) = 8.41,
p < 0.001***, η2p = 0.612 (Fig. 3f).

In PFC GAD 65 mRNA revealed a significant effect of
Age F(3,20) = 34.02, p < 0.001***, η2p = 0.864 and an Age X

Treatment interaction F(3,1,20) = 7.57, p < 0.01‡‡, η2p = 0.587

(Fig. 3c). Also, PFC GAD 67 mRNA revealed a significant

effect of Age F(1,20) = 13.05, p < 0.001***, η2p = 0.710 and an

Age X Treatment interaction F(3,1,20) = 16.21, p < 0.001‡‡‡,
η2p = 0.752 (Fig. 3d). In contrast, HP GAD 65 mRNA re-

vealed only a significant effect of Treatment F(1,19) = 5.90,
p < 0.05#, η2p = 0.282 (Fig. 3g). Also, HP GAD 67 mRNA

revealed a significant effect of Age F(3,19) = 3.95, p < 0.05*,
η2p = 0.442, Treatment F(1,19) = 13.38, p < 0.001###, η2p =

0.471, and an Age X Treatment interaction F(3,1,19) = 8.95,
p < 0.001‡‡‡, η2p = 0.641 (Fig. 3h). The overall outcomes of

Pb2+ effects on the mRNA of key genes responsible for
the GABA-shift are summarized in Table 2.

Discussion
The GABA-shift is a critical Ca2+-dependent
neurodevelopmental process that is altered by
perinatal Pb2+ exposure
There are two Ca2+-dependent genes critical for activat-
ing the neurodevelopmental GABA-shift: the Slc12a2
and Slc12a5 genes, which encode NKCC1 and KCC2, re-
spectively. This Cl−-cotransporter gene family is

Fig. 3 Illustrates the PFC (a-d) and HP (e-h) neurodevelopmental expression of GAD early 80 and 86 (left panel), and late, 65 and 67 (right panel)
mRNA between Control and Pb2+ exposed rats. Perinatal Pb2+ exposure disrupts early immature GABA by upregulating GAD 80 and 86 at PND 2 and
14 in the PFC, whereas GAD 80 was down regulated at PND 2 and upregulated at PND 14 in the HP. GAD 86 was upregulated at PND 2 and 14 in the
HP. Pb2+ exposure resulted in altered mature GABA by upregulating GAD 65 at PND 7 and down regulating it at PND 22 in the PFC. Pb2+ exposure
also caused a down regulation of GAD 67 in both the PFC and the HP at PND 22. GAD 65 was also down regulated at PND 2 and 7 in the HP. Data
are presented as ± SEM and Tukey’s post hoc analyses are denoted as a significant difference in Control rats (p < 0.05*, p < 0.01**, p < 0.001***) as a
function of Age, and denoted as a significant difference between Pb2+ vs. Control (p < 0.05#, p < 0.01##, p < 0.001###) as a function of Age and an Age
X Treatment for each developmental time-point (p < 0.05‡, p < 0.01‡‡, p < 0.001‡‡‡)
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responsible for maintaining cell volume regulation, epi-
thelial transport, and GABAergic circuitry [17, 18]. The
latter sets the neurodevelopmental sequences for precise
Ca2+ wave oscillations driving GABAergic GDPs [11,
12], which regulate Ca2+-dependent gene signaling [19].
In the present study, it was hypothesized that perinatal
Pb2+ treatment during perinatal development in the rat
model would disrupt Ca2+-dependent gene signals, caus-
ing altered PFC and HP mRNA neurodevelopmental
expression patterns. The data suggest that the coordin-
ation of this critical neurodevelopmental process is
examinable through Ca-β3, GABA-β3, and NKCC1/
KCC2 mRNA expression patterns as a function of post-
natal age (Fig. 1). Pb2+ altered PFC Ca-β3 mRNA ex-
pression through an upregulation at PND 7 and a down
regulation at PND 14, whereas GABA-β3 mRNA expres-
sion was significantly upregulated at PND 7 and down
regulated at PND 22. Contrastingly, Pb2+ down regulated
HP Ca-β3 mRNA expression at PND 7 and 22, whereas
GABA-β3 mRNA expression was down regulated at PND
7 and 22. Thus, in both the PFC and HP, these genes were
differentially altered by gestational Pb2+ exposure. Inter-
estingly, HP Ca-β3 and GABA-β3 mRNA expression were

more sensitive to Pb2+ than the PFC. It remains to be de-
termined whether different neurodevelopmental
GABA-shift trajectories exist for other brain areas.

Pb2+ differentially alters the NCKK1/KCC2 GABA-shift in
the PFC & HP
Perinatal Pb2+ exposure differentially altered the normal
age-dependent NKCC1/KCC2 mRNA expression pattern
in the PFC and HP (Fig. 2). In the PFC, at PND 2
NKCC1 mRNA expression was significantly upregulated
(Fig. 2a) and at PND 2 and 14 the KCC2 mRNA expres-
sion was significantly upregulated (Fig. 2c). Interestingly,
in the HP NKCC1 mRNA expression was upregulated at
PND 2 and down regulated at PND 7 (Fig. 2b). However,
the HP KCC2 mRNA expression was down regulated
at PND 2 and 7 then upregulated at PND 14 (Fig.
2d). The pattern of NKCC1/KCC2 mRNA expression
was different between the PFC (i.e., NKCC1 vulner-
ability) and the HP (i.e., NKCC1/KCC2 vulnerability).
Notably, the PFC and HP NKCC1/KCC2 mRNA
expression returned to control levels at PND 22
(Fig. 2). These neurodevelopmental NKCC1/KCC2

mRNA alterations underlie a molecular basis for

Table 2 Summary of perinatal Pb2+ exposure results on developmental time-points altering the expression of genes related to the
GABA-shift, when compared to the Control group

PFC Pb2+ Effects HP Pb2+ Effects

Genes PND 2 PND 7 PND 14 PND 22 PND 2 PND 7 PND 14 PND22

Caβ3 ↑ ↑ ↓ ↓ ↔ ↓ ↓ ↓

n/s ‡‡ ‡‡ ‡‡ n/s ‡‡ ‡‡ ‡‡

### ### ###

GABA-β3 ↑ ↑ ↔ ↓ ↔ ↓ ↓ ↓

‡‡ ‡‡ n/s ‡‡ n/s ### ### ###

## ## ##

NKCC1 ↑ ↑ ↔ ↔ ↑ ↓ ↔ ↓

## ## n/s n/s n/s n/s n/s n/s

KCC2 ↑ ↔ ↑ ↔ ↓ ↓ ↑ ↔

n/s n/s n/s n/s # # ## n/s

GAD-80 ↑ ↔ ↑ ↔ ↓ ↔ ↑ ↔

# n/s # n/s ‡‡‡ n/s ‡‡‡ n/s

GAD-86 ↑ ↔ ↑ ↔ ↑ ↔ ↑ ↔

### n/s ### n/s n/s n/s n/s n/s

GAD-65 ↔ ↑ ↔ ↓ ↓ ↓ ↔ ↔

n/s ‡‡‡ n/s ‡‡‡ # # n/s n/s

GAD-67 ↑ ↑ ↑ ↓ ↔ ↓ ↔ ↓

n/s n/s ‡‡‡ ‡‡‡ n/s n/s n/s ‡‡‡

###

Note: Difference in expression of mRNAs are summarized as (↑) = an increase in mRNA, (↓) = a decrease in mRNA, and (↔) = no difference in relative mRNA expression.
Tukey’s post hoc analyses are denoted as a significant difference between Pb2+ vs. Control as a function of Treatment (p < 0.05#, p < 0.01##, p < 0.001###) and an Age X
Treatment interaction (p < 0.05‡, p < 0.01‡‡, p < 0.001‡‡‡) for each developmental time-point, whereas (n/s) = not significant
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increasing brain excitability in response to Pb2+ ex-
posure, by two potential mechanisms: 1) prolonging
early GABAergic excitation into adulthood or 2)
delaying the onset of the mature inhibitory GABAer-
gic system. Our data suggests that different brain re-
gions may have unique neurodevelopmental time
courses of NKCC1/KCC2 expression patterns [19–24]
that may prove useful in early molecular diagnostic
testing in clinical neurotoxicology.

GAD isoforms provide unique insight into Pb2+

alterations of neurodevelopment
The early GAD isoforms 80/86 regulating the immature
GABAergic excitatory system occur in embryonic devel-
opment, whereas the late GAD isoforms 65/67 regulat-
ing the mature GABAergic inhibitory system occur in
gestation and persist across the lifespan [25, 26]. The
PFC GAD 80 mRNA and 86 mRNA expression were sig-
nificantly affected by Pb2+ with upregulations at PND 2
and 14 (Fig. 3a-b), whereas the HP GAD 80/86 mRNA
expression were not significantly affected by Pb2+ treat-
ment, yet showed a down regulation for GAD 80 at
PND 2 (Fig. 3e-f ). The PFC GAD 65/67 mRNA expres-
sion were significantly down regulated at PND 22 and
GAD 65 was down regulated at PND 7 in response to
Perinatal Pb2+ treatment (Fig. 3c-d). The HP GAD 80
expression was significantly down regulated at PND 2
(Fig. 3b). However, the HP mRNA expression for GAD
65 was down regulated at PND 2 and 7, whereas the
GAD 67 mRNA expression was significantly down regu-
lated at PND 22 (Fig. 3g-h). The data suggest that Pb2+

exposure disrupted GAD 80/86 expression in the PFC
and the HP during the gestational period with persisting
impacts that were observed at PND 2 and its later life
relationship with GAD 65/67 at PND 22 (Fig. 3). The
findings from the present study, offer a novel mechan-
ism for evaluating GAD isoforms in conjunction with
the NKCC1/KCC2 GABA-shift transporters in assessing
developmental Pb2+ neurotoxicology. This mechanism
may prove informative for screening other developmen-
tal neurotoxicants other than Pb2+.

GABA-shift disruption and developmental
neuropathology
In the mature brain, the two major neurotransmitters
γ-amino butyric acid (GABA) and glutamic acid
(Glutamate), balance neural excitability. However, the
immature GABAergic system is initially excitatory prior
to the functional activation of the glutamatergic system.
Whereby this switch is neurodevelopmentally regulated
by NKCC1/KCC2 expression and functional activation
[11, 12]. Notably, NMDAR perturbations induced by
perinatal Pb2+ exposure are known to contribute to

lifelong intellectual disability [27, 28], but occur follow-
ing the GABA-shift. However, the present study argued
that given the functional silence of the NMDAR system
prior to GABAergic-dependent GDP activation [11, 12],
that the GABAergic system may be more vulnerable to
gestational and the Glutamatergic system to postnatal
Pb2+ exposures. Alternatively, glutamatergic NMDAR

disruption may be a secondary consequence of Pb2+ ex-
posure following early disruption of GABAergic excita-
tion, NKCC1/KCC2 transporters, and GAD 80/86 and
65/67 interrelated events. Altogether, these findings im-
plicate that clinical assessment of BLLs in children
within the first year of life may be useful in determining
gestational and postnatal neurodevelopmental risks asso-
ciated with the maturation of the GABAergic system.
Additionally, early neurodevelopmental Pb2+ poisoning
can disrupt the predetermined pattern of genetic events
that promote adequate myelination and synaptogenesis,
which is most critical in the child’s early years [29]. Early
disruption of these predetermined genetic events can re-
sult in a child deviating, disassociating, of disrupting the
nature of typical human development and its accom-
panying milestones [30]. Essentially, it can be argued
that consistent and appropriate early Pb2+ detection in
children’s BLLs may be a valuable predictor of an altered
inhibitory neurobehavioral profile in the child. There-
fore, further study is warranted to elucidate GABAergic
neurodevelopmental outcomes in response to Pb2+ insult
producing developmental critical periods susceptible for
acquiring neuropathological conditions prior to func-
tional activation and involvement of the Glutamatergic
system.

Conclusion
In summary, this study shows that perinatal Pb2+ expos-
ure through parturition can cause GABAergic neurode-
velopmental alterations in the GOIs patterns of
expression that regulate the GABA-shift through disrup-
tion of L-Type VSCCs signaling. Such aberrant neural
excitability may cause either activity-dependent delays or
premature switches of the NKCC1/KCC2 transporters
dysregulating the GABA-shift in neurodevelopment,
which are critical for establishing appropriate GABAer-
gic networks within and across brain regions [17–25,
31–34]. The PFC and the HP were selected since the HP
has been the brain region specifically studied in associ-
ation with the GABA-shift in neurodevelopment [11, 12]
and less is known regarding the PFC. Further, within the
brain the PFC, HP and the cerebellum are most vulnerable
for lead-induced brain damage as each region accumulates
more lead deposition than other brain regions in clinical
studies of children [36]. Thus, since less the PFC and its
relationship with the HP are vulnerable to Pb2+ exposure
during critical stages of neurodevelopment and they
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regulate higher order cognitive processes regarding fron-
toexecutive functions in contrast to the cerebellum, the
study revealed that perinatal lead exposure could alter the
expression of mRNA from genes involved in the
GABA-shift. The clinical implications of these findings
suggest that early developmental Pb2+ exposure may sig-
nificantly alter the brains GABAergic networks, which
may in turn, alter the developmental time-course of ex-
pression of the maturing inhibitory system. Thus, further
work is required in describing the extent to which these
observed mRNA altered expression patterns relate with
physiological and behavioral changes in the effected indi-
vidual. Results from perinatal Pb2+ exposure animal
models have shown consistently deficits of inhibitory reg-
ulated behaviors across the lifespan, corroborating with
the findings presented in this study. Further, such
GABA-shift alterations can perhaps induce an array of
brain excitability problems, increasing the susceptibility
risks for incurring a spectrum of developmental neuropa-
thologies that will persist across the lifespan. It is import-
ant to note that the GABA-Peak-Shift (as noted on each
of the graphs at PND 14 on the data presented herein) are
based solely on observations of the HP and one must be
cautious in assuming that all brain regions follow the same
time-periods of peak GABA-shifting. As such, the data
presented in this study suggest that the PFC may have its
own unique peak GABA-shift time-period from that of
the HP. Moreover, perinatal Pb2+ exposure alters the nor-
mal age-dependent trajectory of the GABA-shift GOIs dif-
ferentially dependent upon the brain region. This suggests
that each brain region may “shift” at distinct time-periods
of development and may equally present with neurotoxi-
cant susceptibilities resulting in developmental neuropa-
thologies during these precise time-periods. As such, Pb2+

exposure competes with critical Ca2 + −dependent gene ac-
tivity dysregulating the GABA-shift as a model of neuro-
logical disease [34, 36] consistent with reports by Khale et
al. [21], and Hyde et al. [35].,Moreover, neurodevelopmen-
tal Pb2+ exposure in children lacks an early developmental
behavioral signature, yet interestingly neurocognitive pat-
terns of impairments can be assessed later in life under
behavioral learning and memory conditions [34, 36]. Fur-
ther, it has been shown that NMDAR blockade by Pb2+

and MK-801 can directly impair the acquisition learning
[37, 38], but MK-801 antagonism has also been shown to
impede the expression of inhibitory learning across the
lifespan [39]. This suggests that neurodevelopmental Pb2+

exposure may cause similar dysfunctions in the expression
of GABAergic-dependent learning. Thus, perinatal Pb2+

exposure can produce either GABAergic neurodevelop-
mental delays or suppression of neurotypical developmen-
tal gene expression patterns in the PFC and HP which can
contribute and/or establish intellectual disabilities across
the lifespan.
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