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Genomic interrogation of familial short
stature contributes to the discovery of the
pathophysiological mechanisms and
pharmaceutical drug repositioning
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Abstract

Background: Genetic factors, dysregulation in the endocrine system, cytokine and paracrine factors are implicated
in the pathogenesis of familial short stature (FSS). Nowadays, the treatment choice for FSS is limited, with only
recombinant human growth hormone (rhGH) being available.

Methods: Herein, starting from the identification of 122 genetic loci related to FSS, we adopted a genetic-driven
drug discovery bioinformatics pipeline based on functional annotation to prioritize crucial biological FSS-related
genes. These genes were suggested to be potential targets for therapeutics.

Results: We discovered five druggable subnetworks, which contained seven FSS-related genes and 17 druggable
targerts.

Conclusions: This study provides a valuable drug repositioning accompanied by corresponding targetable gene
clusters for FSS therapy.

Keywords: Genome-wide association study, Familial short stature, Single-nucleotide polymorphism,
Pharmacogenomics, Drug repositioning/repurposing

Background
Individuals whose body height is in the 3rd percentile or
greater below the mean of the population (of the same
gender and chronologic age) are defined as short stature
(SS). Several mechanisms including endocrine regulation
(growth hormone, insulin-like growth factor-1, andro-
gens, and thyroid hormone), proinflammatory cytokines,
and paracrine factors have been identified as regulating
linear growth [1–3]. Genetic factors account for ~ 80%
of variations in human body height [4]. A systematic
evaluation of human height genetics through a genome-
wide association study (GWAS) uncovered 697 variants,
located in 423 loci [5]. Subsequently, those discoveries

were extended to rare and very rare variants (with minor
allele frequencies [MAFs] of 0.1%~ 4.8%) [6]. In addition,
many genetic loci were found to be associated with hu-
man height across different populations [7–15], revealing
the intricate polygenic architecture that determines hu-
man height.
Familial short stature (FSS), also known as “genetic

SS”, is found in 23%~ 37% of individuals with SS [16, 17]
and is characterized by patients with an SS family his-
tory, but normal growth. FSS is one of the most com-
mon types of SS and is solely affected by inheritance,
thus making it a suitable candidate for identifying gen-
etic loci associated with SS. We can rule out other
pathologic causes of growth failure that may potentially
confound genetic studies. Based on this idea, an associ-
ation study of FSS-associated genetic variants in a Tai-
wanese population was conducted [17]. In that study, six
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FSS risk genes, including ZBTB38, ZNF638, LCORL, CA-
BLES1, CDK10, and TSEN15, were reported.
Recombinant human growth hormone (rhGH) is cur-

rently the only available treatment for SS. However, the
efficacy of using rhGH for normal SS remains inconclu-
sive, with some studies showing positive results [18, 19],
while others did not [20, 21]. Accordingly, new thera-
peutics for SS are needed, and new approaches are war-
ranted to expedite treatment. Nowadays, tremendous
unveiled genetic loci have been united in tandem with
various biological resources and functional annotation
methodologies to identify novel drug targets and provide
insights for drug repositioning [22, 23]. Hence, genetic
loci characterized as being associated with FSS may ul-
timately be a good starting point for implementation of
drug repositioning for SS patients.
In this study, we inquired into the biological and func-

tional links of 122 FSS-associated single-nucleotide poly-
morphisms (SNPs) in a Taiwanese population and
framed an annotation-based analytical pipeline to
prioritize FSS-related genes that have the potential to be
exploited as drug targets, and appraised the capacity of
those drugs to be repurposed.

Methods
GWAS analysis of FSS cases and controls
Samples who fulfilled the diagnostic criteria of FSS were
recruited from Children Hospital, China Medical Uni-
versity. The FSS was diagnosed by clinicians with the
following criteria, including body height less than 3rd
percentile to the population with corresponding age, and
with a family history of short stature. In addition, only
samples with ordinal annual growth rate and coincide
bone and chronologic age will be included in this study.
The controls in this study were selected from Taiwan
Biobank based on their body height, i.e., >75th of all
samples. We obtained informed consent from all study
participants and guardians. This study was performed in
accordance with approved guidelines and regulations.
In sample-level quality control (QC) step, for the 827

FSS patients, we removed 30 duplicated samples, two
samples with data quality center (DQC) < 0.82, and 7
samples with call rate < 97%. For the remaining 788 sam-
ples, 52 were filtered in kinship QC step and left 736
samples for association analysis. For the controls from
Taiwan Biobank, after removing samples with DQC <
0.82, failed plate QC, failed sample QC, missing gender
and age information and failed kinship check, resulting
in 464 remained for downstream analysis.
In marker-level QC step, for the 628,132 autosomal

SNPs, we excluded the SNPs with MAF < 5%, SNP call
rate < 98% in either case or control groups, Hardy-
Weinberg equilibrium test p-value < 0.0001 (based on
controls), and with batch effect. The remaining 530,030

(84.38%) SNPs were subjected to association analysis
under additive inheritance model.

Functional annotation of FSS-related SNPs
The region of FSS-associated SNPs (human genome hg19)
was annotated using ANNOVAR [24]. The region of vari-
ants was categorized as either exonic, intronic, non-coding
(nc) RNA intronic, the 5′ untranslated region (UTR), the 3′
UTR, intergenic, upstream, or downstream. For variants lo-
cated in an exonic region, we further characterized their
functional type, i.e., synonymous or non-synonymous.

Identifying SNPs in linkage disequilibrium (LD) with FSS-
related variants
For the 122 FSS-associated variants identified from a
GWAS of a Taiwanese population, SNPs that were in
high LD to these variants were identified using the 1000
Genome [25] phase 3 database (dbSNP Build 137). SNPs
with an r2 value (a measure of LD) of > 0.8 and within a
100-kilobase (kb) window of FSS-associated variants
based on an East Asian (EAS) super-population were se-
lected using the R proxysnps package.

Conspectus of the drug repositioning analysis for FSS
In this study, we proposed a bioinformatics pipeline
called SNP-heuristic and expression-based functional
unifying network (Shefun) algorithm embodied by two
major portions: (1) an SNP-heuristic part and (2) an
expression-based functional unifying network part.
The first part is centralized on SNPs. By SNP-based

annotations, we could obtain functional states (non-cod-
ing/non-synonymous/synonymous), chromatin state, and
cis-regulation data of each SNP. These data provided
two aspects of information for the second part of the
Shefun algorithm: resolution of tissue-specificity and de-
termination of “seed” genes. For tissue specificity, based
on the enrichment of FSS-associated SNPs with an ac-
tive chromatin state, we resolved the tissue type(s) for a
coexpression analysis. In addition, genes with cis-expres-
sion quantitative trait locus (eQTL) annotation and/or
with non-synonymous variant(s) located in it could be
utilized as “seed” genes for network construction.
The second part of Shefun, which mainly focuses on

genes, includes several consecutive analytical modus
operandi as follows: the construction of tissue-specific
expression-based networks; a subnetwork enrichment
analysis to establish gene-phenotype relationships; drug
repurposing by inferring drug-phenotype relationships;
an over-representation analysis; and primary target an-
notation. All of these functional analyses are unified into
a network scene.
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Non-synonymous, chromatin state segmentation and cis-
eQTL annotations
FSS-associated SNPs (and SNPs in high LD with FSS-
related SNPs) were queried in HaploReg (vers. 4.1) [26]
using the 1000 Genome Phase 1 database and an Asian
(ASN) population. The functional state, chromatin state
segmentation (25-state), and cis-eQTL information were
extracted from the output sheet of HaploReg.
SNPs with a chromatin state of 1~19 were defined as

“active”; 20~25 as “inactive”, and the remaining as “not
available” (n.a.). For each cell type, we calculated the
number of SNPs with an active chromatin state, and cal-
culated one-sided p values (Z = (N – mean(N))/SD(N),
where N is the number of SNPs with state 1~19 in the
given cell type, and SD is the standard deviation) by
comparing to the mean of the number of “active SNPs”
across cell types (mean no. = 84.73).
For the cis-eQTL part, given the results from chroma-

tin state segmentation, we selected only SNPs with cis-
eQTL annotation in the following tissue types: whole
blood, adipose (subcutaneous) tissues, adipose (visceral
omentum) tissues, breast mammary tissue, skin (sun-ex-
posed; lower leg), cells (transformed fibroblasts), muscle
(skeletal), skin (not sun-exposed; suprapubic), osteo-
blasts (prostaglandin E2 (PGE2)), osteoblasts (bone mor-
phogenetic protein 2 (BMP2)), osteoblasts (Dex.) and
osteoblasts (untreated). We further merged tissue types
into seven categories: adipose, blood, bone, breast, fibro-
blast, skeletal muscle, and skin.
The SNPs were categorized based on non-coding/non-

synonymous/synonymous, the active/inactive chromatin
state, and cis-eQTL, and visualized them by a radar chart
using the R fmsb package.

Genotype-tissue expression (GTEx) transcriptomic dataset
pre-processing
GTEx expression data (five tissue types including adi-
pose, breast, fibroblast, skeletal muscle, and skin) were
downloaded from recount2 (https://jhubiostatistics.shi-
nyapps.io/recount/) and processed using the R recount
package. Samples with an RNA integrity number (RIN)
of < 6.0 were filtered. Next, gene expression values were
aggregated by the average, and then log2-scaled (scaled
E = log2(E+ 1), where E represents the gene expression
value). Then, lowly expressed genes were removed by
preserving genes with a scaled expression of > 1 in 80%
of the samples in at least one tissue type. Finally, we per-
formed a principal component analysis (PCA) adjust-
ment for latent covariates, also known as surrogate
variables, using the R sva package.

Bone tissue dataset pre-processing
As GTEx did not include bone expression data, we thus
downloaded a bone biopsy transcriptomic dataset (E-

MEXP-1618) of postmenopausal females from ArrayEx-
press (https://www.ebi.ac.uk/arrayexpress/experiments/
E-MEXP-1618/). The raw gene expression values were
normalized using the R gcrma package.

Expression-based network construction
The expression-based network (six tissue types, exclud-
ing “whole blood”) was consociated with two levels of in-
formation: (1) messenger (m) RNA coexpression and (2)
protein-protein interactions (PPIs). To do this, for each
selected tissue type, FSS-related genes (“seed” genes),
constituted by tissue-specific eGenes (from cis-eQTL an-
notation) and genes that contained non-synonymous
SNPs, served as input genes for a coexpression network
analysis. For each input gene, genes with the top 10/15/
20/25/30 highest Pearson’s product-moment correlation
coefficient were included to build a subnetwork. Then,
the subnetworks were further expanded using PPI infor-
mation adopted from the Human Protein Reference
Database (HPRD, vers. Release9_041310) [27]. Further-
more, self-loops and redundant links were removed from
each subnetwork for the sake of conciseness. Different
subnetworks were fused into a bigger subnetwork if they
contained at least one identical gene.

Gene set enrichment analysis (GSEA)
The “pathways” for GSEA were the merged expression-
based subnetworks, and the gene-level statistics were
beta-coefficients (related to “height”) acquired from Taylor
et al. (human skeletal muscle biopsies) [28]. The GSEA
was conducted using the R fgsea package with 99,999 per-
mutations. The significance threshold was set to a false
discovery rate (FDR) of < 0.1. The subnetworks that
reached a significant threshold were defined as “height-re-
lated subnetworks”. For each height-related subnetwork,
genes within it were assigned a value of + 1 if the subnet-
work was positively enriched (representing a positive
“gene-phenotype relationship”) and − 1 if the subnetwork
was negatively enriched (representing a negative “gene-
phenotype relationship”).

Ligand/drug repositioning
Ligand-target (gene) interaction data were queried from the
Guide to PHARMACOLOGY website (http://www.guideto-
pharmacology.org/download.jsp, vers. 2019.3). Data were
first filtered by the following criteria: (1) human species; (2)
non-endogenous agents; (3) a clear type/action of the mech-
anism for each ligand-target pair; and (4) distinct target
(gene symbol) information. We further removed the drug-
gene pair of the actions of “binding”, “mixed”, and “neutral”.
Next, we assigned a value of + 1 to the ligand-target pair of
action of the mechanism of “activation”, “agonist”, “biased
agonist”, “full agonist”, “partial agonist”, and “positive”; and
also the type of mechanism of “activator” and “agonist”.
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Similarly, we assigned a value of − 1 to ligand-target pairs
with an action mechanism of “antagonist”, “feedback inhib-
ition”, “inhibition”, “inverse agonist”, “irreversible inhibition”,
“negative”, “pore blocker”, “slows inactivation”, and “voltage-
dependent inhibition”; and mechanism types of “antagonist”,
“channel blocker”, “gating inhibitor” and “inhibitor”. Conse-
quently, + 1 or− 1 represents a positive or negative drug-
gene relationship, respectively.
For each gene in the height-related subnetworks, the

drug-phenotype relationship was inferred by multiplying
the assigned values of “drug-gene relationship” and “gene-
phenotype relationship”. There were four possibilities to
show the logic of how we inferred the drug/ligand effect,
i.e., “drug-gene relationship” × “gene-phenotype relation-
ship” = “drug-phenotype relationship”: (1) + 1 × + 1 = + 1;
(2) + 1 × − 1 = − 1; (3) -1 × + 1 = − 1; and (4) -1 × − 1 = + 1.
A final value of + 1 suggests that the drug may enhance or
exacerbate the phenotype of interest, and a final value of
− 1 suggests that the drug may alleviate, diminish, or in-
hibit the phenotype of interest. The repositioning analysis
revolved around genes in height-related subnetworks, and
drugs/ligands were selected which possibly targeted those
genes with a calculated value (drug-phenotype relation-
ship) of + 1 only, as this meant that the selected drugs/li-
gands possibly enhanced the phenotype of interest (i.e.,
height) and therefore was a potential candidate for repur-
posing to FSS.

Gene ontology (GO) biological process (BP) terms and
Kyoto encyclopedia of genes and genomes (KEGG)
pathway over-representation analysis (ORA)
Height-related subnetwork genes were subjected to a
GO analysis [29] to assess their enrichment in BP terms.
The enrichment test was performed using “weight01”
implemented in the R topGO package. Moreover, the
KEGG ORA test was performed using the R clusterProfi-
ler package. The Benjamini-Hochberg (BH) method was
applied for multiple test corrections.

Statistical and bioinformatics analysis
All in-house statistical and bioinformatics scripts for drug
repositioning analysis were written in R language (https://
www.r-project.org/). Gene symbols from different sources
were unified using the R HGNChelper package. The conver-
sion between gene symbols, Entrez Gene ID, and Ensembl
Stable ID was performed using the R clusterProfiler package.
The networks were illustrated using the R igraph package
utilizing the Fruchterman-Reingold (FR) algorithm.

Results
Genome-wide association and genotyping approaches
reveal a total of 122 FSS-associated SNPs
To determine novel susceptible genetic loci of FSS, FSS pa-
tients (n = 788, male = 51.91%) from Children’s Hospital,

China Medical University were enrolled. The diagnosis of
these patients (cases) was made by clinicians according to
the diagnostic criteria of FSS (Additional file 1: Fig. S1). The
patients with growth hormone deficiency were excluded
from this study. The controls (n = 435, male = 42.67%) were
from Taiwan Biobank that whose height was above the 75th
(Q3) of the total population. Both cases and controls were
Han Chinese population residing in Taiwan. After sample–
level and marker-level quality control, 530,030 SNPs were
subjected to initial genome-wide association screening under
the additive inheritance model. Multidimensional scaling
(MDS) was performed and no significant population stratifi-
cation was found (Additional file 2: Fig. S2). As shown in
Additional file 3: Fig. S3, significant associations between
genetic loci and FSS were observed. In total, we identified
14 genome-wide significant (p < 5 × 10− 8) SNPs in the
genome-wide screening of FSS cases and controls (Add-
itional file 6: Table S1), including rs822611 (Chr 1),
rs6731651 (Chr 2), rs16828530 (Chr 3), rs9290657 (Chr 3),
rs10028040 (Chr 3), rs1863593 (Chr 8), rs16900402 (Chr 8),
rs28786672 (Chr 9), rs7852806 (Chr 9), rs2172912 (Chr 12),
rs12826453 (Chr 12), rs9520911 (Chr 13), rs17732181 (Chr
17), and rs4815179 (Chr 20). In present study, we also iden-
tified the top 88 genetic loci (Additional file 6: Table S1
with p < 10− 4). These 88 novel genetic loci were located in
the 44 closest genes. Among these 44 closest genes, eight
genes have at least two SNPs within the same gene. These
eight closest genes included AGO4, SESTD1, PARD3B/
ICOS, RFC1, UNC5C, IL7, BCL11B, and MIAT/MN1.
Among them, BCL11B, IL-7, MN1, and UNC5C are in-
volved in embryonic, connective tissue, organ development,
and developmental disorders.
Moreover, our previous study suggested 34 SNPs that

were also associated with an FSS risk [17]. These 34 hu-
man height-related SNPs were located in the 13 closest
genes. These 13 closest genes included TSEN15,
EFEMP1, ZNF638, CEP63, ZBTB38, LCORL, HHIP,
ANAPC10, GSDMC, QSOX2, ADAMTSL3, CDK10, and
CABLES1 that also involved in embryonic, organismal,
and tissue development.

Functional annotations of 122 FSS-associated SNPs
To identify input genes for the downstream analyses, we
consolidated several SNP annotation criteria to map the
SNPs to genes (Fig. 1 [top]). In the 122 FSS-associated
SNPs, most were located in intronic (n = 53, 43.44%) and
intergenic (n = 58, 47.54%) regions (Additional file 7:
Table S2). Among 122 SNPs, four SNPs were located in
an exonic region (Additional file 8: Table S3).
As GWAS and genotyping approaches selected the ge-

notyped SNPs using an LD-tagging method, it could po-
tentially miss causal SNPs that are linked to FSS.
Therefore, we expanded the SNP list by querying SNPs
in high LD (r2 > 0.8 within a 100-kb window) with our
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SNP list using the 1000 Genome (phase 3, vers. 5a) EAS
database, resulting in 1751 SNPs (121 FSS-associated
SNPs and 1630 SNPs in LD with FSS-associated SNPs,
where rs10086016 was excluded due to a lack of gene
annotation). With the expanded SNP list, we next quer-
ied their (1) exonic function, (2) chromatin state seg-
mentation (25-state), and (3) cis-eQTL information
using HaploReg (vers. 4.1) (Fig. 2).
As a result, we identified six genes (CALCOCO2,

MUC16, TSEN15, DCAF16, GSDMC, and ADAMTSL3)
in which eight non-synonymous SNPs were located (Fig.
2 [left] and Additional file 9: Table S4). In addition,
among 1751 SNPs, we found 309 (17.65%) SNPs with at
least one active chromatin state segmentation (states
1~19) annotation. These SNPs were enriched (p < 0.1) in
different cell types including adipocytes, skeletal muscle
cells, bone marrow-derived cells, skin melanocytes,
mammary epithelial cells, and bone-related cells such as
osteoblasts and chondrocytes (in total 16 cell types, with
brain-related cell types excluded; Fig. 2 [middle], Add-
itional file 4: Fig. S4, and Additional file 10: Table S5).
Based on these findings, we focus on seven tissues in-

cluding adipose, blood, bone, breast, fibroblast, skeletal
muscle, and skin to seek SNPs with cis-eQTL annota-
tion, and identified 298 (17.08%), 336 (19.19%), 2

(0.11%), 164 (9.37%), 321 (18.33%), 245 (13.99%), and
299 (17.08%) cis-eQTLs, respectively. In total, these 578
(33.01% of 1751) cis-eQTLs were correlated to 70 unique
eGenes. In greater detail, the numbers of eGenes in each
tissue type were 22, 46, 2, 8, 14, 16, and 17, respectively
(Fig. 2 [right] and Additional file 5: Fig. S5). However,
the number of eGenes shared among different tissues
was relatively low (Fig. 3), suggesting the uniqueness of
the SNP-gene regulation machinery.
Overall, we categorized the SNPs based on annota-

tions, including the functional state (non-coding/non-
synonymous/synonymous), chromatin state segmenta-
tion (25 states), and cis-regulation (Fig. 4).

Construction of expression (mRNA-coexpression and PPI)-
based networks
Given the hypothesis that genes collaborate together to
form functional units and to regulate a specific pheno-
type/pathology (in this case, FSS), we next utilized two
published transcriptomic datasets (GTEx [vers. 7] for
adipose, breast, fibroblast, skeletal muscle, and skin tis-
sues; and E-MEXP-1618 for bone tissue) to capture the
cooperating unit by constructing a so-called “expression-
based network”.

Fig. 1 Schematic showing an overview of the drug repositioning pipeline in this study

Wong et al. Journal of Biomedical Science           (2019) 26:91 Page 5 of 12



Fig. 3 Schematic showing the number of intersections of genes in seven tissue types

Fig. 2 Schematic showing results of the single-nucleotide polymorphism (SNP)-heuristic part analysis. The barplot in the middle panel shows cell
types that were significantly enriched in SNPs with an active chromatin state. Blue color indicates SNPs with chromatin state segmentation of
1~19; the light-blue color indicates SNPs with chromatin state segmentation of 20~25; while the remaining have no available annotations
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To do this, FSS-related genes (composed of tissue-
specific eGenes and genes with a non-synonymous an-
notation) served as “seed” genes for network construc-
tion. For each tissue type, we created a network by
calculating Pearson’s product-moment correlation coeffi-
cients between each of the “seed” genes and the other
genes. To focus on the most relevant coexpression links
and also to take network robustness into consideration,
we identified the top 10/15/20/25/30 coexpressed genes
with the highest correlation to each “seed” gene. In
addition, the networks were further expanded using
HPRD (vers. Release9_041310) PPI information. We in-
vestigated genes with PPIs with each “seed” gene and in-
cluded them in the network. In total, we generated 6 ×
5 = 30 expression-based networks (Fig. 1 [bottom]).

Identification of subnetworks that were positively or
negatively enriched in height-related genes
To clarify the gene (integrated as a network)-phenotype
relationship, we leveraged differentially expressed data
related to the height from Taylor et al. [28] and per-
formed a subnetwork-based GSEA. In the tissue-specific
networks, each “seed” gene was linked with coexpression

genes and/or PPI genes to form a subnetwork, which
was possibly merged into a larger subnetwork if it con-
tained at least one identical gene member with another
subnetwork. For each amalgamated subnetwork, we con-
ducted the GSEA (permutation no. = 99,999) by incorp-
orating differential expression information, i.e., genes’
beta-coefficient statistics to the height. Significantly
enriched (adjusted p < 0.1) subnetworks were defined as
“height-related subnetworks”. 16 height-related subnet-
works across 10 (33.3%) of 30 networks were identified,
with network sizes ranging 16~113, and the number of
“seed” genes ranging one to four. Notably, all identified
height-related subnetworks were inversely correlated
(negatively enriched) with expressions of genes that were
positively associated with height (Fig. 5).

Drug repositioning to FSS by targeting height-related
subnetworks
To integrate the direction of a drug’s effect on FSS into our
pipeline, in other words, to elucidate drug-phenotype rela-
tionships, we incorporated (1) interaction data for ligands
and targets (drug-gene relationship) from the Guide to
PHARMACOLOGY database (vers. 2019.3) and (2)

Fig. 4 Radar charts showing the number and percentage of the annotation status from 121 familial short stature (FSS)-associated single-
nucleotide polymorphisms (SNPs; left panel) and 1751 SNPs (right panel)
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predefined gene-phenotype relationships (Fig.1 [bottom]).
Given the Shefun pipeline, we determined that five of 30
networks (with seven different subnetworks spanning four
tissue types) possessed repurposing potential, including (1)
adipose (top 10) containing 39 ligand-gene pairs (Fig. 6a). In
this network, SLC6A2, a norepinephrine transporter (NET)
gene was identified as a potential drug target for SS reposi-
tioning. (2) Skin (top 15) containing 58 ligand-gene pairs
(Fig. 6b). Two drug-targeted subnetworks were identified:
one containing the drug-targeted genes CDK3 and DGAT1
and the other containing BMPR1B, HDAC3, and TGFBR1.
(3) Fibroblast (top 25) containing 13 ligand-gene pairs (Fig.
6c). CACNA1H, SLC22A3, P2RX1, and PDE9A were identi-
fied as drug-targeted genes in this network. (4) Breast (top
30) containing 40 ligand-gene pairs (Fig. 6d) and drug-
targeted genes such as GGPS1, KAT2B and TEK. (5) And,
fibroblast (top 30) containing 19 ligand-gene pairs (Fig. 6e).
In this network, two subnetworks were found to be potential
candidates for drug repurposing, with one subnetwork con-
taining the drug-targeted genes KLK5, KLK7, PRSS8, and
SLC6A14 and the other subnetwork containing CACNA1H,
P2RX1, PDE9A, and SLC22A3. Therefore, these drugs/li-
gands could be candidates for further investigation. Given
that some of the genes from the ligand-gene pairs that we

identified might not be the primary target of the specific li-
gands, and might thus indicate possible safety issues, we
therefore annotated information of “primary target” or
“non-primary target” for each ligand-gene pair. This infor-
mation may assist in the future prioritization of drugs/li-
gands for FSS repositioning.

Pathways and biological processes over-representing
drug-targeted subnetworks
For height-related subnetworks that contained the drug-
targeted gene(s), we conducted GO BP terms and KEGG
pathway ORA (Additional file 11: Table S6). The signifi-
cant (with an FDR of < 0.1) BP terms and pathways are
illustrated in Fig. 6a-e. For the skin (top 15), a subnet-
work centered on UBE2Z (a “seed” gene) showed signifi-
cant enrichment in RNA interference, RNA export from
nuclei, glutamine metabolic process terms, and the spli-
ceosome pathway (Fig. 6b). Another subnetwork (cen-
tered on ANAPC13) of the breast (top 30) also showed
significant enrichment in the regulation of mRNA polya-
denylation (Fig. 6d). In addition, a MUC16-centered sub-
network in the fibroblast (top 30) network showed
significant enrichment in the cornification term (Fig. 6e).

Fig. 5 Brief view of networks that contained at least one significant subnetwork. The left number in the parentheses indicates the gene size of
the subnetwork; and the right number in the parentheses indicates the number of “seed” genes within the subnetwork
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Discussion
In this work, we integrated several biological re-
sources to prioritize FSS-related genetic variants and
identified candidate druggable genes for FSS. Using a
bioinformatics pipeline, we first annotated FSS-related
variants and mapped those variants to genes (in the
SNP-heuristic part). Next, we conducted gene-based
annotations and prioritized genes in a network-based
manner (in the expression-based functional unifying
network part). As a result of this study, we reported
five candidate networks for drug repositioning com-
prised of seven unique FSS-related genes (“seed”
genes) including LINC00639, CDK10, SPIRE2, QSOX2,
ADAMTSL3, ANAPC13, and CEP63. Overall, we iden-
tified 17 unique druggable genes.
Some of the determined druggable genes were re-

ported to be directly associated with SS according to the
Human Phenotype Ontology (HPO; the identity of SS:
HP:0004322) and Gene-Disease Associations (GAD) da-
tabases, as exemplified by SLC6A2 [30], a member of the
Na+:neurotransmitter symporter family, which is tar-
geted by some antipsychotic agents. Likewise, BMPR1B,
a member of the bone morphogenetic protein (BMP) re-
ceptor family of transmembrane serine/threonine ki-
nases, which belongs to the transforming growth factor
(TGF)-β superfamily, was reported to be associated with
acromesomelic dysplasia [31]. It is noteworthy that the
BMP and TGF-β signaling pathways were suggested to
play central roles in human growth, and hence are linked
to the mechanism of the development of SS [32, 33].
TGFBR1, a gene that forms a heteromeric complex with
the TGFBR2 protein, was also identified as a drug target
of several TGF-β inhibitors for FSS repositioning in this
study.
Additionally, we identified a number of druggable

genes that may interact with known SS-related genes,
despite they themselves are lacking of known associa-
tions with FSS, including CDK3 (which interacts with
CABLES1), TGFBR1 (which interacts with TGFB3),
PDE9A (which interacts with HPRT1), TEK (which inter-
acts with PIK3R1), and KLK7 (which interacts with
CDSN). These genes were considered to be “indirectly”
linked to FSS and might have potential to serve as tar-
gets for repurposing.
Furthermore, our results demonstrated several bio-

logically meaningful gene clusters in drug repositioning
for FSS: two groups of genes were related to the devel-
opment biology pathway: one is a subnetwork in the net-
work of “breast” (top 30), which contains GGPS1,
KAT2B, and TEK. Specifically, TEK may interact with
the SS-related gene, PIK3R1, which codes an enzyme
that phosphorylates the 3′ position of the inositol ring
of phosphatidylinositol [34]. KAT2B, a gene that associ-
ated with p300/CBP, mediates PLK4 acetylation and thus

Fig. 6 Network visualization of (a) adipose (top 10); (b) skin (top 15);
(c) fibroblast (top 25); (d) breast (top 30); (e) fibroblast (top 30)
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acts as a negative regulator of centrosome amplification
[35]. Notably, PLK4 is also an SS-related gene. Impoty-
antly, we identified several acetyltransferase inhibitors
that may target KAT2B, including anacardic acid, garci-
nol, plumbagin, and so on. The other gene cluster was
located in the network of “fibroblast” (top 30), which
contains KLK5, KLK7, PRSS8, and SLC6A14. In addition,
GGPS1, a member of the prenyltransferase family, which
encodes an enzyme that catalyzes the synthesis of gera-
nylgeranyl diphosphate from farnesyl diphosphate and
isopentenyl diphosphate, was associated with osteogen-
esis imperfecta. In addition, GGPS1 was also reported to
be correlated with the bone mineral density [36] and
atypical femoral fractures [37]. In this study, we identi-
fied bisphosphonates that may target KAT2B. In
addition, B3C, an activator of the epithelial sodium
channel ENa, may target PRSS8. In short, we revealed
several promising drugs, providing reasonable druggable
gene clusters for FSS based on this genomic interroga-
tion platform.
Nevertheless, we discovered two similar subnetworks

in the “fibroblast” (top 25) and “fibroblast” (top 30),
which contained druggable genes (CACN1H, SLC22A3,
and P2RX1) that implicated in cation (calcium) homeo-
stasis regulation, however, these genes have no clear
connection to SS or FSS. Interestingly, a gene belonging
to the above-mentioned subnetworks, PDE9A, is able to
interact with HPRT1, which encodes an enzyme that is
crucial for the generation of purine nucleotides through
the purine salvage pathway, and is thus associated with
SS. Therefore, our analysis may unearth previously un-
known mechanisms/pathways of FSS which in turn, pro-
vides new insights for drug repositioning. Obviously, the
findings need further rigorous experiments for
validation.
The genome-wide scale association analysis that scanned

the entire genome without bias provided an unprecedented
opportunity for drug repurposing by linking disease indica-
tions with druggable genes, i.e., “genetics-driven genomic
drug discovery” [22, 38, 39], which is exemplified by the
identification of PCSK9 for the treatment of hypercholester-
olemia [40]. We thus postulated that our “FSS-associated
variants” should be subjected to a drug-repositioning ana-
lysis. We, therefore, leveraged the Guide to PHARMACOL-
OGY database to identify potential therapeutic agents that
were initially developed for other diseases that may be
repurposed to alleviate FSS. In addition, we showed the
plausibility of drug target identification by using genomic
approaches.
However, we noted several limitations. First, in GWAS

part, false positives associations may not be excluded
due to small power of current study. Second, fur-
ther functional investigations are needed to validate the
candidate drug targets identified by our annotation-

based analytical pupeline. Third, the affinity and specifi-
city of drugs that target SS-related genes may differ. Fur-
ther experiments are required to select suitable drugs.
Fourth, some druggable genes (e.g., SLC6A2, CDK3, and
TEK) were the targets of antipsychotic/anticancer agents,
which may generally lead to more-severe adverse events.
Therefore, in order to balance the risk and benefits, we
emphasize that the genes targeted by safer agents should
initially be prioritized to assess their clinical potential for
repositioning to FSS.

Conclusions
In summary, we prioritized seven candidate FSS-
related genes (LINC00639, CDK10, SPIRE2, QSOX2,
ADAMTSL3, ANAPC13, and CEP63) and 17 genes
(SLC6A2, CDK3, DGAT1, BMPR1B, HDAC3, TGFBR1,
CACNA1H, SLC22A3, P2RX1, PDE9A, GGPS1,
KAT2B, TEK, KLK5, KLK7, PRSS8, and SLC6A14) for
drug repurposing. Among them, drugs targeting
DGAT1, HDAC3, PDE9A, GGSP1, KAT2B, KLK5,
KLK7, PRSS8, and SLC6A14 were recommended for
repurposing not only due to the consideration of
plausible mechanistic explanations but also after tak-
ing safety issues into evaluation. This study provides
insights for understanding the pathophysiology of FSS
and thereby conferring new approaches for drug dis-
covery. Finally, our study demonstrated the power of
comprehensive genomic interrogation in drug discov-
ery for human diseases.
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