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Abstract

Toll-like receptors (TLRs) are well known as critical pattern recognition receptors that trigger innate immune
responses. In addition, TLRs are expressed in neurons and may act as the gears in the neuronal detection/alarm
system for making good connections. As neuronal differentiation and circuit formation take place along with
programmed cell death, neurons face the challenge of connecting with appropriate targets while avoiding dying or
dead neurons. Activation of neuronal TLR3, TLR7 and TLR8 with nucleic acids negatively modulates neurite
outgrowth and alters synapse formation in a cell-autonomous manner. It consequently influences neural
connectivity and brain function and leads to deficits related to neuropsychiatric disorders. Importantly, neuronal TLR
activation does not simply duplicate the downstream signal pathways and effectors of classical innate immune
responses. The differences in spatial and temporal expression of TLRs and their ligands likely account for the diverse
signaling pathways of neuronal TLRs. In conclusion, the accumulated evidence strengthens the idea that the innate
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immune system of neurons serves as an alarm system that responds to exogenous pathogens as well as intrinsic
danger signals and fine-tune developmental processes of neurons.

Introduction

Organisms have host defense systems, namely adaptive
and innate immunity, to tackle pathogen invasion [1].
The adaptive immune system evolved in vertebrates. It is
highly specific and can establish long-term immune
memory for antigens in specific immune cells, such as B
and T lymphocytes [1, 2]. The innate immune system is
the first line of defense, and some forms of it exist in
most cell types of all species. Phagocytosis and cytokine/
chemokine production are two critical elements of in-
nate immunity. Initial phagocytosis by macrophages or
other phagocytes triggers production and release of cyto-
kines and/or chemokines. Pathogen-infected cells can
also release cytokines/chemokines. Those cytokines and/
or chemokines further recruit more immune cells to ef-
fectively eliminate foreign pathogens and infected cells
[3]. Therefore, unlike the adaptive immune system, the
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innate immune system responds quickly to danger sig-
nals and lacks antigen specificity.

In the innate immune system, cells use a variety of
pattern recognition receptors (PRRs) to detect molecules
derived from bacteria, viruses, and parasites. Such PRRs
include the toll-like receptors (TLRs), C-type lectin re-
ceptors (CLRS), NOD-likes receptors (NLRs), RIG-like
receptors (RLRs), and AIM2-like receptors (ALRs) [3-5].
The different PRRs recognize divergent pattern mole-
cules and highly diverse PRRs equip the host with the
ability to detect various pathogens.

Toll/TLR superfamily is the first to be identified and
the best characterized protein family of PRRs. Thus far,
the Toll/TLR superfamily has been found in all animals
except Phylum Porifera (sponges). In addition to detect-
ing the pathogen-associated molecular patterns (PAMPs)
of microorganisms, TLRs also recognize endogenous
damage or danger signals (damage-associated molecular
patterns, DAMPs), such as self mRNA and DNA derived
from dead cells (caused by either apoptosis or other
stress) or autophagosomes, miRNA released through the

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12929-019-0584-z&domain=pdf
http://orcid.org/0000-0002-0866-6275
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:chiungya@gate.sinica.edu.tw
mailto:yph@gate.sinica.edu.tw

Chen et al. Journal of Biomedical Science (2019) 26:90

exosomal pathway, and other macromolecules derived
from injured tissues [6—15].

Toll, the first reported member of the Toll/TLR super-
family, was discovered in Drosophila and was originally
identified as a membrane protein determining dorsoven-
tral polarity [16, 17]. Functional studies suggest that
most Toll family proteins in the fruit fly are important
during embryonic development and that some of them
also mediate innate immune responses [18—20]. Interest-
ingly, Tolls recognize neurotrophins to control neuronal
survival and death [21, 22]. Toll-6 and Toll-7 also act as ad-
hesion molecules to mediate synaptic partner matching in
the Drosophila olfactory circuit [23]. The signaling path-
ways and functions of Tolls in fly development have been
revealed and previously reviewed by others [21, 22, 24-27].

There is no evidence to support interaction of TLRs
with neurotrophic factor(s) in mammalian brains. In-
stead, activation of TLRs by PAMPs or DAMPs influ-
ences neurogenesis, neuronal differentiation and
maturation [5, 28]. TLR deficiency results in abnormal
mouse behaviors, such as learning and memory defects
and the features of neurodevelopmental disorders. More-
over, immune activation of TLRs at early developmental
stages impairs neural development and increases the risk
of developing neuropsychiatric disorders, including
schizophrenia and autism spectrum disorders [29, 30].
Although peripheral cytokines (e.g. IL-6 and IL-17) were
thought to be critical for immune activation-induced ab-
normalities in brain development and neuropsychiatric
disorders [31, 32], evidence (detailed below) suggests
that neuronal TLR activation can also influence neuronal
morphology and alter brain function. Thus, both
DAMPs and PAMPs likely control neuronal morphology
via TLR activation. In this article, we focus on the effects
and mechanisms of TLRs in neuronal morphogenesis to
highlight the non-defense function of the innate immune
machinery in neurons.

Mammalian TLRs and their domain structures

TLRs contain multiple leucine-rich repeats (LRRs) at the
N-terminus, a single transmembrane domain, and a C-
terminal Toll/interleukin-1 receptor (TIR) domain. The
N-terminal LRRs form a horseshoe-shaped structure that
mediates recognition of exogenous and endogenous pat-
tern molecules. The TIR domain binds adaptor mole-
cules and initiates signaling transduction [33, 34].
Though the numbers of LRR vary, the basic structures
of different TLRs are similar. Here, we employ TLR3 as
an example to show the basic domain organization of
TLRs (Fig. 1, Table 1).

Thus far, ten TLRs have been identified in humans
and twelve in mice. Both humans and mice express
TLR1-9. Humans but not mice express TLR10, whereas
mice have TLR11, TLR12, and TLR13 that are lacking in

Page 2 of 13

. TLR3 TLR3 dimer/dsRNA
Domains
Ligand S
LRRs binding
Endosome
lumen
™
TIR Cytoplasm

Signaling

Fig. 1 Schematic of the protein domain structure of TLRs. TLR3 is
used as an example here. Binding of double-stranded RNA (dsRNA)
induces TLR3 dimerization, leading to activation of downstream
signaling. LRRs, leucine-rich repeats; TIR, Toll/interleukin-1 receptor;
TM, transmembrane domain. Proteolysis to cleave the ectodomain is

also involved in TLR3 activation, but it is not indicated here

humans (Table 1). Based on sequence similarities,
TLR1-13 can be grouped into six subfamilies, i.e., the
TLR1, TLR3, TLR4, TLR5, TLR7 and TLR11 subfamilies
(Table 1) [35, 36]. Closely-related TLRs recognize similar
microbial molecules. For example, TLR7 and TLR8 both
recognize single-strand RNA (ssRNA) [37, 38]. In
addition, members of the same subfamily tend to form
heterodimers to detect their ligands. For instance, TLR2
forms dimer with TLR1 or TLR6 to recognize a wide
range of PAMPs, and TLR11-TLR12 dimer may bind to
profilin to trigger a response against Toxoplasma gondii
[39]. TLRs can also be divided into two groups based on
their subcellular localization: (1) TLR1, TLR2, TLR4,
TLR5, TLR6, TLR10 and TLR11 on the plasma mem-
brane; and (2) endosomal TLRs, including TLR3, TLR7,
TLR8, TLR9, TLR12 and TLR13 (Table 1) [40].

Classical signaling pathways of TLRs in innate immunity

Classical TLR signaling is mediated by five TIR domain-
containing adaptors: myeloid differentiation primary re-
sponse 88 (MYDS88); TIR domain-containing adapter-
inducing interferon-p (TRIF; also known as TICAM-1);
TIR domain-containing adaptor protein (TIRAP); TRIF-
related adaptor molecule (TRAM); and Sterile alpha and
TIR motif-containing protein 1 (SARM1). TLR signaling
is determined via interactions through the TIR domains
of TLRs and their adaptors. Upon ligand binding, TLRs
form homo- or hetero-dimers and transduce the signals
to the MYD88- and TRIF-dependent pathways [41, 42].
MYD88 contains an N-terminal death domain, an inter-
mediate domain, and a C-terminal TIR domain [43, 44],
and it is the major adaptor protein for TLRs to trigger
innate immune responses (Fig. 2). TRIF consists of an
N-terminal globular helical domain, a TBK1-binding
motif, TRAF6- and TRAF2-binding motifs, a TIR
domain, and a C-terminal receptor-interacting protein
homotypic interaction motif (RHIM) [45], and it
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Gene b il Locali Ligands
- Exogenous (pathogen) Endogenous Synthetic
Tirl Human, Mouse TLR1 Plasma membrane Triacyl hpopep‘l ides (‘baclena, Unknown
HSP(60, 70), HMGB1, human
Triacy lipopeptides, zymosan. cardiac myosin, versican,
T2 Human, Mouse TLR1 Plasma membrane L. ¥ 1Ipop! N P > 2Y] L biglycan, hyaluronan, serum
chitin (bacteria, yeast, parasites) . .
amyloid A, snapin A,
doplasmin, B-defensin 2
T3 Human, Mouse TLR3 Endoly Double-stranded RNA (virus) Self RNA, stathmin ll:;)l])}ll((}\(g)
HSP(22, 60, 70, 72), HMGBI,
Lipopolysaccharide (bacteria fibronectin, hyaluronan, serum
Tir4 Human, Mouse TLR4 Plasma membrane POPOLY virus) * | amyloid A, fibrinogen, biglycan,
CD138, p-defensin, heparan
sulfate, SI00A8/9, and resistin
TIrS Human, Mouse TLRS Plasma Flagellin (bacteria) Unknown
Tlr6 Human, Mouse TLR1 Plasma membrane Diacyl llpo;‘),:ro‘:;n (bacteria, Unknown
GU-rich single-stranded RNA Imiquimod,
The7 Human, Mouse TLR7 Endolysosome o lg in, virus) Self RNA, miRNA Resiquimod,
aclerta, virs Loxoribine, CLO7S,
. Resiquimod,
GU- and AU-rich le- . .
Tlr8 Human, Mouse TLR7 Endolysosome stran dedmll(N A (l:::tels'il:gv?rus) Self RNA, human cardiac myosin CLO75,
} CLO75+poly(dT)
TIO Human, Mouse TLR7 Endolysosome Unmethylated CpG DNA Self DNA, HMGBI CpG ODNs
(bacteria, virus)
Tir10 Human TLR1 Endolysosome Unknown Unknown
Tirl1 Mouse TLRI1 | Plasma membrane Flagellin and prqﬁlm (acteria, Unknown
parasite)
Tir12 Mouse TLRI11 Endolysosome Profilin (p Unknown
TIr13 Mouse TLRI11 Endoly 23S rib I RNA (bacteria) Unknown ORN Sal9

mediates TLR3 and TLR4 signals (Fig. 2). MYD88 or
TRIF is either recruited to the activated TLR directly, or
indirectly through TIRAP and TRAM, to transduce the
signal and subsequently induce expression of inflamma-
tory cytokines and type I interferons [41, 42]. SARM1 is

response

[46].

originally identified as a negative regulator of TRIF-
dependent signaling that attenuates the innate immune
However, several studies suggest that
SARM1 is predominantly expressed in neurons but not
peripheral tissues, and that it plays important roles in
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Fig. 2 Classical TLR signaling pathways. MYD88 and TRIF are two major TIR domain-containing adaptors downstream of TLRs. IRFs, NF-kB and
AP1 are three common downstream transcriptional factors in TLR pathways that regulate gene expression. Detailed descriptions are provided in
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regulating neuronal morphology [47], neural activity
[48], autism-like behaviors [49] and wallerian degener-
ation [50-53]. More details about the function of
SARM1 are available in previous reviews [5, 54].

Neuronal TLRs modulate neurogenesis and neuronal
differentiation

The innate immune and nervous systems emerged con-
currently during evolution and before the mesoderm
and adaptive immunity arose. Hydra (Phylum Cnidaria)
is a simple organism with only ectoderm and endoderm,
and it also expresses TLRs to recognize microbes [55]. It
has been suggested that its simple nervous system can
control the resident population of beneficial microbes,
and that microbes affect Hydra behaviors by directly
interfering with neuronal function [55]. Although direct
evidence is still lacking, it seems possible that Hydra
neurons use TLRs to directly recognize microbes and to
consequently alter neuronal activity. In higher eukaryotic
animals, particularly vertebrates, brains are considered
an immune-privileged organ. The blood-brain barrier is
largely responsible for isolating brain cells from periph-
eral immune cells and exogenous pathogens. There is a
resident population of phagocytic cells in brain, ie.
microglia, that effect local inflammatory responses in the
brain. Like microglia, neurons have been found to express
several TLRs [56], though their expression levels are much
lower than for microglia or macrophages [57, 58]. The low
expression levels of TLRs in neurons are consistent with
the fact that neurons are not responsible for triggering glo-
bal innate immune responses. Thus, the question remains
as to why neurons retain the ability to express TLRs in an
immune-privileged environment. Is there any physiological
reason to maintain TLR expression in neurons?

In rodents, TLRs have been reported to regulate neur-
onal progenitor cell (NPC) proliferation and neuronal
morphology (including axon and dendrite outgrowth,
and synapse formation) in mammalian brains even in
the absence of infectious agents or tissue damage [5, 54,
59-61]. During neurogenesis, TLR2, TLR3 and TLR4
are present in NPCs and have distinct effects on NPC
proliferation [28, 62]. For example, TLR3 negatively reg-
ulates embryonic NPC proliferation [63]. In TLR3-
deficient mice, hippocampal CA1 and dentate gyrus vol-
umes are increased and adult hippocampal neurogenesis
is enhanced [64]. TLR2 and TLR4 are also expressed in
adult NPCs [59]. Loss of TLR2 impairs hippocampal
neurogenesis, whereas TLR4 deficiency upregulates
neuronal proliferation and differentiation [59].

The functions and signaling pathways of TLR3, TLR7,
and TLRS in neuronal differentiation have been well inves-
tigated using both in vivo and in vitro knockdown systems
and several knockout mouse lines [54, 60, 61, 65, 66]. These
studies have demonstrated that specifically reducing
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expression or activation of TLR3, TLR7, or TLR8 in neu-
rons results in abnormal neuronal differentiation and mat-
uration in a cell-autonomous manner [54, 60, 61].

Both TLR7 and TLR8 detect single-stranded RNA
(ssRNA) in endosomes, whereas TLR3 recognizes
double-stranded RNA (dsRNA) and the synthetic ligand
poly(I:C). Axonal growth is negatively controlled by
TLR7 and TLR3, but not by TLR8 [54, 60, 61, 66].
Moreover, activations of TLR3, TLR7 and TLR8 all
downregulate dendritic outgrowth [54, 60, 61]. While
Tlr7 RNA levels are almost constant, 7/r8 RNA levels
are increased as neuronal cultures mature [54]. Knock-
down of Tlr7 and TIr8 in vivo has different temporal
effects on dendritic morphogenesis. Upon TIr7 knock-
down beginning at embryonic day 15.5, layer 2/3 cortical
neurons exhibited more complex dendritic arborization
at postnatal day (P) 7 and P14, but not at P21 [60]. Con-
versely, Tlr8 knockdown had an effect on dendritic
arborization at P14 and P21, but not at P7 [54]. These
distinct temporal effects are likely relevant to the expres-
sion timing of Tlr7 and TIr8 and/or the presence of their
endogenous ligands [54, 60].

TLR3, TLR7 and TLR8 carry out different functions
during dendritic spine formation. TLR3 activation at P4
and P5 results in higher density but smaller dendritic
spines of cortical layer 5 neurons at P21 [61]; a pheno-
type reminiscent of some autism spectrum disorders
(ASD) [67—-69]. Activation of TLR8 in cultured cortical
neurons also increases dendritic spine density, but spine
size seems unaffected [54], whereas TLR7 activation has
no effect on dendritic spine morphogenesis (our unpub-
lished data). Interestingly, though spine density is in-
creased upon TLR8 activation, miniature excitatory
synaptic currents (mEPSCs) are not changed at all [54].
Thus, the increased spine density likely compensates for
the shorter dendrites caused by TLRS8 activation.

In conclusion, the evidence indicates that TLRs differen-
tially control neurogenesis and neuronal differentiation.

TLRs regulate synaptic physiology and mouse behaviors

Apart from neuronal morphology, gain or loss of func-
tion of TLRs also affects synaptic plasticity and mouse
behaviors. In cultured hippocampal neurons, TLR3 acti-
vation by poly(I:C) reduced spontaneous action potential
firing via reducing sodium current in a TRIF-dependent
manner [70]. The treatment also reduces surface expres-
sion of AMPAR and results in lower frequency and amp-
litude of mEPSCs [70]. When poly(I:C) was applied
in vivo at embryonic day 15 and 17, long-term potenti-
ation (LTP) was impaired at postnatal days 28-31 [71].
However, acute intraperitoneal administration of poly(L:C)
for 4h did not alter LTP of hippocampus [72]. Thus,
embryonic treatment of poly(I:C) likely alters neurodeve-
lopment and therefore influences synaptic plasticity. For
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TLR4, LPS treatment at postnatal stage activates astro-
cytes and thus promotes synaptogenesis and alters fre-
quency and amplitude of mEPSC in hippocampal CA1l
neurons [73].

The change of synaptic activity upon TLRs activation
may echo the effect of TLRs on mouse behaviors. For ex-
ample, systematic challenge of prenatal or neonatal mice
with lipopolysaccharide (LPS; a TLR4 agonist) or poly(L:C)
(a TLR3 agonist) causes autism-like (e.g. impaired social
interaction) and schizophrenic-like behaviors, and in-
creases anxiety [31, 74, 75]. Recently, prenatal immune
challenge in mice has been shown to result in several sex-
dependent behavioral deficits. For instance, maternal im-
mune activation via poly(I:C) to trigger TLR3 activation
induced anxiety-like and schizophrenia-like behaviors in
male but not female mice [76]. Prenatal TLR7 activation
by administration of imiquimod also results in sex-biased
differences in anxiety-like behavior, repetitive behavior
(self-grooming and marble burying), and disrupted social
behavior [77]. These neuropsychiatric symptoms are due
to improper brain development [31, 78].

In addition, deletion of TIr genes also exhibit abnor-
mal behavioral phenotypes that are highly related to dys-
function of the central nervous system (CNS). For
example, TIr2 knockout mice develop schizophrenia-like
behaviors and age-related obesity [79, 80]. T/r3 null mice
present enhanced spatial learning and memory, but also
exhibit anxiety and amygdala-dependent fear memory
defects [64]. Tir4 deficiency in mice enhances motor
functions and spatial memory acquisition and memory
retention [81]. Interestingly, blockage of TLR4 signaling
by infusing a TLR4 antagonist into the cerebral ventri-
cles of adult mice does not affect cognitive behavior but
induces anxiety [81]. This outcome suggests that the
cognitive defects of T/r4 mutant mice are due to abnor-
mal neuronal circuit formation during development.
Furthermore, lack of TIr7 leads to less anxiety and ag-
gression, better olfaction, and worse contextual fear
memory in adult mice [82]. Moreover, 2-week-old TIr7
knockout mice exhibit lower exploratory activity [60].
These abnormal behaviors of TI/r7 knockout mice may
be linked to dysregulation of neuronal morphogenesis
during the first two postnatal weeks [60]. Currently, syn-
aptic physiology of CNS has been only investigated in
Tilr4 and Tlr7 deficient mice. T/r4 mutant mice showed
the impairment of long-term depression (LTD) but not
LTP in nucleus accumbens [83] and TIr7 knockout mice
exhibited LTP defect in hippocampus [82]. It would be
worthy to investigate the synaptic activity in different
brain regions of these T/r mutant mice to further correl-
ate the distinct behavior outcomes.

Since neuronal TLRs regulate neuronal morphology and
activity, they likely contribute at least partially to the ef-
fects of TLR deletion or activation on mouse behaviors.
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Long-lasting effects of TLR activation

Innate immunity is also known to exhibit long-lasting
memory via epigenetic reprogramming in innate im-
mune cells. So-called “innate immune memory” is
achieved by histone modification, DNA methylation
and/or regulation by miRNAs and long-nonconding
RNAs [84—86]. As summarized above, TLR activation at
prenatal and neonatal stages results in abnormal den-
dritic spines and behavioral alteration in adults. This
outcome suggests that TLR activation has a long-lasting
effect on neural function. It is likely that neurons also
exhibit a mechanism similar to innate immune memory
to epigenetically control gene expression and thereby
have a long-lasting effect on neuronal morphology and
function. Indeed, prenatal immune activation by mater-
nal treatment with poly(I:C) changes the genome-wide
landscape of DNA methylation in the brains of adult off-
spring. Both hyper- and hypo-methylated CpG have been
identified at many distinct loci, including genes involved in
interneuron differentiation, the Wnt pathway and neuronal
development [87, 88]. However, it is still unclear whether
and how poly(I:C) treatment results in epigenetic repro-
gramming of neurons. Bisulfite genomic sequencing of dif-
ferent brain cells (such as neurons, microglia and astrocytes)
may be applied to address this issue.

Non-classical TLR signaling

Several studies have shown that some TLRs use different
approaches to transduce signaling (Fig. 3). For example,
in addition to MYD88, TLR2 can also use TRIF and
TRAM to induce expression of type I interferons and
the chemokine Cc/5 in macrophages [89, 90]. TRIF is
able to mediate TLR5 signaling in intestinal epithelial
cells under flagellin challenge [91]. TLR9 acts through
TRIF, but not MYDS88, to promote a tolerogenic re-
sponse in plasmacytoid dendritic cells [92]. Moreover,
TLR7/9 signaling has been shown to require Sarml to
induce apoptosis in neurons [93].

MYD88 is required by TLR3, TLR7 and TLR8 to regu-
late neuronal morphology. Activated TLR7 recruits
MYD8S8 to activate the c-FOS and IL-6 cascade, thereby
restricting axon and dendrite outgrowth [60]. IL-6 is re-
quired for TLR7 to downregulate dendritic growth, since
IL-6~'~ neurons are insensitive to TLR7 activation [60].
The action of TLR7 in neurons is similar to that of the
classical TLR7 pathway in immune cells, but expression
levels of IL-6 are much lower in neurons than in im-
mune cells [60]. The very low expression levels of IL-6
may account for the cell-autonomous effect of TLR7 on
neuronal morphology. In contrast to the signal pathway
of TLR7 in neurons and the action of TLR8 in immune
cells, TLR8 activation in neurons does not induce cytokine
expression [54, 60, 94]. Transcriptomic profiling analysis
has revealed that TLR8 activation induces p38 activation
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and ERK inhibition in cultured neurons [54]. Al-
though MYD88 and TAK1 are downstream of TLRS,
TLR8 shares very few downstream target genes with
TLR7 based on RNA-seq results [54], suggesting dis-
tinct downstream pathways and effectors for TLR7
and TLR8 in neurons, even though both TLR7 and
TLR8 recognize ssRNA.

For TLR3, it utilizes two distinct adaptor proteins to
regulate two different biological events in neurons. As in
non-neuronal cells, TLR3 activation acts via TRIF to trig-
ger cytokine expression in neurons. However, TLR3 acti-
vation can also negatively regulate dendritic arborization
and influence synapse formation via MYD88 [61]. TLR3-

MYD88 signaling cell-autonomously controls neuronal
morphology by downregulating Discl, a gene highly rele-
vant to neuropsychiatric disorders (Fig. 3a) [61]. Thus, al-
though MYD88 is required for the function of these TLRs
in neurons, the downstream pathways of MYD88 are obvi-
ously different among TLR3, TLR7 and TLR8 because
only a very small proportion of the downstream regulated
genes are shared among these three TLRs [54].

Together, these reports suggest that canonical TLR
signal pathways may not be universally applied. Instead,
the signal pathways and functions of TLRs can vary in
distinct cell types and under various physiological condi-
tions (Fig. 3).
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Operation of non-classical signaling pathways in neurons
In the field of signal transduction, one of the most chal-
lenging issues is to study how a specific receptor specif-
ically activates diverse downstream signal pathways
under different circumstances or in distinct cell types.
As described above, various downstream signaling mech-
anisms exist in TLR pathways. Two possible mecha-
nisms have been speculated on. One is direct vs. indirect
interaction between TLR and MYD88 or TRIF. Most
TLRs directly interact with MYD88, but TLR2 and
TLR4 can interact indirectly with MYD88 through
TIRAP [42, 95]. Similarly, TRIF can interact directly
with TLR3 or indirectly associate with TLR4 via TRAM
[96, 97]. The most striking feature of TLR signaling
complexes is that the adaptor MYD88 forms a helical as-
sembly to recruit the downstream kinases and activate the
signaling cascade [98, 99]. Thus, it is reasonable to specu-
late that different combinations of adaptor molecules form
distinct helical structures and recruit diverse downstream
signaling molecules. The various signalosomes then lead
to differential regulation of gene expression.

The second possibility is that different receptors may
interact with adaptor proteins in distinct ways and
thereby form diverse signalosomes. Evidence to support
this possibility comes in the form of a study on the
interaction between TLR3 and MYDS88 [61]. Tradition-
ally, MYD88 and TRIF use their TIR domains to interact
with the TIR domains of TLRs. However, the TIR do-
main of MYD88 is not required for the interaction with
the TLR3 TIR domain. Instead, the N-terminal Death
domain and intermediate domain of MYD88 are in-
volved in the interaction between TLR3 and MYD88
[61]. The N-terminal Death domain of MYDS88 is known
to mediate oligomerization for downstream signaling via
the IRAK4-IRAK1/2 pathway [98]. The interaction be-
tween TLR3 and the N-terminal region of MYD88 pos-
sibly alters the binding partners of MYD88. Since the
TIR domain of MYDS88 is free when MYDS88 binds
TLR3, this domain may be able to interact with other
TIR domain-containing signaling molecules to form dif-
ferent signalosomes.

In addition to the two possible mechanisms mentioned
above, another possibility is divergent spatiotemporal ex-
pression of TLRs and TIR domain-containing adaptors
at cellular and subcellular levels. This possibility is not
mutually exclusive from the two previously described
mechanisms, and may add a level of diversity to TLR
signaling pathways. For different subcellular distribution,
the well-studied example is TLR4. It delivers signal at ei-
ther the plasma membrane or endosomes via different
adaptors (MYD88 and TRIF, respectively) [100]. TLR3,
TLR7 and TLR8 are expressed at endosomal compart-
ments. However, it is unclear whether these endosomal
TLRs exist at the same or distinct vesicles or cells. If
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they are actually localized at different types of vesicles or
cells because of diverse microenvironments, they are
very likely to form distinct signalosomes and trigger
various signaling. To explore this possibility, super high-
resolution microscopy with double or triple immuno-
fluorescence staining using specific antibodies against
different TLRs will be necessary.

The intestinal epithelium represents an excellent ex-
ample of differential TLR expression in various cell
types. In a recent study, five TLR reporter mice were
used to monitor the expression of TLR2, TLR4, TLR5,
TLR7 and TLR9Y in the small intestine of mice. Reporter
cassettes containing internal ribosome entrance sites and
fluorescent proteins were fused to the 3’ ends of the
TLR genes. Based on fluorescent protein signals, it was
clear that TLR expression dramatically varied in the dif-
ferent cell types of the small intestine [101]. It would be
intriguing to use those reporter mice to further examine
TLR expression in other tissue types.

TLR7 and TLR8 function differentially in neurons
In mammals, the T/r7 and Tir8 genes are located adja-
cently on the X chromosome. The TLR7 and TLR8 pro-
teins exhibit highly similar amino acid sequences and
homologous ligand recognition. However, differences be-
tween TLR7 and TLRS in terms of ligand binding, signal-
ing, and function have also been reported. First, for ligand
binding, although both human TLR7 and TLR8 have been
identified as sensors of viral or bacterial GU-rich ssRNA,
resiquimod (R848), and CLO75 [37, 38, 102, 103], they still
exhibit ligand preferences (Fig. 4). TLR7, but not TLR8, can
be activated by imiquimod (R837), loxoribine, and some
miRNAs such as Let7c [10, 12]. TLR8 specifically reacts to
stimulation by an AU-rich ssSRNA and CL075 plus poly(dT)
mixture, whereas TLR7 does not [54, 94, 102, 104]. Second,
activation of TLR7 and TLR8 results in distinct cytokine
production. Using specific agonists to trigger TLR7 or
TLR8 activation and subsequent examination of the cyto-
kine expression profile in several immune cells (such as
monocytes, monocyte-derived dendritic cells (Mo-DCs),
myeloid DCs, and plasmacytoid DCs (pDCs)) revealed that
TLR7 activation predominantly induces IFNs and IFN-
induced cytokine expression in pDCs, whereas TLR8 acti-
vation elicits high level of proinflammatory cytokines in
monocytes, Mo-DCs, and myeloid DCs (Fig. 4) [102]. Such
variation in TLR7 and TLR8 signaling could be due to di-
vergent expression levels of these two receptors or to the
presence of different downstream molecules in different cell
types. These studies demonstrate that TLR7 and TLR8 have
unique roles in regulating innate immune responses.
Notably, compared to human TLR8, murine TLRS8 lacks
the RQSYA motif in an undefined region immediately
followed by LRR-14 [105]. By lacking this five amino-acid
motif, murine TLR8 cannot respond to many human
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TLR8 ligands in the absence of poly(dT) [105]. Combin-
ation treatment of CL0O75 and poly(dT) triggers both hu-
man and mouse TLR8 activation and induces cytokine
expression. However, the activity of mouse TLR8 is
around 6-fold lower than that of human TLRS8 [94, 105].
These findings suggest that rodent TLR8 is more selective
for ligand binding and less efficient at inducing cytokine
expression compared to human TLRS (Fig. 4).

Despite the low cytokine production upon TLR8 acti-
vation, accumulating studies further support that mouse
TLR8 is a functional and important receptor in many re-
spects. As mentioned above, a recent paper showed that
in vivo knockdown of mouse TLRS8 in layer 2/3 cortical
neurons increases dendritic arborization at P14 and P21
but not at P7, suggesting that mouse TLRS is required to
shape neuronal morphology and that its expression or its
endogenous ligands are only present in mouse brain after
the first postnatal week [54]. Another study reported that,
as for human TLR8, murine TLR8 inhibits both murine
and human TLR7 signaling [106]. suggesting that crosstalk
exists between TLR7 and TLR8 signaling.

Furthermore, TLR7 has been associated with multiple
sclerosis, an autoimmune disorder of the nervous system
[107]. The balance of TLR7 and TLR8 expression seems
to be critical for preventing autoimmune activation in
peripheral tissues in mice, though the situation in neu-
rons remains uncertain. Expression levels of Tir7 and
Tir8 are negatively correlated with each other [108-

113]. For instance, Tlr7 expression is increased in TIr8
null mice and these mice exhibit lupus-like autoimmun-
ity due to increased levels of RNP-specific autoanti-
bodies [109, 110]. In neurons, TIr7 knockout increases
Tir8 expression levels [54, 60]. Therefore, the evidence
indicates that murine TLR7 and TLR8 possess unique
functions in regulating autoimmunity and neuronal
morphology, and although there is crosstalk between
TLR7 and TLRS, they are not functionally redundant.

TLRs fine-tune neuronal morphology

Genetic and functional studies have proven that TLRs are
important for neuronal morphogenesis during develop-
ment and that they can also influence animal behaviors.
Generally, the brain is presumed to be a germ-free envir-
onment. The major source of TLR ligands in the brain is
endogenous ligands such as miRNA, mRNA or DNA de-
rived from exosomes and dead cells in the local environ-
ment. Since cytokine levels produced by neurons are
much lower than those of non-neuronal cells [60, 114],
neurons are not expected to efficiently trigger a global in-
flammatory response. Why have neurons evolved these
complex systems to modulate their morphology?

In the first postnatal week, 90% of cells in rodent
brains are neurons [115, 116], whereas the proportion of
professional immune cells (microglia) is about 2-3%
[117]. The proportion of microglia increases to 7-8% in
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the second postnatal week, and reaches ~10% in adult
mouse brains [117]. During the first two postnatal weeks
in rodent brains, neurons are most active at extending
their dendrites and axons and forming connections. Pro-
grammed cell death of neurons also peaks concurrently
[116]. Since microglial abundance remains low and may
be less efficient at protecting entire brain regions by re-
moving dead cells during this period [116, 118], neurons
are more likely to encounter DAMPs derived from
nearby dying cells. Therefore, we hypothesize that the
purpose of TLR activation in neurons during brain de-
velopment is to establish an alarm system that facilitates
proper development of neuronal circuits (Fig. 5). During
axonal and dendrite outgrowth and synapse formation in
the first two postnatal weeks, neurons sense DNA or RNA
from dead cells and then activate the nucleic acid-sensing
TLRs. Consequently, neurons withdraw their dendrites
and/or axons. Meanwhile, activation of TLR3 and TLR7
results in neuronal expression of cytokines. Although the
levels are too low to induce global inflammatory responses,
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they might be sufficient to recruit nearby microglia to the
damaged site for recovery (Fig. 5b). These actions ensure
that neurons do not grow into unhealthy environments and
facilitate correct connections between healthy neurons. Fur-
thermore, a benefit of the very low level of inflammatory
cytokines produced by neurons is to trigger localized im-
mune activation instead of inducing a global inflammation
storm in the developing brain. Through these complex and
elegant mechanisms, neurons effectively detect changes in
their environment during development and can fine-tune
their morphology accordingly to establish the appropriate
circuitry (Fig. 5).

A potential approach to further elucidating the
role of neuronal TLR-mediated regulation is cell
type-specific deletion of TIr genes. Neuron- or
microglia-specific knockout mice will be powerful
tools for further studies of this topic. Furthermore,
localized injury at early developmental stages com-
bined with live imaging will aid investigations of
whether neurons employ their own TLRs to detect
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proximal danger or damage signals to fine-tune their
morphology.

Conclusions and outlook

As ancient pattern recognition receptors [119], Toll/
TLRs have evolved to sense diverse environmental cues
and developmental signals that trigger the innate im-
mune response and various cellular responses. In this re-
view, the cited studies on neuronal TLR3, TLR7 and
TLRS8 reveal several interesting and important points
about the physiological functions and regulation of TLRs
in mammals. Those are concluded as follows.

First of all, the combined studies on neurons and other
cell types clearly demonstrate that different TLRs may
use distinct adaptors to activate different signal path-
ways. Downstream pathways can vary in different cell
types even for the same receptor. Thus, in exploring the
functions and/or signal pathways of a specific TLR in a
specific type of cell, all possibilities must be considered.
Importantly, the causal relationship between an identi-
fied pathway and a specific function needs to be proven.
For instance, TLR3 uses two distinct adaptors to control
different neuronal responses, i.e. TRIF for cytokine ex-
pression and MYD88 for altering neuronal morphology
[61]. These two distinct pathways and the corresponding
effects in neurons were validated by causal relationship
experiments. Since the array of signalosomes for differ-
ent TLRs in different cell types are likely the critical
factors determining the diverse functions of TLRs, it
would be very informative to reveal the structural fea-
tures of different TLRs in combination with different
TIR-domain adaptors, including MYD88, TRIF, TIRAP,
TRAM and even SARMI. Such structural study would
likely explain how different signal pathways are possible.

Second, TLR functions are not always mediated by cy-
tokines. For example, TLR8 activation in neurons does
not induce expression of cytokines and chemokines [54].
Although cytokines can be induced by TLR3 activation
in neurons, cytokines are not required for TLR3 to
downregulate neuronal morphology [61]. Thus, cytokine
production can only represent one possible indicator of
TLR activation. To control neuronal morphology, the
regulators of actin and microtubule cytoskeletons are
potential downstream effectors of TLRs, since the ex-
pression levels of Rho family pathway is altered in leuko-
cytes upon TLR2 activation [120]. More investigations in
neurons are required to address the possibility.

Third, neurons use TLRs to sense both exogenous and
intrinsic danger signals to fine-tune their cellular struc-
tures and consequently alter neuronal connectivity. The
main purpose of neuronal TLR activation is not to in-
duce a global inflammatory response. It is possible that
TLRs in other types of cells also carry out other
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functions distinct from that with respect to inflamma-
tion. It will be interesting to investigate this possibility.

Fourth, since innate immune responses have been as-
sociated with a variety of neurological diseases, including
neuropsychiatric disorders and neurodegenerative dis-
eases, and apart from the professional innate immune
responses mediated by microglia and the peripheral im-
mune system, the innate immune machinery in neurons
provides another level of regulation that renders more
complex the neuroinflammatory response.

Finally, recently developed TLR reporter mice provide
the possibility of systematically examining TLR expres-
sion at the cellular and subcellular levels [101]. They cir-
cumvent the need for reliable TLR antibodies, which is
important given that the specificity of the current crop
of commercially available TLR antibodies has always
been a concern. These reporter mice will be powerful
tools in further establishing the action of TLRs in mam-
mals and will hopefully help reveal new insights into the
functions of TLRs beyond immunity.
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