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Abstract

Background: Cisplatin (cis-diamminedichloroplatinum II, CDDP) is one of the most effective chemotherapeutic
agents. However, its clinical use is limited due to the severe side effects, including nephrotoxicity and acute kidney
injury (AKI) which develop due to renal accumulation and biotransformation of CDDP. The alleviation or prevention
of CDDP-caused nephrotoxicity is currently accomplished by hydration, magnesium supplementation or mannitol-
induced forced diuresis which is considered for high-dose CDDP-treated patients. However, mannitol treatment
causes over-diuresis and consequent dehydration in CDDP-treated patients, indicating an urgent need for the
clinical use of safe and efficacious renoprotective drug as an additive therapy for high dose CDDP-treated patients.

Main body: In this review article we describe in detail signaling pathways involved in CDDP-induced apoptosis of
renal tubular cells, oxidative stress and inflammatory response in injured kidneys in order to pave the way for the
design of new therapeutic approaches that can minimize CDDP-induced nephrotoxicity. Most of these molecular
pathways are, at the same time, crucially involved in cytotoxic activity of CDDP against tumor cells and potential
alterations in their function might mitigate CDDP-induced anti-tumor effects.

Conclusion: Despite the fact that many molecules were designated as potential therapeutic targets for
renoprotection against CDDP, modulation of CDDP-induced nephrotoxicity still represents a balance on the knife
edge between renoprotection and tumor toxicity.
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Background
Cisplatin (cis-diamminedichloroplatinum II, CDDP) is one of
the most effective chemotherapeutic agents, widely used for
the treatment of several malignant diseases including head
and neck [1, 2], esophageal [3], bladder [4], testicular [5],
ovarian [6], uterine [7], cervical [8], breast [9], stomach [10],
non-small [11], and small-cell lung cancers [12]. CDDP
crosslinks purine bases within DNA and interferes with
DNA synthesis [13]. An impaired cell division is the main
CDDP-based effect and, accordingly, CDDP shows highest
activity in rapidly proliferating cells [13]. Therefore,
CDDP-induced mucosal injury in gastrointestinal tract as

well as myelosuppression due to the CDDP-caused injury of
bone marrow, are severe and life-threatening side effects of
CDDP-based therapy [14–17]. However, the most usually
observed, dose-dependent and cumulative CDDP-caused
side effect, noticed in 30–40% of patients, is nephrotoxicity
[18–22]. CDDP-induced nephrotoxicity is manifested as
acute kidney injury (AKI), salt or magnesium wasting and
loss of urinary concentrating ability [18–22]. CDDP-caused
renal dysfunction happens as a result of CDDP accumulation
and biotransformation in the kidneys [18–22]. The allevi-
ation or prevention of CDDP-caused nephrotoxicity is cur-
rently accomplished by short-duration and lower-volume
hydration, magnesium supplementation (8–16 milliequiva-
lents) or by mannitol-induced forced diuresis which is con-
sidered for high-dose CDDP-treated patients and/or patients
with preexisting hypertension [23]. However, mannitol
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treatment causes over-diuresis and consequent dehydration
in CDDP-treated patients, indicating an urgent need for the
clinical application of safe and efficacious renoprotective
drug, as an additive therapy for high dose CDDP-treated pa-
tients [24]. Until now, amifostine [(ethanethiol, 2-[(3-ami-
nopropyl)amino] dihydrogen phosphate ester)] was the
most commonly tested as nephroprotective agent against
CDDP, but several serious side effects, including ototox-
icity, hypotension, vertigo, hypocalciemia, severe nausea
and vomiting, limited its clinical use [25, 26]. Although
some of the other thiol-generating cytoprotective agents
(sodium thiosulfate, reduced glutathione and diethyl-
dithiocarbamate) appeared to reduce CDDP-caused
nephrotoxicity, all of them have demonstrated an un-
wanted tumor protecting effect which restricted their clin-
ical use [27, 28]. Consequently, there still remains an
unmet need for the development of new, renoprotoctive
agents in which activity should be relied on the modula-
tion of pharmacokinetics and biological effects of CDDP
in the kidneys. In this review paper, we emphasized
current knowledge regarding molecular and cellular
mechanisms involved in renal uptake, biotransformation
and toxicity of CDDP in order to pave the way for new
therapeutic approaches that can inhibit or minimize
CDDP-dependent nephrotoxicity.

Molecular mechanisms involved in renal uptake and
accumulation of CDDP
During glomerular filtration and tubular secretion,
CDDP accumulates in the kidneys [20]. Renal proximal
tubular epithelial cells (PTECs) absorb molecules from
primary urine and are mainly exposed to urinary ex-
creted xenobiotics [29]. Accordingly, CDDP concentra-
tion in PTECs is about five times greater than in the
blood [20]. Even non-toxic serum concentrations of
CDDP may reach toxic levels in the kidneys, resulting in
the development of renal dysfunction due to the severe
injury of S3 segment of proximal tubules [30, 31].
An important process mediating cellular accumulation of

CDDP is transporter-mediated uptake of this drug. Recent
public data identified several different membrane trans-
porters capable of transporting CDDP across the plasma
membrane and across PTECs: the organic cation transporter
2 (OCT2), the copper transporter 1 (Ctr1) and the multidrug
extrusion transporter 1 (MATE1) [32]. Among them, OCT2
is most important for renal uptake of CDDP while MATE 1
is mainly responsible for CDDP transportation from the
proximal tubule to the urine [22, 33]. OCT2 deficient mice
were protected from cisplatin-induced AKI due to the sig-
nificantly impaired renal uptake of CDDP while exacerbated
CDDP-caused nephrotoxicity, observed in MATE1 knockout
animals, was associated with notably reduced CDDP excre-
tion [22, 34, 35]. Additionally, gender differences in suscepti-
bility to CDDP-induced AKI and greater intensity of

CDDP-caused nephrotoxicity noticed in male rats, could be
explained by reduced OCT2 expression in PTECs of female
rats [36]. In line with these findings, notably reduced
CDDP-induced AKI was observed in patients with nonsy-
nonymous single-nucleotide polymorphism (SNP) in the
OCT2 gene (SLC22A2 (rs316019)) [37]. Hypomagnesiemia
provokes enhanced expression of OCT2 in PTECs resulting
in increased uptake of CDDP [38–41]. Findings obtained in
several clinical trials demonstrated that magnesium replace-
ment may down-regulate expression of OCT2 in PTECs
resulting in attenuation of CDDP-induced nephrotoxicity
[38–41]. Accordingly, magnesium supplementation (8–16
milliequivalents) is now, along with short-duration and
lower-volumn hydration, used for prevention of
CDDP-caused renal injury [23].
In similar manner, cimetidine, a pharmacological in-

hibitor of OCT2, prevents OCT2-dependent renal up-
take and toxicity of CDDP [41]. Katsuda and coworkers
demonstrated that continuous intravenous infusion of
cimetidine (20 μg/ml for 4 h) managed to efficiently pre-
vent CDDP-caused nephrotoxicity without influencing
anti-tumor activity of CDDP [41].
Interestingly, cimetidine-mediated inhibition of CDDP accu-

mulation was significantly enhanced in Ctr1-downregulated
PTECs, indicating synergistic effects of OCT2 and Ctr1 for
renal uptake of CDDP. Despite the fact that down-regulated
Ctr1 expression in PTECs significantly decreased their apop-
tosis and necrosis in vitro [42], the effects of Ctr1 deletion or
inhibition on the development of CDDP-induced AKI has not
yet been examined in vivo. Accordingly, future experimental
and clinical studies should be focused in exploring Ctr1 as a
molecular target for the enhancement of cimetidine-induced
attenuation of CDDP-caused-nephrotoxicity. Additionally, it is
important to highlight the fact that Ctr1 is localized on the
basolateral side of both proximal and distal tubular epithelial
cells. Accordingly, it was suggested that, in addition to its role
in CDDP renal uptake, Ctr1 might be, in similar manner as
MATE1, responsible for CDDP excretion [43]. In line with
these findings, it was recently reported by Chang and co-
workers that SNPs in SLC31A1/Ctr1 and SLC47A1/MATE1
genes were associated with increased urinary excretion of
well-known AKI biomarkers: kidney injury molecule-1
(KIM-1), calbindin, trefoil factor 3 (TFF3), cystatin C and
clusterin.
Extracellular biotransformation of CDDP begins immedi-

ately after transportation of CDDP to the apical surface of
renal epithelial cells. The initial step of CDDP-induced
nephrotoxicity is formation of glutathione conjugates in cir-
culation, mediated by glutathione-S-transferase. After enter-
ing the kidney, glutathione-conjugates are cleaved to
cysteinyl-glycine-conjugates by gamma glutamyl transpepti-
dase (GGT), which is expressed on the surface of PTECs.
Aminopeptidase N (APN) converts cysteinyl-glycine-conju-
gates into cysteine-conjugates which are, after entering into
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the PTECs, further metabolized to highly reactive and
nephrotoxic thiols by enzymic activity of cysteine-S-conju-
gate beta-lyase (CCBL) [22, 44]. Having in mind that, among
all tissues, GGT has the highest activity in the kidneys, par-
ticularly on the apical surface of PTECs, this enzyme was
considered as a potential target for the attenuation of
CDDP-induced nephrotoxicity. However, obtained results
are controversial, suggesting that enhanced GGT activity
may either increase or decrease sensitivity of PTECs to
CDDP [29]. More than two decades ago, Hanigan and col-
leagues demonstrated amelioration of CDDP-induced AKI
in rats pre-treated with acivicin, a non-competitive inhibitor
of GGT [45]. Additionally, the same research group showed
that CDDP-induced nephrotoxicity was dependent on GGT
activity and was not associated with CDDP renal uptake
[46]. GGT knockout animals did not develop CDDP-induced
AKI although there were no differences in CDDP accumula-
tion between PTECs of wild-type (WT) and GGT-deficient
mice [46]. Although findings obtained by Hanigan and col-
leagues strongly indicated an important role of GGT in toxi-
fication of CDDP, several other research groups showed
opposite results suggesting that GGT could be considered as
the main CDDP detoxification enzyme in the kidneys [47,
48]. Daubeuf and colleagues and Paolicchi and coworkers
demonstrated that GGT products (cysteinyl-glycine-conju-
gates) and the GGT substrate (glutathione) were able to co-
valently attach to CDDP rendering it non-toxic [47, 48].
Taken together, these, on first sight opposite findings, suggest
that GGT-mediated detoxification of CDDP was dependent
on the complex interactions between CDDP-derived metab-
olites and PTEC-expressing enzymes. Indeed, GGT is, along
with APN and CCBL, a member of multi-enzyme pathway
which capacity to convert xenobiotic-glutathione conjugates
to nephrotoxic metabolites is dependent on the synergistic
activity of these three enzymes [49]. In line with these obser-
vations, Hauscheer and colleagues proposed that BNP7787
(disodium 2,2-dithio-bis-ethane sulfonate, dimesna, Tavo-
cept™) could be considered as effective nephroprotective
agent for the prevention of CDDP-induced renal dysfunction
since BNP7787-derived mesna-disulfide heteroconjugates,
which contain a terminal gamma-glutamate moiety (mesna--
glutathione and mesna-cysteinyl-glutamate), simultanously
inhibited GGT, APN and CCBL activity, attenuated gener-
ation of highly potent and nephrotixic thiols and ameliorated
CDDP-induced nephrotoxicity [49, 50]. Similarly, due to
their capacity to prevent the formation of a
glutathione-cisplatin-conjugates, thiol agents have been
tested as nephroprotective drugs in CDDP-treated patients.
Among them, Amifosten was FDA-approved for the preven-
tion of AKI in CDDP-treated patients with non-small cell
lung cancer and advanced ovarian cancer [26]. Nevertheless,
renoprotective effects of Amifostine were not consistently
observed in CDDP-treated patients and many severe side ef-
fects including dysfunction of vestibulocochlear,

gastrointestinal and cardiovascular systems significantly lim-
ited its clinical use [25, 26]. Accordingly, several recently
conducted experimental and clinical trials focused their at-
tention in the modulation of intracellular signaling pathways
which were responsible for CDDP-induced cell cycle arrest
or cell death.

Molecular mechanisms responsible for CDDP-induced cell
cycle arrest or cell death
CDDP-induced nephrotoxicity is dose dependent and in-
volves necrosis, apoptosis and necroptosis of renal cells
[51–53]. In vitro studies revealed that necrotic cell death
is caused by high levels of CDDP, while apoptosis is
caused by lower concentrations of CDDP [51, 52]. Three
apoptotic pathways (extrinsic, intrinsic (mitochondrial) and
endoplasmic reticulum (ER) stress pathway) may be initiated
in PTECs after CDDP treatment. CDDP activates
caspase-3,-8 and− 9 and induces translocation of Bax to
mitochondria resulting in cytohrome c, apoptosis-inducing
factor (AIF), endonuclease G release [52–57]. Inhibition of
caspase-3 and caspase-9 suppressed CDDP-induced cell
death [57], while cytochrome c release was diminished in
CDDP-treated Bax-deficient mice [54], suggesting the im-
portant role of both extrinsic and intrinsic apoptotic path-
ways in the development of CDDP-induced AKI. In addition
to these two pathways, CDDP-induced apoptosis of PTECs
also involves the ER-stress pathway mediated by caspase 12
and calcium-independent phospholipase A2 (ER-iPLA2)
[58–60]. Inhibition of caspase 12 as well as suppression of
ER-iPLA2 significantly reduced apoptotic cell death of
CDDP-injured PTECs and ameliorated CDDP-caused
nephrotoxicity [58–60].
In addition to necrosis and apoptosis, necroptosis is

also observed in renal cells after CDDP treatment. Dele-
tion of genes involved in necroptotic pathway (receptor--
interacting protein 1 (RIP1) and mixed lineage kinase
domain-like protein (MLKL)) managed to protect ex-
perimental animals against CDDP-induced AKI [61, 62]
indicating that pharmacological inhibitors of these mole-
cules could be considered as possible therapeutic agents
for the attenuation of CDDP-caused nephrotoxicity.
CDDP treatment induces DNA damage, dysfunction of

cytoplasmatic organelles and oxidative stress in PTECs.
Once the cisplatin enters PTECs, its complex interac-
tions with the cellular environment convert it into a
positively charged electrophile that has a high affinity to
DNA [63]. This results in formation of intrastrand cross-
link between two adjacent guanine residues within DNA
[43]. More precisely, platinum atom of CDDP forms co-
valent bonds with N7 position of purine bases to form
1,2- or 1,3-intrastrand crosslinks and a lower percentage
of interstrand crosslinks. Formation of CDDP-induced
DNA adducts prevents DNA synthesis and replication
causing the cell to enter in cell-cycle arrest mode.
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Additionally, CDDP-caused crosslinks and disrupted
DNA structure resulting in the activation of DNA repair
mechanisms [43]. Among them, nucleotide excision re-
pair (NER) pathway is mainly responsible for the repair
of the CDDP-induced intrastrand adducts while base ex-
cision repair (BER), homologous recombination (HR),
and Fanconi anemia pathways are involved in the repair
of CDDP-caused interstrand cross-links [64]. Although
an increased activity of these DNA repair pathways has
been associated with alleviation of CDDP-induced AKI,
member proteins of these signaling cascades are not
considered as ideal molecular targets for prevention of
CDDP-caused nephrotoxicity since malignant cells also
used enhanced activity of NER, BER and HR systems for
resistance to CDDP [65].
Among cellular organelles, ER and mitochondria are the

most severe injured by CDDP (Fig. 1) [43]. CDDP-caused al-
terations in translation lead to the accumulation of misfolded
proteins within ER, resulting in the development of ER
stress. At the same time, positively charged CDDP electro-
phile preferentially accumulate in the negatively charged

mitochondria affecting their function [66]. Mitochondrial
dysfunction and consequent reduced ATP synthesis force
CDDP-injured PTECs to function in a starvation mode.
Thus, CDDP-induced prolonged ER stress and hypoxic in-
jury provoke caspase-mediated apoptosis or induce extensive
production of free radicals and reactive oxygen species
(ROS) resulting in the development of oxidative stress [43].
In addition to mitochondrial dysfunction, CDDP may pro-
voke oxidative stress in PTECs by inducing ROS formation
in the microsomes through the activation of cytochrome
P450 system [20, 67]. Administration of antioxidants (vita-
mins C, E, selenium, alpha lipoic acid, dimethylthiourea
(DMTU)) showed beneficial, renoprotective effects against
CDDP-caused nephrotoxicity [68–71], confirming the im-
portant pathogenic role of oxidative stress in the develop-
ment of CDDP-induced AKI. Since DMTU significantly
suppressed p53 activation in CDDP-injured cells, p53 was
considered as important downstream target of CDDP-gener-
ated ROS.
Several lines of evidence confirmed that P53 protein was

critically involved in the development of CDDP-induced

Fig. 1 P53 signaling pathways leading to tubular cell apoptosis after cisplatin treatment. By transcriptional regulation, nuclear p53 may activate
proapoptotic genes, such as PUMA-α, caspases, PIDD, and ER-iPLA2, may suppress antiapoptotic genes, including p21 and TauT. In the absence of
transcription, p53 may induce apoptosis via interactions with Bcl-2 family proteins in mitochondria and/or cytosol. Abbreviations: Bcl-2: B-cell
lymphoma 2; Bcl-xL: B-cell lymphoma-extra large; Bax: Bcl-2-associated X protein; Bak: Bcl-2 homologous antagonist killer; PUMA-α: p53
upregulated modulator of apoptosis; PIDD: p53-induced protein with a death domain; ER-iPLA2: Ca2+-independent phospholipase A2; Cdk2:
Cyclin-dependent kinase complex; TauT: taurine transporter
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nephrotoxicity [72]. CDDP treatment provokes increased ex-
pression and activation of p53 in injured kidneys where p53
regulates apoptosis of PTECs through transcriptional activa-
tion and repression of genes whose promoters contain
p53-binding sites (Fig. 1) [72]. CDDP-caused alterations in
DNA structure activates molecular sensors for DNA dam-
age: ataxia telangiectasia (ATM) and Rad3-related (ATR)
proteins, which activate Checkpoint kinase 2 (Chk2), result-
ing in phosphorylation and activation of p53 [65, 72].
P53-up-regulated modulator of apoptosis (PUMA)- ,
p53-induced protein with death domain (PIDD), caspases 6
and 7, p21 protein and Taurine transporter (TauT) have the
most prominent role in p53-dependent modulation of
CDDP-induced acute renal failure. Activated p53 protein in-
duces increased accumulation of PUMA- in mitochondria
of CDDP-injured tubular cells where this protein interacts
with Bcl-xL. An enhanced PUMA- :Bcl-xL crosstalk en-
ables Bax-mediated permeabilization of mitochondrial mem-
brane and consequent release of cytochrome c, resulting in
caspase activation and apoptosis of renal tubular cells [73].
Accordingly, reduced induction of PUMA- was observed
in p53 deficient animals which were protected against
CDDP-induced nephrotoxicity [73], indicating the import-
ance of p53-dependent activation of PUMA- for apoptosis
of PTECs. In similar manner, p53 promotes translation of
PIDD which, through the activation of caspase 2, induces
mitochondrial release of AIF leading to the chromatin con-
densation and programmed cell death of CDDP-injured
PTECs [55]. In vitro and in vivo studies revealed important
role of p53 for caspase 6 and 7-dependent apoptosis of
CDDP-injured PTECs. Pharmacological inhibition as well as
genetic deletion of p53 blocked the activation of both execu-
tioner caspases and protected PTECs from CDDP-caused
apoptosis resulting in alleviation of CDDP-induced nephro-
toxicity [74].
Although induction of pro-apoptotic molecules is dom-

inant effect of p53 activation in CDDP-injured PTECs,
p53 interferes with anti-apoptotic molecules (p21 and
TauT) regulating their renoprotective function, as well.
P53-induces down-regulated expression of TauT gene and,
consequently, increases apoptosis in CDDP-injured renal
cells [75]. Similarly, p53 may regulate activity of p21 pro-
tein, a well-known anti apoptotic regulator of cell survival
[72]. Induction of p21 protein in renal cells is considered
as an important renoprotective mechanism against
CDDP-caused nephrotoxicity since both genetic deletion
or pharmacological inhibition of p21 significantly aug-
mented CDDP-provoked injury of PTECs [76, 77]. Mech-
anistically, p21-mediated inhibition of cyclin-dependent
kinase 2 (CDK2) was mainly responsible for
p21-dependent nephroprotection [78]. Having in mind
that CDDP-induced toxicity depends on CDK2 activity,
and that CDK2 inhibition protected kidney cells from
CDDP-induced cell death [79, 80], p21-dependent

suppression of CDK2 could be used as potentially useful
therapeutic approach for attenuation of CDDP-induced
AKI.
In addition to the regulation of apoptosis, p53 may con-

tribute to the development of CDDP-caused nephrotoxicity
by modulating autophagy which, as an adaptive mechanism,
promotes PTECs survival during AKI [72, 81]. Immediately
after exposure of PTECs to CDDP, markers of autophagy
(Beclin 1, Microtubule-associated proteins 1A/1B light chain
3B (LC3), and Autophagy-related protein 5 (Atg5)) were sig-
nificantly increased in CDDP-injured renal cells, indicating
development of autophagy [82]. Accordingly, inhibition of
autophagy in CDDP-treated animals resulted in increased
apoptotic cell death of PTECs [83]. Similarly, an increased
DNA damage and an enhanced p53 activation were ob-
served in PTECs of mice that lack autophagy related genes,
confirming capacity of p53 to regulate renoprotective au-
tophagy in CDDP-injured PTECs [82, 84, 85]. In
CDDP-injured PTECs, CDDP activates AMP-activated pro-
tein kinase (AMPK), a signaling molecule that regulates au-
tophagic protection against CDDP-induced AKI [81].
Accordingly, genetic deletion or pharmacological inhibition
of AMPK resulted in repressed autophagy in CDDP-injured
PTECs, followed by increased DNA damage and conse-
quently enhanced activation of p53. Having in mind that p53
regulates autophagy by inactivating mammalian target of
rapamycin (mTOR) pathway via AMPK, p53-based modula-
tion of AMPK activity could be considered as an important
mechanism for p53-dependent regulation of CDDP-induced
AKI [81].
P53 regulates activation of pro-apoptotic microRNA

(miR)-375 and cytoprotective miR-34a in CDDP-injured
PTECs [86]. Upon CDDP administration, p53 and nu-
clear transcription factor-kappa B (NF-κB) collabora-
tively induce enhanced expression of miR-375 which
suppressed activation of nephroprotective hepatocyte
nuclear factor 1 homeobox B (HNF-1β), resulting in
renal tubular cell apoptosis and nephrotoxicity. Add-
itionally, pharmacological inhibition of p53 or NF-κB re-
sulted in down-regulated expression of miR-375 which
led to the alleviation of CDDP-induced AKI. In contrast
to miR-375, inhibition of miR-34a induced increased
apoptosis of PTECs while enhanced expression of
miR-34a promoted survival of CDDP-injured PTECs, in-
dicating an important cytoprotective role of miR-34a in
CDDP-induced nephrotoxicity [87].
Based on all these findings, p53 represents potential

molecular target for alleviation of CDDP-caused nepro-
toxicity. Experimental studies already demonstrated that
temporary and reversible p53 suppression during cancer
therapy can be relatively safe [88]. Additionally, selective,
pharmacological inhibitors of p53 may be specifically de-
livered to renal cells without affecting primary tumor or
metastatic lesions [89, 90]. Accordingly, p53 antagonists
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could protect PTECs from CDDP-caused injury without
affecting CDDP-induced anti-tumor effects in malignant
cells. Furthermore, in some tumors p53 protein was re-
sponsible for tumor resistance to chemotherapeutics
[81]. In these patients, systemic administration of p53
antagonists may result in nephroprotection and at the
same time could sensitize malignant cells to anticancer
drugs promoting their therapeutic efficacy [91]. Despite
these promising expectations, it should be highlighted
that due to the complex role that p53 has in regulation
of cell survival, nephroprotection due to the selective
p53 renal inhibition should be investigated, in detail, in
CDDP-treated tumor-bearing animal models before it
will be considered as one of possible therapeutic ap-
proaches for CDDP-treated patients.

Signaling pathways responsible for extensive production
of inflammatory cytokines in CDDP-injured kidneys
CDDP-induced activation of NF-κB, poly ADP-ribose
polymerase-1 (PARP-1) and toll-like receptors (TLRs) path-
ways in PTECs and renal-infiltrated immune cells results in
extensive production of inflammatory cytokines [92]. CDDP
induces the phosphorylation and subsequent translocation of
NF-κB to the nucleus, where activated NF-κB promotes
transcription of tumor necrosis factor alpha (TNF-α) and
other inflammatory cytokines (IL-1, IL-6, IL-18) [93]. Simi-
larly, CDDP-induced DNA damage results in activation of
PARP-1 which promotes apoptosis of CDDP-injured PTECs
or induces up-regulation of TNF-alpha, IL-1 and IL-6 genes
contributing to the development of AKI [94]. Genetic dele-
tion of PARP-1 completely diminished CDDP-caused renal
injury and inflammation, while administration of selective,
pharmacological inhibitor of PARP-1 (PJ-34) efficiently pro-
tected against CDDP-induced nephrotoxicity [94, 95].
Several lines of evidence demonstrated that activation of

TLR-4, TLR-2 and TLR-9 may modulate CDDP-induced
acute renal injury and inflammation [96, 97]. Animals de-
ficient in TLR-4 showed lower serum levels of TNF-α and
were protected from CDDP induced renal toxicity [98].
Activation of TLR-4 on renal parenchymal cells activates
p38 mitogen-activated protein kinase (MAPK) pathway,
increased production of TNF-α and led to the develop-
ment of inflammation in CDDP-injured kidneys [99]. Sev-
eral damage associated molecular patterns (DAMPs): heat
shock proteins (HSP)-60,-70, β-defensin-2, gp96 and
HMGB1, released from CDDP-injured PTECs, were desig-
nated as possible endogenous TLR-4 ligands capable to
initiate immune response in TLR-4:TNF-α-dependent
manner [99]. Additionally, CDDP-induced extensive re-
lease of endogenous TLR-4 ligands may activate inflam-
masome complex in renal infiltrated immune cells
resulting in enhanced production of inflammatory cyto-
kines (IL-1 and IL-18), further contributing to the devel-
opment of renal inflammation [100]. In line with these

findings, future experimental and clinical studies should
explore HMGB1, β-defensin-2, gp96, HSP-60 and 70 as
potential molecular targets for the TLR-4-related attenu-
ation of CDDP-caused AKI.
In addition to the activation of TLR-4 pathway, CDDP

treatment affects TLR-2 and TLR-9 signaling, as well.
Andrade-Silva and colleagues recently demonstrated that
TLR-2, opposite to TLR-4, protects against CDDP-induced
nephrotoxicity by promoting development of autophagy in
CDDP-injured renal cells [96]. Genetic deletion of TLR-2
down-regulated expression of autophagy-related genes in
PTECs which resulted in severe exacerbation of renal dys-
function and increased mortality rate of CDDP-treated
TLR-2 knockout animals [96]. Similarly as TLR-2, TLR-9
also plays renoprotective role in CDDP-caused nephrotox-
icity. As recently demonstrated by Alikhan and colleagues,
presence of immunosuppressive T regulatory cells (Tregs) in
CDDP-injured kidneys is, at least partially, regulated by
TLR-9 [101]. TLR-9 deficient mice had significantly reduced
number of Tregs in injured kidneys and consequently devel-
oped enhanced immune response and inflammation in
CDDP-injured kidneys [101]. Since TLR-9 responds to mito-
chondrial DAMPs [102], TLR-9-dependent expansion of
renal-infiltrated Tregs was probably elicited as a cytoprotec-
tive mechanism against CDDP-induced mitochondrial dam-
age. In line with these findings, specific delivery of TLR-2
and TLR-9 agonists in CDDP-injured PTECs and conse-
quent induction of autophagy and expansion of Tregs should
be tested in future experimental studies as new therapeutic
approach against CDDP-induced AKI.

Cytokine networking in CDDP-injured kidneys: a potential
target for renoprotection
Development and progression of renal inflammation
upon CDDP treatment is controlled and regulated by
complex interaction between inflammatory and im-
munosuppressive cytokines produced either by
CDDP-injured PTECs or renal-infiltrated immune cells
(Fig. 2). Among inflammatory cytokines, TNF-α appears to
play a central role in the inflammatory response triggered by
CDDP [103]. CDDP increases both serum and urine concen-
trations of TNF-α [103, 104], while CDDP-induced nephro-
toxicity was attenuated in TNF-α-deficient mice as well as in
mice treated with TNF-α inhibitors (pentoxifylline) or
TNF-α neutralizing antibodies [103]. Renal parenchymal
cells (mesangial cells, glomerular cells, endothelial and renal
tubular cells), macrophages and CD4+T helper lymphocytes
are cellular sources of TNF-α in CDDP-induced AKI [104].
Depletion of T cells reduced TNF-α production and pro-
tected against CDDP-induced AKI, suggesting crucial role of
T cells in TNF-α-driven renal inflammation elicited by
CDDP [104, 105]. Major role of TNF-α is to stimulate the
production of other inflammatory cytokines and chemokines
and to promote recruitment of inflammatory cells in
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CDDP-injured kidneys [93, 106–108]. Significant increase in
mRNA levels of macrophage inflammatory protein-2
(MIP-2), monocyte chemoattractant protein-1 (MCP-1),
IL-1β, and TGF-β has been observed in the kidneys of
CDDP-treated mice [109]. MIP-2, MCP-1 and IL-1β are in-
volved in recruitment of circulating monocytes in the in-
flamed renal parenchyma [110] while TGF-β has crucially
important role in the development of renal fibrosis [111]. Ac-
cordingly, an enhanced production of these inflammatory
mediators, further promoted TNF-α-driven AKI triggered by
CDDP. Importantly, production of MIP-2, MCP-1, IL-1β
and TGF-β in CDDP-injured kidneys was TNF-α-dependent
[109]. Selective inhibition of TNF-α significantly reduced
production of MIP-2, MCP-1, IL-1β, TGF-β and attenuated
AKI in CDDP-treated animals [109].

TNF-α induces expression of adhesion molecules on
renal endothelial cells and promotes influx of circulating
leucocytes in the inflamed renal parenchyma [112, 113].
Among selectins and integrins, intercellular adhesion
molecule-1 (ICAM-1) has shown to be the most important
for TNF-α-driven migration of immune cells into
CDDP-injured kidneys [114]. Accordingly, reduced infiltra-
tion of immune cells, accompanied with attenuated inflam-
mation and reduced PTECs damage correlated with
down-regulated expression of ICAM-1 and TNF receptors
(TNFR1–2) in CDDP-injured kidneys [115]. Although
TNFR1 was responsible for TNF-α-induced systemic and
anti-tumor effects [116], several lines of evidence demon-
strated that TNFR2 rather than TNFR1 mediates cytotoxic
and inflammatory actions of TNF-α in CDDP-injured

Fig. 2 Cell subtypes that play crucial role in the pathogenesis of cisplatin-induced AKI. Cisplatin-induced AKI involves the coordinated actions of
proximal tubular epithelial, endothelial, innate and adaptive immune cells. Abbreviations: ROS: Reactive oxygen species; IL: Interleukin; TNF-α:
Tumor necrosis factor alpha; MIF: Macrophage migration inhibitory factor; Mincle: Macrophage-inducible C-type lectin; CXCL1: Chemokine (C-X-C
motif) ligand 1; Kim-1: Kidney injury molecule-1; ICAM-1: Intercellular adhesion molecule-1
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kidneys [116, 117]. Compared to TNFR1 knockout mice,
TNFR2 deficient animals showed reduced serum and kid-
ney levels of TNF-α and were less susceptible to
CDDP-induced TNF-α-driven renal failure. Accordingly,
TNFR2 blockade should be evaluated in future experimen-
tal studies as potentially new therapeutic approach that
might reduce nephrotoxicity without affecting systemic and
anti-tumor effects of CDDP-induced TNF-α.
An increased concentration of TNF-α in CDDP-injured

kidneys was usually accompanied with significant elevation
of IL-8, IL-1β, and IL-18 in renal parenchyma of CDDP-
treated animals [118]. High renal concentration of these in-
flammatory cytokines further promoted TNF-α-driven in-
flammation and CDDP-induced renal failure [118]. Several
lines of evidence suggest that IL-8, in similar manner as
TNF-α, regulates ICAM-1-dependent influx of circulating
leukocytes in injured kidneys [119]. Administration of
α-melanocyte-stimulating hormone analogue, which inhib-
ited IL-8-dependent expression of ICAM-1, significantly re-
duced recruitment of inflammatory cells in the kidneys and
remarkably attenuated AKI [120].
Having in mind that IL-1β and IL-18 are synthesized

in inactive preforms and become activated in a
caspase-1 dependent manner [121, 122], caspase-1 was
designated as a potential molecular target for attenu-
ation of CDDP-induced nephrotoxicity. Faubel and co-
workers revealed that caspase-1 activity was remarkably
increased in the kidneys of CDDP-treated animals and
that renal dysfunction was significantly reduced in
caspase-1 deficient mice [123]. Moreover, genetic dele-
tion of caspase-1 significantly attenuated renal concen-
tration of IL-1β and IL-18 and reduced influx of
circulating neutrophils in CDDP-injured kidneys [123].
Interestingly, selective inhibition of IL-1β and IL-18 did
not alleviate CDDP-induced inflammation, suggesting
that other caspase-1-processed cytokines, also contrib-
uted to the progression of CDDP-caused AKI [118].
IL-1α, like IL-1β, is a pro-inflammatory cytokine which

initiates the same biological processes as IL-1β [124]. In
line with these findings, Lee and colleagues revealed an
important pathogenic role of IL-1α in the pathogenesis
of CDDP-induced nephrotoxicity and suggested that this
cytokine may be activated by caspase-1 during the pro-
gression of CDDP-caused inflammation [125]. Com-
pared with vehicle-treated mice, concentration of renal
IL-1α was significantly increased in CDDP-treated ani-
mals. Importantly, genetic deletion of IL-1α efficiently
protected against CDDP-induced AKI and the extent of
CDDP-caused renal injury was similar as it was observed
in caspase-1 deficient animals [125].
In addition to TNF-α, IL-1α-β, IL-8 and IL-18, re-

cently published studies indicated important role of
IL-17A and IL-33 in pathogenesis of CDDP-induced
AKI [126, 127]. An increased expression of IL-17A was

observed in CDDP-injured kidneys [127]. CDDP treat-
ment induces activation of inflammasome complex in
renal infiltrated leukocytes, resulting in extensive IL-17A
production. Innate immune cells (neutrophils and nat-
ural killer (NK) cells) were designated as the main
IL-17A producing cells in CDDP-induced nephrotoxicity
while IL-17A-producing T cells were not involved in
CDDP-caused renal inflammation since detrimental ef-
fects of IL-17A on renal structure and function were
also observed in RAR-related orphan receptor gamma T
(RORγT) deficient mice that lack effector CD4 + Th17
lymphocytes [127]. Administration of anti-IL-17A anti-
body efficiently protected against CDDP-induced nephro-
toxicity, confirming important pathogenic role of IL-17A
in CDDP-caused AKI [127].
IL-33 has the capacity to alter immune response elic-

ited in CDDP-injured kidneys [128]. Akcay and col-
leagues showed that IL-33 promotes inflammation in
CDDP-injured kidneys by acting as an alarmin [126].
IL-33, released from CDDP-injured PTECs, binds to
IL-33 receptor (ST2) on renal-infiltrated CD4+ T cells
and promotes secretion of inflammatory cytokines and
chemokines (particularly TNF-α and neutrophil chemo-
attractant CXCL1), contributing to the development of
acute renal inflammation [126]. In line with these obser-
vations, increased concentration of IL-33 was noticed in
sera and kidneys of CDDP-treated animals [126]. Im-
portantly, notably reduced acute tubular necrosis and
apoptosis was observed in mice treated with a soluble
IL-33 receptor (sST2), while administration of recom-
binant IL-33 (rIL-33) exacerbated CDDP-induced AKI
[126], indicating pro-inflammatory role of IL-33 in the
pathogenesis of CDDP-caused nephrotoxicity. Opposite
to these findings are results recently obtained by
Stremska and colleagues who demonstrated that two
subpopulations of renal-infiltrated immunosuppressive
and renoprotective cells (Tregs and innate lymphoid
cells, ILC) expressed ST2 receptor and extensively pro-
liferated in the presence of IL-2 and IL-33 [128]. In line
with these observations, Stremska and co-workers de-
signed IL-233, a novel IL-2 and IL-33 hybrid cytokine,
whose administration efficiently expanded ST2 express-
ing Tregs and ILCs in CDDP-injured kidneys and com-
pletely attenuated AKI and inflammation [128]. These
results strongly suggest nephroprotective potential of
IL-233 against CDDP-caused AKI which should be con-
firmed in future clinical trials.
Inflammatory cytokines and chemokines are exten-

sively produced in early phases of CDDP-induced AKI
[129]. Several lines of evidence suggested that elevation
in urine concentration of pro-inflammatory cytokines
and chemokines may be considered as an important par-
ameter for early diagnosis of CDDP-caused nephrotox-
icity. Increased levels of interferon γ-induced protein-10
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(IP-10), keratinocyte chemoattractant (KC) and
granulocyte-colony stimulating factor (G-CSF) were de-
tectable in the urine of CDDP-treated mice as early as 6
hours after treatment, long before the serum creatinine
or urea nitrogen levels were increased [22, 129]. Like-
wise, increased urinary levels of KC, IL-2, MCP-1,
GM-CSF and IL-8 were noticed in initial phase of
on-going renal inflammation in CDDP-treated dogs and
their concentration correlated with the progression of
renal dysfunction [130]. Accordingly, measurement of
urine levels of inflammatory mediators should be con-
sidered as an important approach for early diagnosis and
prevention of CDDP-induced nephrotoxicity [22].
Among anti-inflammatory and immunosuppressive cy-

tokines, it was well documented that IL-10, produced
mainly by renal-infiltrated Tregs and tolerogenic dendritic
cells, efficiently reduced CDDP-induced AKI and associ-
ated inflammation [131–133]. Soon after CDDP adminis-
tration, IL-10 producing Tregs migrated into injured
kidneys and suppressed detrimental TNF-α, IL-1 and
IL-17-driven immune response [134]. Antibody-mediated
depletion of endogenous Tregs leads to exacerbation of
CDDP-induced AKI, while their transfer protected against
CDDP-induced nephrotoxicity [134]. Adoptive transfer of
Tregs notably reduced production of inflammatory cyto-
kines (TNF-α and IL-1) in renal macrophages, suppressed
activation of IL-17-producing neutrophils and NK cells,
significantly attenuated inflammation and completely re-
stored renal function of CDDP-treated animals [134]. In
similar manner as Tregs, IL-10 producing tolerogenic
dendritic cells (DCs) have a protective role in
CDDP-induced AKI. DC-derived IL-10 inhibits produc-
tion of inflammatory cytokines in renal infiltrating T cells
and macrophages [114, 135–137]. Depletion of IL-10 pro-
ducing DCs significantly exacerbated CDDP-induced
nephrotoxicity while their passive transfer restored renal
function in CDDP-treated animals [135, 136]. In line with
these findings, cell-based therapy based on autologous
transplantation of IL-10 producing Tregs and tolerogenic
DCs in CDDP-injured kidneys should be further explored
as potentially new therapeutic approach for renoprotec-
tion of CDDP-treated patients.
In addition to IL-10, IL-6 had been also considered as

an important anti-inflammatory cytokine which may
protect against CDDP-induced nephrotoxicity [138]. Ad-
ministration of CDDP provoked increased production of
IL-6 in injured kidneys. An enhanced expression of IL-6
resulted in up-regulation of anti-oxidative enzymes in
inflamed renal parenchyma which prevented the devel-
opment of CDDP-caused renal dysfunction. In an ana-
logy, genetic deletion of IL-6 significantly reduced
activity of superoxide dismutase and increased expres-
sion of oxidative stress markers in CDDP-injured kid-
neys [138].

The impact of renal-infiltrated immune cells on the
development and progression of CDDP-induced AKI
CDDP treatment cause morphological and/or functional
changes in tubular and endothelial cells which leads to an in-
flux of mast cells, neutrophils, macrophages, NK cells and T
lymphocytes into the injured kidneys where these immune
cells play aggressive or protective role (Fig. 2).
Mast cells play an important pathogenic role in

CDDP-induced AKI. Selective depletion of mast cells attenu-
ated renal injury caused by CDDP, reduced recruitment of leu-
kocytes to the injured kidneys and notably down-regulated
serum levels of TNF-α, suggesting that mast cells mainly me-
diated CDDP-induced AKI in TNF-α-dependent manner
[139]. Mast cell-derived TNF-α and macrophage inflamma-
tory protein 2 (MIP-2) promote recruitment of neutrophils in
CDDP-injured kidneys significantly contributing to the aggra-
vation of on-going inflammation [140].
An increase in total number of renal infiltrated neutrophils

correlates with the extent of CDDP-induced AKI [141, 142].
Activated neutrophils, through the release of ROS, proteases,
and inflammatory cytokines cause tubular damage resulting
in extensive release of DAMPs and alarmins [143]. Signifi-
cant reduction of renal-infiltrated neutrophils can be
achieved by TNF-α inhibitors, TLR-4 antagonists or
anti-ICAM-1 antibodies [99, 115, 133, 144]. Nevertheless,
depletion of neutrophils was not enough to completely pro-
tect from CDDP-induced nephrotoxicity [135, 141], suggest-
ing that renal-infiltrating neutrophils are not the only effector
immune cells in the pathogenesis of AKI caused by CDDP.
Macrophages play an important pathogenic role in

CDDP-induced nephrotoxicity [145, 146]. An increased
number of macrophages was observed in injured kidneys
2 days after CDDP administration. CDDP induces acti-
vation of inflammasome, p38 MAPK and NF-kB path-
ways in renal macrophages resulting in increased
production of superoxide anions, nitric oxide (NO), IL-1
and TNF-α [106, 145]. It was recently revealed that
macrophage-inducible C-type lectin (Mincle), transmem-
brane pattern recognition receptor, is selectively expressed in
renal infiltrating M1 macrophages, and is responsible for
generation and maintenance of inflammatory phenotype of
these cells during CDDP induced AKI [146]. Mincle expres-
sion is regulated by TLR-4/NF-kB signaling pathway and its
down-regulation resulted in generation of nephroprotective,
alternatively activated macrophages whose adoptive transfer
efficiently protected against CDDP-induced nephrotoxicity
[146]. In line with these findings, Mincle represents a poten-
tial cellular target for alternative activation of renal macro-
phages in CDDP-treated patients and its nephroprotective
potential should be explored in future experimental and clin-
ical studies.
CD4+ Tcell deficient and, to a lesser extent, CD8-deficient

mice were less susceptible to CDDP-induced nephrotoxicity
compared with WTanimals, demonstrating importance of T
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lymphocytes in the pathogenesis of CDDP-induced nephro-
toxicity [104]. While CD4+ T helper cells in paracrine man-
ner (through the production of TNF-α, IL-17, IL-33 and
IL-10) orchestrate immune response in CDDP-injured kid-
neys, cytotoxic CD8+ T lymphocytes in juxtacrine, contact
dependent manner, induce damage of renal cells. CDDP
treatment increases expression of Fas receptors on renal
tubular cells enabling apoptosis of these cells due to their
interaction with FasL expressing renal infiltrating CD8+ T
lymphocytes [147]. CDDP induces enhanced expression of T
cell immunoglobulin mucin 1 (Tim-1) on PTECs [148]. Tim
1 acts as a costimulatory molecule playing important role in
activation of renal-infiltrated T cells [148]. Administration of
Tim-1-blocking antibody inhibited activation of renal-infil-
trated CD4+ helper and CD8+ cytotoxic T cells, reduced
apoptosis of PTECs and protected against CDDP-induced
AKI, indicating therapeutic and nephroprotective potential
of Tim-1 that should be further explored in up-coming ex-
perimental and clinical studies [148].

Conclusions
During the last decade, a large number of experimental stud-
ies have shed new light on molecular and cellular mecha-
nisms of CDDP-induced nephrotoxicity. Signaling pathways
which regulate cell survival, metabolism and immune re-
sponse are affected by CDDP. However, most of these path-
ways are, at the same time, crucially involved in cytotoxic
activity of CDDP against tumor cells and potential alterations
in their function might mitigate CDDP-induced anti-tumor
effects. Accordingly, despite the fact that many molecules
were designated as potential therapeutic targets for renopro-
tection against CDDP, modulation of CDDP-induced
nephrotoxicity is still a balance on the knife edge between
renoprotection and tumor toxicity. Design of new renopro-
tective strategies that would not limit CDDP-induced tumor-
icidal effects should rely on the identification of the
structural and functional differences between CDDP-injured
renal and tumor cells. Their implementation would open
new avenues in chemotherapy significantly enhancing clin-
ical utility of CDDP.
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