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Most of anti-glycolipid IgG-antibodies
associated to neurological disorders occur
without their IgM counterpart
Ricardo Dante Lardone1,2* , Fernando José Irazoqui1,2 and Gustavo Alejandro Nores1,2

Abstract

Background: Different neurological disorders frequently display antibodies against several self-glycans. Increasing
evidence supports their pathogenic role; however, far less is known about their origin. Meanwhile, antibodies
recognizing non-self glycans appear in normal human serum during immune response to bacteria.

Methods: Using high performance thin layer chromatography-immunostaining, we comparatively evaluated
humoral immune response (IgG and IgM immunoreactivity) against glycolipids carrying self-glycans (GM3/GM2/
GM1/GD1a/GD1b/GD3/GT1b/GQ1b) and non-self glycans (Forssman/GA1/“A” blood group/Nt7) in sera from 383
patients with neurological disorders along with 87 healthy controls.

Results: In contrast to no healthy controls having anti-self glycan IgG antibodies, one-fifth of patients’ sera had
anti-self glycan IgG antibodies: remarkably, 60% of these occurred without IgM antibodies of the same specificity.
Contrary to this unusual fact (anti-self glycan IgG occurrence without simultaneous presence of IgM having the
same specificity ~ IgG/IgM discordance), all IgG antibodies against non-self glycans occurred simultaneously with
their IgM antibody counterpart (i.e. 0% discordance). When analyzed closer, the IgG/IgM discordance frequency for
anti-self glycans exhibited a dual trend: below 40% for IgG antibodies against GM2, GM1 and GD1b, and greater
than 53% for IgG antibodies against the remaining self glycans. Interestingly, this discordance behavior was
common to several different neurological disorders.

Conclusions: Classic immunology principles indicate this anti-self glycan IgG/IgM discordance should not occur in
an antibody response; its unusual presence is discussed within the “binding site drift hypothesis” context, where
anti-self glycan IgG antibodies could originate from pre-existing IgG recognizing structurally-related non-self
glycans.
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Background
Glycolipids are plasma membrane lipids displaying gly-
cans as their hydrophilic head groups, which are access-
ible to binding by viruses, toxins and antibodies [1].
Anti-glycan antibodies are antibodies that, regardless of
the immunogen that induces them, recognize saccharide
sequences in one or more types of glycoconjugates [2].

Naturally occurring anti-glycan antibodies recognizing
non-self carbohydrate sequences are routinely detected
in normal subjects [3]. Typical examples are the ABO
blood group agglutinins – i.e. sera from individuals of
the blood group “0” contain antibodies that agglutinate
blood group “A”/“B” red blood cells [4]. Since pioneering
work of Springer [5] it is widely accepted that these anti-
bodies are part of the normal immune response to bac-
teria colonizing respiratory or intestinal tract. A similar
origin is described for IgM antibodies against a few self
glycan-carrying glycolipids such as gangliosides GM1
and GD1b [6], although these normal antibodies are of
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low affinity and non-pathogenic [7]. In despite of this,
immune reactivity recognizing self-glycolipids is often
associated with autoimmune diseases [8]. In particular, a
variety of neurological diseases present antibodies that
recognize gangliosides (glycolipids abundantly found in
nervous system) [9]. Unlike the large body of data indi-
cating anti-ganglioside antibodies are responsible for
triggering nervous system dysfunction through multiple
mechanisms [10], much less is known about their origin.
Infection of specific serotypes of Campylobacter jejuni
cause Guillain-Barré syndrome associated with the pres-
ence of anti-GM1 antibodies [11]. These serotypes con-
tain lipooligosaccharides carrying GM1-glycan (terminal
tetrasaccharide) that can induce production of anti-gly-
can IgG-antibodies recognizing ganglioside GM1 (“mo-
lecular mimicry” hypothesis) [12]. Still, only a small
minority of individuals infected with proper C. jejuni se-
rotypes develops further neuropathy [13, 14], suggesting
requirement for a “host susceptibility factor” that has
not yet been identified [15]. On the other hand, it has
been proposed that chronic neuropathy-associated anti-
GM1 antibodies of the IgM isotype could originate by
changes in the binding site of their normal counterpart
(“binding site drift” hypothesis) [16]. “Binding site drift”
can explain the “host susceptibility factor” of “molecular
mimicry” hypothesis; therefore, both hypotheses can be
regarded as complementary to explain the origin of anti-
GM1 antibodies in disease [2]. Nevertheless, little is
known about the origin of several other anti-self glyco-
lipid antibodies associated to neurological diseases, espe-
cially for those having no “normal” IgM-antibodies [7].
In the present work, we comparatively evaluated the

humoral immune response against various self and non-
self glycan-carrying glycolipids in sera from patients with
neurological disorders. We found remarkable differences
between both antibody responses that were analyzed in
the context of the “binding site drift” hypothesis, aiming
for an explanation to the origin of disease-associated
anti-glycan antibodies.

Methods
Human sera
Serum samples were obtained from 383 patients with
early symptoms of neurological disorders: amyotrophic
lateral sclerosis, n = 76; Guillain-Barré syndrome, n = 75;
asymmetric motor neuropathy, n = 38; chronic inflam-
matory demyelinating polyneuropathy, n = 36; sensory
neuropathy, n = 31; multifocal motor neuropathy, n = 25;
sensory motor neuropathy, n = 23; Miller Fisher syn-
drome, n = 19; lower motor neuron disease, n = 18;
mononeuropathy, n = 9; cranial neuropathy, n = 8; para-
neoplastic syndrome, n = 6; multiple sclerosis, n = 4; dia-
betic neuropathy, n = 4; neuropathy with monoclonal
gammopathy, n = 4; myasthenia gravis, n = 3; hereditary

neuropathy, n = 2; amyotrophic neuralgia, n = 1; lumbo-
sacral radiculitis, n = 1. These patients attended Neur-
ology services from Hospital “Ramos Mejía” and
Hospital Nacional de Clínicas “José de San Martín”, Bue-
nos Aires, Argentina. Blood was collected before the pa-
tient underwent any immune treatment. After clot
separation, sera were frozen and submitted to our la-
boratory for routine determination of anti-glycolipid
antibodies. Normal human serum samples (n = 87) from
healthy adult volunteers with negative serology for com-
mon infectious diseases were provided by Blood Bank of
the University of Córdoba, Argentina. All procedures,
performed in accordance with Ethical Guidelines on Re-
search Involving Human Subjects [17] and with ethical
standards as laid down in the 1964 Declaration of
Helsinki and its later amendments, were approved by
the Ethics Committee of CIQUIBIC-CONICET; in-
formed consent was obtained from the patients.

Glycolipids
The following biological materials were used as source of
glycolipids: human brain for GM1, GD1a, GD1b, GT1b,
and GQ1b; Sandhoff disease human brain for GM2; dog
erythrocytes for GM3; chick brain for GD3; sheep erythro-
cytes for Forssman glycolipid (Forssman); human blood
group “A” meconium for blood group “A” glycolipid; Cal-
liphora vicina pupae for Nt7 glycolipid [18]. Folch upper
phase of lipid extract [19] was purified by DEAE -chroma-
tography [20] and HPLC on Iatrobeads silica-gel column
[21]. Asialo-GM1 (GA1) was prepared by acid hydrolysis
of cow brain gangliosides [22].

High performance thin layer chromatography (HPTLC)-
immunostaining
HPTLC with subsequent immunodetection (HPTLC-I)
is considered the “golden standard” to detect anti-glyco-
lipid antibodies and confirm autoreactivity results [23,
24]. Glycolipids (0.3 nmoles each) were separated on
HPTLC plates (Merck) in the running solvent chloro-
form-methanol-aqueous 0.2% CaCl2 (45:45:10), using a
tank designed to obtain highly reproducible chromato-
grams [25]. After air-drying, the plates were coated by
dipping for 2 min in a 0.5% solution of poly (isobutyl-
methacrylate) (Aldrich Chemical Co., Milwaukee, WI,
USA) in n-hexane-chloroform (9:1). Plates were blocked
with BSA-PBSt (1% bovine serum albumin in phosphate
buffered saline containing 0.05% Tween 20) for 1 h, in-
cubated overnight with BSA-PBSt diluted serum, and
washed thoroughly with PBSt. Binding was detected fol-
lowing 2 h incubation with BSA-PBSt diluted (1/1000)
peroxidase-conjugated anti-human IgM (μ chain) or IgG
(γ chain) goat antibodies (Sigma, USA). All the incuba-
tion steps were performed at 4 °C. After washing, color
development was achieved in a substrate solution
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containing 2.8 mM 4-chloro-1-naphtol and 0.01% H2O2

in methanol-20 mM Tris-HCl buffer, pH 7.4 (1:29). The
reaction was stopped after 20 min by washing the plates
with PBSt. For usual immunostaining assay, sera were
used at 1/20 dilutions. The presence of distinguishable
immunostaining spot at these dilutions was considered a
positive reactivity. In cases were only IgG was detected,
higher serum dilutions were used (1/50, 1/500) to avoid
potential IgM binding inhibition due to an IgG excess.
To ensure data objectiveness, immunostaining results
collected by first author (RDL) were checked against a
blind assessment performed by one of the remaining au-
thors (GAN).

Statistical analyses
Antibody results were informed as categorical data and
combined into groups for statistical purposes. Immuno-
staining against non-self glycans (GA1, Forssman, Nt7
and blood group “A” glycolipid for “0” and “B” blood
group individuals) was grouped as “non-self glycan”

reactivity. Since IgM populations against GM1, GD1b and
GM2 have been described in normal human sera [7], re-
activity against these glycolipids was considered a sub-
group (“self glycan A”) within anti-self glycan antibody
populations. Finally, response against GM3, GD3, GD1a,
GT1b and GQ1b was counted as another subgroup (“self
glycan B”). Data were examined by Chi-square or Fisher’s
exact test with Prism 6 (GraphPad software, La Jolla, CA).
Differences with P value < 0.05 were considered
significant.

Results
Previous reports have described the presence of anti-
ganglioside antibodies in diverse diseases [26–33]. In a
general screening searching for anti-glycolipid antibodies
in neurological disorders, we analyzed serum samples
from 383 patients, along with sera from 87 healthy con-
trols. Using HPTLC immunostaining, we evaluated in
both groups of samples the IgM and IgG antibody re-
activity against self-glycan-carrying glycolipids: GM3,

Fig. 1 Reactivity of IgM- and IgG-antibodies against glycolipid self and non-self glycans. Representative results of the anti-non-self glycan and
anti-self glycan immunoreactivity in (a) normal human sera and in (b) neurological disorder patients. On the left are glycolipids visualized using
orcinol reagent
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GM2, GM1, GD3, GD1a, GD1b, GT1b and GQ1b. For
the immunostaining assay we used relatively low (1/20)
serum dilutions, that allow detection of antibodies oc-
curring at low titer. With variable immunostaining in-
tensity, 75 patients (19.6%) were clearly positive for
antibodies of the IgG isotype for at least one self-glycan
antigen, while control sera were negative (Fig. 1). Some
patients had IgG antibodies against two or more “self
glycans”. Although similar percentages of antibody posi-
tive-patients have been published by several laboratories
[26, 30, 34]), we observed a remarkable behavior of the
antibody response: most of the IgG-reactivity against self
glycans occurred without their IgM counterpart. De-
pending of the antibody specificity, the IgG/IgM discord-
ance (IgG occurrence without simultaneous presence of
IgM having the same specificity) ranged from 33% for
those recognizing GM2 to 100% for antibodies recogniz-
ing GT1b (Figs. 2 and 3). Importantly, IgG/IgM discord-
ance for the “self glycan A” subgroup (GM1, GD1b and
GM2: all three reported to present IgM populations in
normal human sera [7]) was significantly lower than that
for the “self glycan B” subgroup (p < 0.0001; see Fig. 3,
Additional file 1 and “Methods”).
The trend of IgG/IgM discordance for reactivity against

self glycans was consistently observed across the different
patient subpopulations, regardless of their diagnoses: eval-
uations within each patient subpopulation showed IgG/
IgM discordances were always higher for the “self glycan
B” subgroup. Statistical evaluation comparing discordance
data between patient subpopulations having 20 or more
individuals indicated the discordance magnitude was com-
parable throughout them (i.e. no significant differences;
see Fig. 3). When compared individually within each pa-
tient subpopulation the discordance differences were mar-
ginally significant or not significant.
To assess if the observed IgG/IgM discordance was

specific for anti-self glycan immune responses, we stud-
ied antibody reactivity to glycolipids bearing non-self
glycans: Forssman, GA1, Nt7, and “A” blood group gly-
colipid, where the last one was considered non-self gly-
can for “0” and “B” blood group individuals (“A”
individuals do not present anti-“A” antibodies). None of
the patients exhibited IgG antibodies without their IgM
counterpart, for any of the assayed non-self glycans
(Figs. 1 and 2). As expected, the absence of IgG/IgM dis-
cordance for non-self glycans was significantly different
compared to those from any of the anti-self glycan re-
activity subgroups (p < 0.0001).
Examining co-occurrences of IgG populations against

the different self glycans indicated a predominance (53
out of 75 patients, ~ 71%) of single self-glycan antigen
reactivity (Additional file 2: Figure S1). Within the
remaining 29% (22 patients), some isolated co-occur-
rences in antibody reactivity were observed for certain

structures like GM1/GD1b (sharing terminal Galβ1-
3GalNAc) or GD1b/GD3/GQ1b (b-series gangliosides),
although no predominant events were detected (Add-
itional file 2: Figure S1). Finally, regarding comparisons
between GA1 and GM1 (structurally-related glycans),
we found simultaneous occurrence with anti-GA1 IgG
in 9 of 26 (34%) samples positive for anti-GM1 IgG
antibodies.
For some randomly selected discordant serum sam-

ples, whole IgG fraction was removed using protein G-
affinity columns. The non-adsorbed fraction (containing
serum IgM-antibodies) had no anti-self glycan IgM re-
activity (see examples in Additional file 3: Figure S2).
These results indicate that absence of IgM reactivity in
IgG-reactive sera is not due to IgG interference (antigen
competition or anti-idiotype antibodies).

Discussion
Humoral immune responses are complex and lead to dif-
ferent effector functions depending on their nature [35].
Glycan antigens have become important antibody targets
in several medical contexts, such as vaccine design, diag-
nostic assays, and antibody-based therapies [36–38]. Im-
mune response to non-self glycans is one of the early
events in the defense against bacteria [39]. Natural infec-
tion of the gastrointestinal and respiratory tracts of the
human body by pathogenic and non-pathogenic bacteria
stimulate the immune system. Consequently, soon after
birth, antibodies recognizing a variety of bacterial glycans
are detected in children sera [6, 40, 41]. On the other
hand, self-glycans carried by glycolipids have been associ-
ated to autoimmune diseases [9, 42]. The structural simi-
larity of self and non-self glycans suggested both immune
responses could be related [2]. In the present work, we
characterized the antibody immune response against gly-
colipids carrying diverse self glycans in a large cohort of
patients with neurological disorders, along with healthy
controls. Antibodies of the IgG isotype recognizing self
glycans were only detected in patient sera, with two types
of results: some IgG-antibodies occurred with IgM of the
same specificity, but most of them were discordant (i.e.
without their IgM counterpart). To know if this discord-
ance was exclusive of an autoimmune response, antibodies
recognizing non-self glycan were studied in some discord-
ant patient sera: in all cases where IgG reactivity was
found, IgM of the same specificity was also present
(Fig. 2), thus giving a relevant context to the IgG/IgM
antibody discordance for anti-self glycan antibodies.
Even though numerous studies and case reports in the lit-
erature have already portrayed antibodies of the IgG iso-
type against self glycan glycolipids in Guillain-Barré
syndrome and related disorders, often they either provided
information only for one or few glycolipids at the time (e.g.
[27, 30]), used ELISA (instead of HPTLC-immunostaining)
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Fig. 2 (See legend on next page.)
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(See figure on previous page.)
Fig. 2 IgG/IgM discordance of IgG antibodies against diverse non-self and self glycan-carrying glycolipids analyzed in this study. Percentage of
IgG/IgM discordance (percentage of samples having IgG antibodies with IgM antibodies of the same specificity) in patients with neurological
disorders (positive for anti-self glycans and for anti-non-self glycans IgG antibodies of defined specificity). Oligosaccharide sequence of each
glycosphingolipid recognized by antibodies is displayed. IgG/IgM discordance comparisons between “non-self glycan-”, “self glycan A” and “self
glycan B” reactivities (these latter divided by a dashed line, see Methods) were all statistically significant (p < 0.0001, Fisher’s exact test). Anti-GA1
antibodies were measured in all patient samples, whereas the remaining anti-non self glycan antibodies were evaluated in a randomly selected
fraction of patient sera (n = 30) that were positive for anti-self glycan IgG antibodies

Fig. 3 Distribution of anti-self glycan glycolipid and anti-GA1 antibodies in the different subpopulations of neurological disorder patients. Within
each pie chart, the number of patients presenting antibody reactivity of the IgM (“IgM only”, blue), IgG (“IgG only”, red) or both isotypes (“IgM &
IgG”, green) against the different self glycan glycolipids is displayed for each patient subpopulation and for all patients combined. The fraction of
pie chart depicting “IgG only” reactivity represents the percentage of IgG/IgM discordance. Similar information is presented for anti-GA1
antibodies (non-self glycan glycolipid). “Self glycan A” subgroup comprises antibodies against GM1, GD1b and GM2, for which IgM reactivity
populations have been characterized in normal human sera. “Self glycan B” subgroup includes antibody reactivity detecting the remaining
glycolipids (GM3, GD3, GD1a, GT1b and GQ1b). “Sub-total A” plots sum the data for all “self glycan A” subgroup antibodies, while “sub-total B”
column does it for all “self glycan B” subgroup antibodies. Far right column (“Total”) combines the data for all the anti-self glycan glycolipid
antibodies. Total IgG/IgM discordance comparisons between each subpopulation of neurological disorder patients were statistically not
significant. Comparisons of “sub-total A” versus “sub-total B” IgG/IgM discordance within each subpopulation of neurological disorder were not
significant, whereas for “All patients” data combined, the comparison was statistically meaningful (Fisher’s exact test; ****, p < 0.0001). ALS,
amyotrophic lateral sclerosis; GBS, Guillain-Barré syndrome; AMN, asymmetric motor neuropathy; CIDP, chronic inflammatory demyelinating
polyneuropathy; SN, sensory neuropathy; MMN, multifocal motor neuropathy; SMN, sensory motor neuropathy; MFS, Miller Fisher syndrome;
LMND, lower motor neuron disease; MN, mononeuropathy; Other, other neuropathies (see Methods and Additional file 1 for full details)
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at higher serum dilutions than ours (e.g. [43, 44]) or,
ultimately, did not include reactivity detection for glyco-
lipids carrying closely-related, heteroantigenic glycans (e.g.
[45, 46]). From a thorough revision of the literature we can
say this discordance finding has not been remarked nor
discussed before.
According to classical immunology principles, B-lym-

phocytes can be stimulated directly to produce IgM anti-
bodies, whereas IgG production involves additional
immune processes including T-cell cooperation. Thus,
IgG antibody production should be accompanied by IgM
antibodies and the IgG/IgM discordance would not
occur. Since the IgG/IgM discordance was observed only
in the antibody response directed to self glycans, its oc-
currence should be explained in the context of an auto-
immune response. The occurrence of this antibody
discordance does not seem to be related with a specific
type of neurological disorder, since it was observed with
similar magnitude in the different diseases evaluated.
Previous work from our group showed that variations in
antibody populations recognizing self-glycan glycolipids
GM1 and GD1b are irrespective of motor neuropathy
variants [47]. Some of these variations can even present
certain heterogeneity among different patients suffering
the same neuropathy [48, 49]. Each nerve of the periph-
eral nervous system has a specific function, and the ex-
perienced symptom/s in a neurological disease are
determined by the type of nerve/s affected. There are
various other factors that influence a neurological dis-
ease triggering: antibody affinity [50, 51], antigen density
[52], membrane cholesterol content [53], sub-neuronal
location of antigen [53], lipid environment [28], cer-
amide length [54], among others. The appearance of di-
verse antibody populations (as was also verified from the
varied co-occurrences of IgG populations against the dif-
ferent self glycans) would constitute a random process
[2] that, confluencing with the aforementioned factors
could decide which nerve (or cell) will be targeted by an
anti-self glycan autoimmune response. All this would be
reflected as a lack of differences in IgG/IgM discordance
rate between diseases. Overall, the presence of IgG/IgM
discordance could represent a more general autoimmune
phenomenon that merits further investigation.
Even though the “binding site drift” hypothesis was

conceived to explain the origin of anti-GM1 antibodies
in health and disease [2], it can be extended to other
antibodies against self glycans. This hypothesis proposes
that B-lymphocytes reactive to self-glycans originate
from naturally-occurring B-lymphocytes recognizing
structurally-related non-self glycans. In the B-cells reper-
toire involved in the immune response to non-self gly-
cans, some cells (so called “treacherous”) can mutate its
binding site in a way that now it can be activated by an
endogenous or exogenous self glycan (Fig. 4). This

process of specificity change in the B-cells was called
“drift” because it would occur at random and, at least for
anti-GM1 antibodies, it can follow different ways ending
in antibodies having different fine specificities. If the
“starting” B-cell undergoing “drift” is an IgM-producing
cell, the resulting “drifted” B-cell can be stimulated to
produce IgM antibodies or (if class switch is induced) an
IgM/IgG response. Alternatively, as shown in Fig. 4, if
the “drift” process acts on an already switched B-cell, the
immune response will include only IgG-antibodies.
The discordance is less frequent in antibodies recog-

nizing GM2, GM1 or GD1b (“self-glycan A”). This fact
could be related to the presence in normal sera of IgM-
antibodies recognizing these glycolipids [7]. Although

Fig. 4 A hypothesis on the origin of antibodies against self glycans
in patients with neurological disorders. Within the B cell repertoire
able to respond against non-self glycans exist cell populations that
recognize glycan molecules structurally related to self glycans.
Although these so-called “treacherous” B cells cannot be stimulated
by self glycans, during their activation by non-self structures they
can undergo mutations that reshape the binding site, with some
changes now leading to self glycans recognition (drift). These
“drifted” B cells can then be activated by self glycans inducing the
production of IgM antibodies (and IgG ones, if isotype switch
occurs). Thus, these actions lead to a concordant anti-self glycan
IgG/IgM antibody response. Alternatively, non-self glycan-stimulated
“treacherous” B cell can switch their isotype to become “treacherous
switched” B cells, producing anti-non-self glycan IgG antibodies.
Subsequent drift events can now generate “drifted and switched” B
cells that produce IgG after stimulation with self glycans. These latter
steps can generate a discordant anti-self glycan IgG antibody
response (i.e. without IgM antibodies)
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they are low affinity antibodies that have no glycolipid-
mediated biological activity [55], their occurrence is an
indication for the normal presence of IgM-secreting B-
cells that are candidate to be considered “treacherous”
[2]. Autoimmunity triggering could arise from somatic
mutations modifying the binding site of “treacherous” B
cells and allowing high-affinity interaction with self gly-
cans, resembling mechanisms observed for some carbo-
hydrate-binding proteins (e.g. binding site point
mutations leading to increased affinity of an anti-GA1
antibody Fab fragment [56] and an anti-blood group A
[57]). This could allow a more frequent emergence of
anti-self glycan, IgM-producing drifted B cells. From
there on, some activated B cells could likely undergo iso-
type switching to contribute anti-“self glycan A” IgG
antibodies. On the other hand, the large discordance in-
cidence for the other self-glycan-carrying glycolipid anti-
gens that do not have a naturally occurring IgM
counterpart (“self glycan B”) implies that the “drift”
process would occur more frequently at the IgG positive
B-cells. In this case, potential binding site point muta-
tions could modify antibody specificity along with affin-
ity (reminiscing events like the generation of blood
group B enzyme [58] or altered specificity of a lectin
[59]), an expected result considering that somatic hyper-
mutations levels of IgG are significantly higher than
those of IgM [60].

Conclusion
After exploring a large cohort of patients with different
neurological diseases, our work revealed that antibodies of
the IgG isotype against self glycans arose frequently with-
out their corresponding IgM counterpart. In contrast, IgG
antibodies against non-self glycans always exhibited their
corresponding IgM. Interestingly, within the anti-self gly-
can IgG-antibody populations we found antigen-related,
dual trend responses in this IgG/IgM discordance inci-
dence (a low discordance frequency represented by GM2/
GM1/GD1b, and a high discordance frequency encom-
passing GM3/GD3/GD1a/GT1b/GQ1b). Overall, these al-
ternatives in IgG/IgM discordance behavior could result
from B cells undergoing different paths during anti-glycan
immune responses.

Additional files

Additional file 1: Contingency tables for statistical analysis of the
different comparisons. Tables were exported from the analyses
performed in Graph Pad Prism 6. (XLS 59 kb)

Additional file 2: Figure S1. Co-occurrence in IgG antibody reactivity
against different self glycans. Heatmap illustrating reactivity patterns for
patient samples clearly positive for IgG antibodies against at least one
self-glycan antigen. Columns denote each of the self-glycan antibodies,
while rows represent the different patient samples. Positive reactivities
are indicated in red; reactivity absence in gray. (TIF 3103 kb)

Additional file 3: Figure S2. Absence of anti-glycan IgM reactivity in
IgG-reactive sera is not due to IgG interference. Randomly selected
discordant serum samples were subjected to whole IgG fraction removal
using protein G-affinity columns. Briefly, serum pH was adjusted by
adding 1/10 volume of 1 M Tris buffer (pH 8). After filtration, the serum
was passed through Sephadex columns with covalently bound Protein G
(1 ml Protein G / 1 ml serum), with subsequent washes using 100 mM Tris
buffer (pH 8.0). Examples for whole serum samples (“Before Protein G”)
and non-adsorbed fractions (“After Protein G”) assayed for IgM and IgG
using HPTLC-I are shown. (TIF 3814 kb)

Abbreviations
“A” blood group glycolipid: GalNAcα1-(Fucα1,2)3Galβ1-4GlcNAcβ1-3Galβ1-
4Glcβ1-Cer; BSA-PBSt: 1% bovine serum albumin in PBSt;
Forssman: GalNAcα1-3GalNAcβ1-3Galα1-4Galβ1-4Glcβ1-Cer; GA1: Galβ1-
3GalNAcβ1-4Galβ1-4Glcβ1-Cer; GD1a: NeuNAcα2,3Galβ1-3GalNAcβ1-
(NeuNAcα2,3)4Galβ1-4Glcβ1-Cer; GD1b: Galβ1-3GalNAcβ1-
(NeuNAcα2,8NeuNAcα2,3)4Galβ1-4Glcβ1-Cer; GD3: NeuNAcα2-8NeuNAcα2-
3Galβ1-4Glcβ1-Cer; GM1: Galβ1-3GalNAcβ1-(NeuNAcα2,3)4Galβ1-4Glcβ1-Cer;
GM2: GalNAcβ1-(NeuNAcα2,3)4Galβ1-4Glcβ1-Cer; GM3: NeuNAcα2-3Galβ1-
4Glcβ1-Cer; GQ1b: NeuNAcα2-8NeuNAcα2,3Galβ1-3GalNAcβ1-
(NeuNAcα2,8NeuNAcα2,3)4Galβ1-4Glcβ1-Cer; GT1b: NeuNAcα2,3Galβ1-
3GalNAcβ1-(NeuNAcα2,8NeuNAcα2,3)4Galβ1-4Glcβ1-Cer; HPTLC: High
Performance Thin Layer Chromatography; Nt7: GlcNAcβ1-3Galβ1-3GalNAcα1-
4GalNAcβ1-4GlcNAcβ1-3Manβ1-4Glcβ1-Cer; PBSt: phosphate buffered saline
containing 0.05% Tween 20
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