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Abstract

Background: Recent trials have shown promise in intra-arterial thrombectomy after the first 6–24 h of stroke onset.
Quick and precise identification of the salvageable tissue is essential for successful stroke management. In this
study, we examined the feasibility of machine learning (ML) approaches for differentiating the ischemic penumbra
(IP) from the infarct core (IC) by using diffusion tensor imaging (DTI)-derived metrics.

Methods: Fourteen male rats subjected to permanent middle cerebral artery occlusion (pMCAO) were included in
this study. Using a 7 T magnetic resonance imaging, DTI metrics such as fractional anisotropy, pure anisotropy,
diffusion magnitude, mean diffusivity (MD), axial diffusivity, and radial diffusivity were derived. The MD and relative
cerebral blood flow maps were coregistered to define the IP and IC at 0.5 h after pMCAO. A 2-level classifier was
proposed based on DTI-derived metrics to classify stroke hemispheres into the IP, IC, and normal tissue (NT). The
classification performance was evaluated using leave-one-out cross validation.

Results: The IC and non-IC can be accurately segmented by the proposed 2-level classifier with an area under the
receiver operating characteristic curve (AUC) between 0.99 and 1.00, and with accuracies between 96.3 and 96.7%.
For the training dataset, the non-IC can be further classified into the IP and NT with an AUC between 0.96 and 0.98,
and with accuracies between 95.0 and 95.9%. For the testing dataset, the classification accuracy for IC and non-IC
was 96.0 ± 2.3% whereas for IP and NT, it was 80.1 ± 8.0%. Overall, we achieved the accuracy of 88.1 ± 6.7% for
classifying three tissue subtypes (IP, IC, and NT) in the stroke hemisphere and the estimated lesion volumes were
not significantly different from those of the ground truth (p = .56, .94, and .78, respectively).

Conclusions: Our method achieved comparable results to the conventional approach using perfusion–diffusion
mismatch. We suggest that a single DTI sequence along with ML algorithms is capable of dichotomizing ischemic
tissue into the IC and IP.
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Background
Stroke is one of the major causes of long-term disability
and death, and nearly 80% of stroke cases are ischemic
[1]. Treatment options for acute ischemic stroke (AIS)
are rapid recanalization of the occluded large vessels by
using intravenous (IV) thrombolysis with tissue plas-
minogen activator (tPA) and intra-arterial (IA) thromb-
ectomy to mechanically disrupt or remove the
thrombus. In either treatment, identifying a substantial
and salvageable ischemic penumbra (IP) is essential for a
patient to be eligible for therapy [2–4]. In the DAWN
and DEFUSE 3 trials, which included acute stroke pa-
tients within 6–24 h of onset, obtaining perfusion im-
aging computed tomography (CT) perfusion or magnetic
resonance imaging (MRI) perfusion-weighted imaging
(PWI) or an MRI with a diffusion-weighted imaging
(DWI) sequence was recommended to help determine
whether the patient is a candidate for mechanical
thrombectomy [2, 5]. In the acute setting, an infarct core
(IC) can be identified through DWI and combined with
the hypoperfusion area depicted by PWI, which allows
for the specific definition of the salvageable IP and IC by
using the concept of perfusion–diffusion mismatch
(PDM). However, quick and accurate delineation of IP is
demanded by clinicians for AIS management.
Diffusion tensor imaging (DTI) has been used in

clinical applications for measuring cerebral micro-
structural changes induced by neurological diseases
[6]. In AIS, DTI-derived metrics, such as fractional
anisotropy (FA), mean diffusivity (MD), pure aniso-
tropic diffusion (q), and diffusion magnitude (L), have
demonstrated the feasibility of DTI in assessing the
damage of ischemic brain tissue [7], determining the
onset time of AIS in hours in an animal model [8] or
in humans [9, 10], estimating the salvageable tissue
[8], and microstructurally discriminating benign
oligemia from the “true” penumbral tissue [11]. Based
on the previous studies, DTI may provide comprehen-
sive characterization of the pathophysiological process
of cerebral ischemia.
Machine learning (ML) has become a useful aid for

physicians in the diagnosis of, treatment of, and
prediction of complications and patient outcomes for
numerous diseases. While extracting meaningful and
discriminative imaging features that exhibits the charac-
teristics of lesion part [12, 13], ML-based algorithms can
establish predictive models for various clinical applica-
tions [12, 14]. In the current study, we attempted to de-
velop a 2-level ML classifier based on DTI-derived
metrics for characterizing ischemic tissue subtypes. We
aimed to determine whether the DTI sequence along
with ML algorithms could classify the stroke hemisphere
into the IP, IC, and unaffected normal tissue (NT)
during the AIS stage.

Materials and methods
Animals
Fourteen male Sprague-Dawley rats (weight, 270–350 g;
Taipei Medical University Animal Center, Taiwan) were
used in this study. The rats were housed in a humidity-
and temperature-controlled environment and placed
under a 12:12-h light–dark cycle, with free access to
sterile food and water. All the rats underwent permanent
middle cerebral artery occlusion (pMCAO) through an
intraluminal suture method based on the modified Zea
Longa approach [15]. All animal experiments were ap-
proved and performed in accordance with guidelines
and regulations of the Institutional Animal Care and
Use Committee of Taipei Medical University (IACUC
approval No: LAC-2015-0033).

Image acquisition
Images were acquired using a 7 T MRI scanner (Phar-
maScan 70/16; Bruker Biospin, Ettlingen, Germany).
During image acquisition, the rats were placed under
anesthesia by using 1.5–2% isoflurane and the rectal
temperature was maintained at approximately 37 °C
using a warm water bath with continuous circulation
through a water-bath temperature controller set outside
the magnet. DTI was performed with 6 noncollinear dif-
fusion encoding gradients with a b factor of 1200 s/mm2

and 1 b = 0 s/mm2. Multishot echoplanar imaging (repe-
tition time [TR] = 3000ms, echo time [TE] = 37ms,
number of excitations = 6) with the navigator-echo cor-
rection technique was used as the signal readout mod-
ule. To obtain the largest IP area and avoid fast
diminishing, PWI was performed once at 0.5 h after
pMCAO by using a dynamic susceptibility contrast tech-
nique. A series of gradient-echo echoplanar coronal im-
ages with a TR/TE value of 1000/20 ms and 300
repetitions were acquired. A bolus of the susceptibility
contrast agent gadolinium-diethylenetriamine penta-
acetic acid (0.25 mmol/kg; Magnevist, Bayer Schering
Pharma, Berlin, Germany) was injected manually
through the rat tail vein approximately 30 s after the
start of image acquisition. All the images acquired from
DTI and PWI were with a field-of-view of 20 mm × 20
mm and a matrix of 64 × 64, which were subsequently
zero-filled to 128 × 128 with a resolution of 0.16 mm ×
0.16 mm for further analyses.

Data analysis
Calculation of the relative cerebral blood flow and DTI
metrics
The relative cerebral blood flow (rCBF) and DTI metrics
were calculated using in-house algorithms in MATLAB
(MathWorks, Natick, MA, USA). First, the relative cere-
bral blood volume (rCBV) and relative mean transit time
(rMTT) were determined using the integral and

Kuo et al. Journal of Biomedical Science           (2020) 27:80 Page 2 of 11



normalized first moment of gamma variate fitting, re-
spectively. Next, rCBF was derived as the quotient of
rCBV divided by rMTT by using the central volume
principle [16]. For DTI metrics, the eigenvalues of each
image voxel were computed and then applied to derive
the MD, FA, q, L, axial diffusivity (AD), and radial diffu-
sivity (RD). To avoid noise or artifacts, all the DTI-
derived and rCBF maps were computed through a con-
volution with a Gaussian kernel using the weighted
mean intensity value. All the smoothed maps were then
normalized linearly to the range [0, 1] for inter-rat
comparisons.

Delineation of the IP, IC, and NT
With supervised learning procedures in the classifiers,
the labels of the IP, IC, and NT should be determined in
advance. According to previous research, abnormal MD
(i.e., IC) is defined using a reduction of 30% of the
contralateral hemisphere with the exclusion of the ven-
tricles (Fig. 1a) [17]. Perfusion deficit is defined with a
lower CBF threshold of 46% reduction of the contralat-
eral hemisphere (Fig. 1b) [18]. The rCBF map was core-
gistered to the MD maps to delineate the perfusion–
diffusion mismatch (i.e., the IP). Regions without CBF
deficit within the ipsilateral brain were defined as the
NT. Contiguity correction was performed to remove
“misclassified” pixels (Fig. 1c) [19, 20]. Finally, as shown

in Fig. 1d, the regions of the IP, IC and NT were
depicted and the corresponding voxels were labeled.

Feature extraction
Each voxel was characterized by 110 features and was
segmented into the IP, IC, or NT according to the defi-
nitions in the previous section. Three types of features
(the relative DTI-derived metrics; Mahalanobis distance;
normalized histogram described by kurtosis, skewness,
and bin counts) were extracted from regions of interest
in the voxel-located slices and adjacent slices. These fea-
tures represented the spatial patterns around the voxel
as well as the spatial relationship between the voxel and
its neighboring voxels.

Relative DTI-derived metrics
Six relative DTI-derived metrics (rMD, rAD, rRD, rFA,
rL, and rq) were obtained for each pixel. Once the re-
gions of the IP, IC and NT were depicted, the relative
DTI metrics were derived on a pixel-by-pixel basis in re-
lation to the contralateral homologous tissue as follows:
rX = (Xipsilateral − Xcontralateral) / Xcontralateral, where X indi-
cates the particular DTI index. In consideration of the
lesion spatial contiguity, metrics of two vertical adjacent
voxels in the adjacent slices were also used. Thus, a total
of 18 DTI-derived features were computed for each
voxel.

Fig. 1 Definitions of the Ischemic Penumbra (IP), Infarct core (IC), and Normal Tissue (NT) in a Rat Subjected to Permanent Middle Cerebral Artery
Occlusion (pMCAO). IC was defined as the blue area in the mean diffusivity (MD) map (a) and perfusion deficit at 0.5 h after pMCAO is shown in
(b). Perfusion–diffusion mismatch is illustrated in (c) and (d), where the red region indicates the IC and the green region indicates the IP. The NT
was defined as the region in the ipsilateral hemisphere except for the IP and IC [white in (d)]. d Indicates the “label” for the IC, IP, and NT
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Mahalanobis distance
Although previous studies have adopted the spatial
Euclidean distance from the lesion location as features
[21, 22], various ischemic distributions and multifocal
ischemia make stroke lesion segmentation difficult
[21]. In this study, once the IC and non-IC were clas-
sified by the first-level classifier (Fig. 2a), the Mahala-
nobis distances [19] between each non-IC feature
vector and the distribution of all IC feature vectors
were calculated as discriminative features for the
second-level classifier.

Normalized histogram (kurtosis, skewness, and bin counts)
The normalized histogram-specified 11 bins of the rela-
tive DTI metrics in an area of the 7 × 7 window in the
coronal planes were calculated [21]. In addition, we re-
constructed the axial projection maps from the coronal
slices to calculate the normalized histogram in an area
of the 3 × 3 window in the axial planes. The kurtosis,
skewness, and bin counts of each histogram distribution
were calculated as features. A total of 90 features were
obtained for each voxel.

Two-level classification
We propose a 2-level classification model composed
of two binary classifiers to hierarchically classify the
stroke hemisphere into three tissue subtypes, as dis-
played in Fig. 2a, and the classification performance
was evaluated through the leave-one-out cross valid-
ation (LOOCV) method (i.e., 13 rats were used for
training and a remaining rat for testing each time,
Fig. 2b). A total of 141,806 samples (voxels) were
obtained from 14 rats within 71 slices. During the
training phase, five-fold cross validation (CV) was
used to prevent the possible bias of overfitting. We
trained the first-level classifiers by using the 18 DTI
features to classify hemisphere into the IC and non-
IC. We then used all 110 features for the second-
level classifiers. For comparison, a single-level classi-
fication model using either support vector machine
(SVM), k-nearest neighbors (KNN), or decision tree
algorithms was constructed to classify three tissue
subtypes simultaneously based on 18 DTI features.
The classification methods were implemented using
the Statistics and Machine Learning Toolbox in the
MATLAB.

Fig. 2 Strategy of 2-level Classification and Validation. a The proposed 2-level strategy for voxel-wise classification to classify every voxel in the
hemisphere into a tissue subtype (i.e., the IC, IP, or NT). b The validation methods include 5-fold cross validation in training phase and leave-one-
out cross validation for the final prediction
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Validation and statistical analysis
The performance of the classification was evaluated by
calculating the accuracy, sensitivity, specificity, and areas
under the receiver operating characteristic curve (AUC).
The slice-to-slice correspondence analysis between the es-
timated lesion volume and the volume defined by PDM
was also conducted. To evaluate the applicability and po-
tential of our proposed approach for the whole ischemic
lesion volume, the Mann–Whitney U-test was also used
for comparison between the average estimated lesion vol-
umes and those defined by PDM. Statistical tests were
performed using SPSS® (Version 19.0; SPSS Inc., Chicago,
IL, USA). All the group data are reported as mean ± SD,
and the significance level was defined at a p value < .05.

Results
Figure 3a illustrates the maps of DTI metrics at 0.5 h
post-pMCAO. The q, L, MD, AD, and RD maps demon-
strate initial hypointensity changes in the ischemic areas
while the FA map exhibits symmetrical signal intensity.
Figure 3b shows six relative DTI-derived metrics (rMD,
rAD, rRD, rFA, rL, and rq) obtained for each voxel.
For the 2-level classifiers, the SVM algorithm revealed

the best overall discrimination performance. Its first-
level classifier exhibited a high performance for discrim-
inating the IC from the non-IC in the training dataset
(AUC: 0.99; accuracy: 96.3%; sensitivity: 0.95; specificity:
0.97). The discrimination performance remained high
for the second-level classifier (IP vs. NT), with AUCs,
accuracies, and specificities up to 0.96, 95.0% and 0.97,
respectively. However, the sensitivities were relatively
low (0.85 ~ 0.86). The detailed classification performance
using the LOOCV is listed in Table 1. On the other
hand, the single-level classifiers exhibited poor sensitiv-
ities for IP detection (SVM: 29.0%; KNN: 46.8%; decision
tree: 4.9%), as shown in Table 2.

The trained SVM classifiers were then applied to the
testing dataset, and the results are presented in Table 3.
The classification accuracy of the IC and non-IC seg-
mentations was 96.0 ± 2.3%. For further subclassification
within the non-IC, the classification accuracy of IP and
NT segmentation was 80.1 ± 8.0%. Overall, the classifica-
tion accuracy of the segmentation of the 3 tissue sub-
types was 88.1 ± 6.7%, and the median was 90.0% within
the cerebral hemisphere of stroke (ranging from 69.5 to
96.9%). We observed a favorable classification outcome
for the testing rats.
The slice-to-slice correspondence analysis between the

classifier-estimated volume and the corresponding vol-
ume defined by PDM for the 3 tissue subtypes in all 71
slices is illustrated in Fig. 4. The correlation coefficients
between the volume estimated from one slice and the
volume defined by PDM were 0.613, 0.999, and 0.932
(with all p < .001) for the IP, IC, and NT, respectively.
The estimated IC and NT volumes exhibited excellent
correlations with the conventional PDM measures,
whereas the IP exhibited a moderate correlation.
Figure 5 depicts a comparison of the average of the

classifier-estimated lesion volumes with the average of
the volumes defined by PDM across 14 rats for the 3 tis-
sue subtypes. The volumes of the 3 tissue subtypes were
calculated and summed up across slices. Overall, the
classifier-estimated lesion volume was comparable with
those defined by PDM-defined lesion volume in all tis-
sue subtypes. In the Mann–Whitney U-test, the esti-
mated IP (17.8 ± 10.4 mm3), IC (104.8 ± 72.6 mm3), and
NT (110.7 ± 55.9 mm3) volumes were not significantly
different from those defined by PDM for the IP (20.9 ±
10.5 mm3, p = .56), IC (104.3 ± 73.2 mm3, p = .94), and
NT (108.7 ± 56.8 mm3, p = .78) volumes.
Figure 6 illustrates the comparison of the classifier-

estimated IC and IP with the corresponding PDM-

Fig. 3 Maps of Diffusion Tensor Imaging (DTI) Metrics Measured at 0.5 Hours After pMCAO. a Significant hypointensities on the ischemic lesion
can be observed from MD, L, q, AD and RD maps but not from FA map. b The relative DTI metrics are shown. The intensity of the map
represents the quantitative decreases or increases of the DTI metrics compared with the corresponding contralateral homologous tissue
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defined IC and IP for a rat. In the suture-occlusion
model, the IP is relatively small (even sparse) in areas at
the margin of a large IC. Nevertheless, the proposed
classification model can successfully segment the ische-
mic regions into the IP and IC through visual
inspection.

Discussion
In the present study, we developed a 2-level classifica-
tion model with an overall accuracy of 88.1 ± 6.7% for
discriminating the stroke hemisphere into the IC, IP,
and NT regions on a voxel-wise basis in a pMCAO
model. According to the analysis results, we suggest that
a single DTI sequence combined with ML algorithms is
capable of dichotomizing ischemic tissue into the IC and
IP, which are comparable to the conventional PDM and
DTI studies. This classifier system could assist clinical
AIS management for acute triage and patient selections
without the use of intravenous gadolinium-based con-
trast agent. Thus, the costs for contrast agent, the time
for IV access, and the possibility of nephrogenic systemic
fibrosis in renal-insufficient patients can be avoid [23].
Most previous imaging studies using ML tools have fo-
cused on diagnostic accuracy and prediction of progno-
sis after stroke [14, 24]. The current study moved a step
further on the development of a quick and well-
validated classifier to depict the salvageable tissue during
an AIS phase.

Currently, the therapeutic time window for patients
with AIS who are eligible for intravenous thrombolysis is
within 4.5 h of onset [25–27]. In the DEFUSE 3 and
DAWN trials, the time window for intra-arterial
thrombectomy was extended up to 16–24 h [2, 5, 28].
These penumbra-based stroke trials have shown that pa-
tients with favorable clinical response generally have a
relatively small IC (volume < 70 cm3) and large penum-
bra (PWI volume/DWI volume ratio > 1.8). Therefore, a
quick and direct measurement of the IP at the acute
phase through single imaging acquisition could be con-
siderably helpful in stroke trials. Recent studies employ-
ing DTI metrics to characterize the IP after pMCAO
have shown a persistent IP up to 6.5 h. DTI metrics ex-
hibit promise in differentiating the IP from the oligemia
and IC and even in determining the time of stroke onset
[8]. DTI has been applied to measure the cerebral micro-
structural integrity of cell membranes after ischemia by
characterizing their tensor magnitude, orientation, and
anisotropy such that different tissue injuries can be
stratified. The proposed 2-level binary classification is
based on the same principle that DTI metrics could pro-
vide information about the varying degree of microstruc-
tural damages following ischemic changes. The
combination of DTI metrics with ML algorithms could
thus enable the precise stratification of tissue subtypes,
which would lead to quick estimation of the salvageable
tissue in the acute phase of a stroke.

Table 1 Performances of the 2-level classifiers for the training dataset

Classifier performance

SVM KNN Decision tree

AUC IC vs nonIC 0.99 ~ 1 0.99 ~ 1 0.99

IP vs NT 0.96 ~ 0.98 0.98 0.78 ~ 0.80

Accuracy IC vs nonIC 96.3 ~ 96.7% 96.4 ~ 96.6% 95.4 ~ 95.8%

IP vs NT 95.0 ~ 95.9% 94.3 ~ 94.8% 84.3 ~ 85.5%

Sensitivity IC vs nonIC
(true rate for IC)

95 ~ 96% 95 ~ 96% 94 ~ 96%

IP vs NT
(true rate for IP)

85 ~ 86% 80 ~ 81% 30 ~ 36%

Specificity IC vs nonIC
(true rate for nonIC)

97 ~ 98% 97% 97%

IP vs NT
(true rate for NT)

97 ~ 98% 98% 95 ~ 97%

Table 2 Performances of the single-level classifiers for the
training dataset

Classifier Accuracy Sensitivity
for IC

Sensitivity
for IP

Sensitivity
for NT

SVM 81.7% 97.0% 29.0% 79.1%

KNN 90.5% 96.0% 46.8% 95.0%

Decision Tree 86.1% 95.4% 4.9% 95.6%

Table 3 Performances of the 2-level SVM Classifiers for the
Testing Dataset

Accuracy Range Median

IC vs. nonIC 96.0 ± 2.3% 88.2 ~ 98.9% 96.7%

IP vs. NT 80.1 ± 8.0% 61.0 ~ 92.6% 81.5%

hemisphere (IC + IP + NT) vs. PDM 88.1 ± 6.7% 69.5 ~ 96.9% 90.0%
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Fig. 4 Results of Slice-to-Slice Correspondence Analysis Between the Classifier-Estimated Volume and the Perfusion-Diffusion Mismatch -Defined
Volume for the IP (a), IC (b), and NT (c)

Fig. 5 Average of the Estimated Volume and Perfusion-Diffusion Mismatch Defined Volume for the IP, IC, and NT for the 14 rats. No significant
differences were observed between the classifier-estimated volume and the perfusion-diffusion mismatch defined volume in the IP (P = .56), IC
(P = .94) and NT (P = .78)
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In our study, the classifier exhibited a strong correl-
ation (r = 0.999, p < .001; Fig. 4b) between the estimated
IC volume and abnormal MD-defined IC volume. How-
ever, only a moderate correlation could be achieved be-
tween the estimated IP volume and the PDM-defined
volume (r = 0.613, p < .001; Fig. 4a). Several factors may
have caused the moderate correlation. One factor is that
the intraluminal suture MCAO model may produce vari-
able lesion distributions and the CBF reduction can be
highly heterogeneous [29–31], which presumably leads
to CBF-based viability threshold deviation in the range
of ± 11% [18]. In other words, the deviation can result in
overlapping measurements at the borders between the
IP and NT areas, which leads to inappropriate preas-
signed class for ML. Another factor is the minor changes
of DTI metrics in the IP (decrease approximately 10%)
during the hyperacute stage. Such changes have been re-
ported in humans [32, 33] and in rodent models [8, 11].
The small difference in DTI metrics between the IP and
NT (an approximately 40% difference in DTI metrics be-
tween the IC and NT) that are challenging to separate in
the original or even feature space may have contributed
to the relatively low accuracy of discrimination between
the IP and the NT (80.1 ± 8.0%; Table 3). Nonetheless,
our findings showed that the classifiers can assist in esti-
mating the IP and IC volumes, which are comparable
with the lesion volumes calculated from conventional
PDM (all P > .556, Fig. 5). The proposed classifiers may
also be used for the 14–27% of patients who have un-
known onset time (such as in wake-up strokes) [34] but
still have substantial salvageable tissue volumes. None-
theless, IP gradually diminish and eventually progress

into IC tissue without recanalization. Previous study,
however, has shown 100% normobaric hyperoxia (NBO)
was helpful to “freeze” the IP and prolong the treatment
time window [35]. Combined the proposed classifiers
may help to select a candidate for reperfusion and evalu-
ate the treatment efficacy repeatedly.
Limited studies have applied ML algorithms for the

discrimination of the IC and salvageable tissue. A study
using 2 convolutional neural networks demonstrated a
94% lesion detection rate by training the segmented IC
in DWI from 741 patients [36]. Despite the difference in
ML algorithms, the results of the aforementioned study
were similar (approximately 95–96% for the IC; Table 1)
to the results obtained with the support vector machine
(SVM)-based model in this study. The high IC detection
rates obtained are probably attributable to the inherent
high sensitivity of DWI in depicting acute infarct [37–
40]. Our classifier can achieve not only a high IC detec-
tion rate but can also separate the non-IC into the IP
and NT through DTI alone. An animal study by Huang
et al. [41] used an SVM-based model to predict acute is-
chemic tissue fate through the CBF and apparent diffu-
sion coefficient mismatch. The AUCs in the 30-min, 60-
min, and pMCAO groups were 88 ± 2 .9%, 94 ± 0.8%,
and 97 ± 0.9%, respectively. The marginally lower per-
formance of our 2-level classification model was because
we did not use the perfusion parametric maps as fea-
tures in our training process. Multimodal MR features
from different imaging sequences, such as contrast en-
hancement, T2 fluid attenuation inversion recovery, and
T1/T2-weighted imaging, have been shown to enhance
the performance of ML-based approaches, either in

Fig. 6 Demonstration of a Predicted Mismatch for 2 Rats. The conventional perfusion–diffusion mismatch and estimated mismatch are illustrated,
where the red region indicates the IC and the green region indicates the IP. The NT is displayed in grayscale
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lesion segmentation or the prediction of tissue outcome
[21, 22, 41, 42]. However, adding multiple MR sequences
may result in long scanning times, which may not be
feasible for patients with AIS simply because “time is
brain.”
The performance of classifiers highly depends on the

features extracted from the images. Although the end-
to-end deep learning model, which covers both feature
extraction and classification procedures, has exhibited
suitable capability for classifying natural images, the
small samples size of medical images limits its reliability
in clinical applications. Radiomics is a recently devel-
oped computational pipeline for extracting quantitative
features from medical images [43, 44]. These features in-
clude first-order statistical features, shape-based features,
and the most used texture features in oncology studies
[43–45]. In the current experimental model, we used
first-order statistical features (i.e., skewness and kur-
tosis), shape-based features (i.e., distance measures for
similarity [21, 22]), and texture features for the spatial
information of the lesions. Due to the relatively small
number of rats and imbalanced distribution of the IC,
IP, and NT, we adopted the LOOCV in the training
phase to obtain a larger number of training data than
that obtained using the K-fold partition scheme [46].
This approach also provides an unbiased evaluation of
the performance [47]. The small number of rats made
the usage of a convolutional neural network a challenge
because the training procedure was based on the entire
image. However, the pixel-wise analysis along with SVM
provided sufficient samples (N = 141,806) for model
training as well as a reasonable ratio of samples to data
dimensions (d = 110). To avoid the possible problem of
overfitting, we adopted a 5-fold CV for evaluating the
proposed methods. In addition, estimation of volumetric
IP and localization would be implemented by recon-
struction of 3D from 2D results to precisely know how
the spatially location relative to normal tissue is, which
may help physicians’ assessment before reperfusion
surgery.
This study has some limitations. First, correctly labeled

data is essential in supervised learning such as SVM.
Our research used a PDM overlay for DTI segmentation.
The conventional PDM region may exceed the true pen-
umbral area and is usually much larger than the final
size of the infarct [48–50]. The perfusion deficit overes-
timates the region at risk, including the penumbral tis-
sue and benign oligemia [51]. Other modalities, such as
positron emission tomography [52, 53] or MRI using
oxygen challenge with T2* signal change [54], could pro-
vide detailed insight into the complex pathophysiological
changes of the brain after ischemia and may be used to
additionally define the penumbral tissue. In our study,
we adopted 46% reduction of CBF to define penumbra

by referencing Meng’s result [18]. With this criterion, we
also observed the consistency with the final infarct re-
gions in the T2-weighted images. Second, possible re-
dundant features may be eliminated through advanced
feature selection or dimensionality reduction methods to
improve the accuracy and reduce the computational
time. Also, because features are essential in classification,
further efforts should be made to explore stroke-related
features. Finally, the region-wise histopathological cor-
relation, which is difficult to perform because of the dy-
namic changes within the penumbra, may be
implemented to provide further proof of the value of our
proposed classifiers.

Conclusions
Our results suggested that single DTI combined with
ML algorithms could provide a noninvasive, quick, and
reliable method of assessing the salvageable tissue, thus
accelerating the management of patients with AIS. To
the best of our knowledge, this is the first ML-based
study to demonstrate the potential of using a single DTI
sequence for substituting the conventional approach of
PDM, offering a practical workflow for clinical decision-
making and stroke trials.
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