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Abstract

Acute myeloid leukemia (AML) is a heterogeneous hematologic malignancy in terms of clinical features, underlying
pathogenesis and treatment outcomes. Recent advances in genomic techniques have unraveled the molecular
complexity of AML leukemogenesis, which in turn have led to refinement of risk stratification and personalized
therapeutic strategies for patients with AML. Incorporation of prognostic and druggable genetic biomarkers into
clinical practice to guide patient-specific treatment is going to be the mainstay in AML therapeutics. Since 2017
there has been an explosion of novel treatment options to tailor personalized therapy for AML patients. In the past
3 years, the U.S. Food and Drug Administration approved a total of eight drugs for the treatment of AML; most
specifically target certain gene mutations, biological pathways, or surface antigen. These novel agents are especially
beneficial for older patients or those with comorbidities, in whom the treatment choice is limited and the clinical
outcome is very poor. How to balance efficacy and toxicity to further improve patient outcome is clinically relevant.
In this review article, we give an overview of the most relevant genetic markers in AML with special focus on the
therapeutic implications of these aberrations.
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Introduction
Acute myeloid leukemia (AML) is a clonal hematologic
malignancy with great variability in the clinical features,
pathogenesis and treatment outcomes [1, 2]. The inci-
dence of AML is increasing over time and males are
more prone to develop AML than female [3]. It is the
most common form of acute leukemia in adults and ac-
counts for the highest percentage of leukemia death [4].
Although the majority of fit patients initially achieve

complete remission (CR) after induction chemotherapy,
a significant number of patients eventually experience
disease relapse or refractoriness [5, 6], which under-
scores the unmet need for novel therapies. Until re-
cently, the treatment options for AML have been limited

to cytotoxic chemotherapy and allogeneic hematopoietic
stem cell transplantation (HSCT). The combination of
an anthracycline and cytarabine, widely known as the
“7 + 3” regimen, has been the cornerstone of induction
therapy for AML for decades. Efforts to improve the re-
sponse rate and overall survival (OS) had previously fo-
cused on dose intensification of cytarabine and the
addition of pharmaceutically distinct agents to induction
and the following consolidation chemotherapy [7–10].
Nevertheless, the clinical outcome of AML patients
treated with these cytotoxic drugs, even in combination
with HSCT, is not satisfactory. The long-term survival in
de novo patients younger than 60 years is approximately
30–50%, and that in older patients and those with sec-
ondary AML is less than 10% [2, 11, 12], highlighting
the urgent need for novel treatment to improve the sur-
vival. Herein we give an overview of the most relevant
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genetic markers in AML and their clinical implications
in risk-stratification and targeted therapy.

Changes of AML classification over time with the advance
of genomics
AML was initially classified by the French-American-
British (FAB) Cooperative Group in 1976 according to
the cell lineage of leukemic cells and the extent of their
differentiation based on the cell morphology and cyto-
chemical staining of bone marrow (BM) cells [13]. How-
ever, it was far from perfect to precisely stratify this
heterogeneous disease and predict outcome. The identi-
fication of recurrent cytogenetic abnormalities advance
our understanding of the AML biology and drive
decision-making in clinical practice [14–16]. In 2001,
the World Health Organization (WHO) introduced a
new classification system by including recurrent cyto-
genetic abnormalities as criteria [17], which was followed
by a revised version in 2008 [18].
Advances in genomic techniques and research have

greatly shed light on our understanding of cancer biol-
ogy. It is found that more than 95% of AML patients
have driving and co-concurring mutations regardless of
the presence of cytogenetic abnormalities [19–21]. Be-
cause of the importance of genetic aberrations, AML
with recurrent genetic abnormalities (either cytogenetic
or molecular genetic) is classified as the first subtype of
AML, together with five other subtypes, in the latest
2016 WHO Classification (Table 1) [1].

Genomic landscape in AML and its implication in risk
classification
The mutations that have a putative role in AML patho-
genesis are classified into eight categories according to
their biological function, including those involving mye-
loid transcription-factor genes, NPM1, tumor suppres-
sors, signaling genes, DNA methylation, chromatin
modifier, cohesin complex and splicing factors (Table 2)
[2, 19, 21]. The incidences of common molecular muta-
tions in our AML cohort is shown in Fig. 1. It’s common
that more than one mutations occur concurrently in the
same patient (Fig. 2) indicating a role of concerted inter-
action of mutations in the pathogenesis of AML [22, 23].
The discovery of molecular genetic alterations has led to
the refinement of prognostication in AML. The 2017
European LeukemiaNet (ELN) recommendation for risk-
stratification of AML [24] (Table 3) is the most widely
used model in current clinical practice since it incorpo-
rates cytogenetic changes and gene mutation status, in-
cluding FLT3-ITD allelic ratio, into the risk classification
which largely enhances the stratification power com-
pared with the 2010 version of the ELN recommenda-
tions [25]. Based on integrated analysis of clinical
features, survivals and patterns of mutual

cooperativeness or exclusivity among cytogenetic and
molecular genetics in large cohorts of patients, it’s
clearly shown that the majority of AML cases can be
classified into a number of biologically and prognostic-
ally distinct subgroups [23]. The 2017 ELN risk classifi-
cation also works well in AML patients in Taiwan.
(Fig. 3) It is suggested that patients with adverse-risk
AML should be treated more aggressively to improve
their survival.

Relevant genetic markers in AML
FLT3 mutations
FMS-like tyrosine kinase 3 gene (FLT3), located on
chromosome 13q12, encodes a receptor tyrosine kinase
that plays a major role in the regulation of
hematopoiesis [26, 27]. There are two types of FLT3 mu-
tations; internal tandem duplication (ITD) of the FLT3

Table 1 The 2016 WHO classification of acute myeloid leukemia
(AML) and related neoplasms

AML with recurrent genetic abnormalities

AML with t(8;21)(q22;q22.1);RUNX1-RUNX1T1

AML with inv. (16)(p13.1q22) or t(16;16)(p13.1;q22);CBFB-MYH11

APL with PML-RARA

AML with t(9;11)(p21.3;q23.3);MLLT3-KMT2A

AML with t(6;9)(p23;q34.1);DEK-NUP214

AML with inv. (3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2, MECOM

AML (megakaryoblastic) with t(1;22)(p13.3;q13.3);RBM15-MKL1

Provisional entity: AML with BCR-ABL1

AML with mutated NPM1

AML with biallelic mutations of CEBPA

Provisional entity: AML with mutated RUNX1

AML with myelodysplasia-related changes

Therapy-related myeloid neoplasms

AML, NOS

AML with minimal differentiation

AML without maturation

AML with maturation

Acute myelomonocytic leukemia

Acute monoblastic/monocytic leukemia

Pure erythroid leukemia

Acute megakaryoblastic leukemia

Acute basophilic leukemia

Acute panmyelosis with myelofibrosis

Myeloid sarcoma

Myeloid proliferations related to Down syndrome

Transient abnormal myelopoiesis (TAM)

Myeloid leukemia associated with Down syndrome

APL, acute promyelocytic leukemia; NOS, not otherwise specified
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juxtamembrane domain, which are gain-of- function
mutations [28, 29], and tyrosine kinase domain (TKD)
point mutations, which occur mainly at codon 835 or
836 within the activation loop of the second kinase do-
main [30, 31]. The FLT3 mutant protein constitutively
activates the cascade of FLT3 signaling in the absence of
FLT3 ligand promoting cell proliferation and decreased
apoptosis [32–34].
Mutations of FLT3 are detected in approximately 25–

30% of newly diagnosed AML patients as either ITD
(20%) or point mutations in TKD (5–10%) [35–37]. Of

note, the patients with FLT3-ITD have shorter disease-
free survival (DFS), higher relapse rate and poorer OS
[37–39], particularly among patients with high FLT3-
ITD allelic ratio [40] or absence of NPM1 mutation [39,
41, 42]. Besides, the insertion site and ITD length of
FLT3 as well as concomitant mutations also appear to
influence the prognosis [40, 43, 44]. For these reason,
patients with FLT3/ITD are frequently referred for early
allogeneic HSCT in first CR. Accordingly, the ELN and
the National Comprehensive Cancer Center Consensus
panels designated FLT3/ITD with high allelic ratio as an

Table 2 Functional categories of genes that are commonly mutated in acute myeloid leukemia (AML)
Functional
category

Gene members Role in AML Leukemogenesis

Myeloid
transcription-factor
genes

Transcription factor fusions by chromosomal rearrangements, such as t(8;21)(q22;q22);
RUNX1-RUNX1T1 and inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11
GATA2, RUNX1 and CEBPA

Transcriptional deregulation and impaired
hematopoietic differentiation.

Nucleophosmin
(NPM1) gene

NPM1 Aberrant cytoplasmic localization of NPM1 and its
interacting proteins

Tumor suppressor
genes

TP53, WT1, PHF6 Transcriptional deregulation and impaired
degradation via the negative regulator (MDM2 and
PTEN oncogenes)

Signaling genes FLT3, KIT, PTPN11, RAS Proliferative advantage through the RAS-RAF, JAK-
STAT, and PI3K-AKT signaling pathways

DNA methylation DNMT3A, TET2, IDH1, IDH2 Deregulation of DNA methylation and
oncometabolite production

Chromatin modifier ASXL1, EZH2 and KMT2A Deregulation of chromatin modification and
impairment of methyltransferases function

Cohesin complex STAG1, STAG2, RAD21, SMC1A, SMC3, Impairment of accurate chromosome segregation
and transcriptional regulation

Splicing factors SRSF2, SF3B1, U2AF1, ZRSR2 Deregulated RNA processing and aberrant splicing
patterns

Fig. 1 Common molecular gene mutations and their incidences in 763 AML patients in Taiwan. The data are derived from the mutation analyses
of 763 patients diagnosed and treated at the National Taiwan University Hospital
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unfavorable prognostic subgroup [24, 45]. On the other
hand, the prognostic impact of FLT3-TKD is not well
defined [46, 47]. Up to one third of AML patients with
FLT3-ITD or FLT3-TKD would lose the mutation at re-
lapse whereas acquisition of novel FLT3 mutations was
detected in 20% patients at disease progression [48–50].
It is clinically significant to recheck FLT3-ITD or FLT3-
TKD status at all subsequent treatment decision points
in every patient regardless the FLT3 status at diagnosis
[51].

KIT mutations
KIT, known as stem cell factor receptor (cluster of dif-
ferentiation 117, CD117), belongs to type III receptor
tyrosine kinase family and is involved in the regulation
of survival and proliferation of hematopoietic progenitor
cells [52, 53]. KIT is highly expressed in the majority of
leukemic blasts [54, 55], and KIT mutations, most com-
monly affecting exons 8 and 17 (especially D816 muta-
tions), are identified in approximately 25% of AML with
core binding factor (CBF) rearrangements [56–59], but
infrequently found in other AML types [20]. The prog-
nostic impact of KIT mutations in AML is controversial.

Recently, the targeted high-throughput sequencing in
331 patients with t(8;21), which leads to CBF rearrange-
ment, showed that KIT mutation, especially with higher
allele burden, was independently associated with in-
creased relapse rate and reduced OS.

TP53 mutations
Somatic mutation of the tumor suppressor gene TP53,
located in 17p13, is frequently detected in patients with
therapy-related AML [60, 61] or AML with complex
karyotype or monosomal karyotype (53–73%) [62–65],
in contrast to 7–8% in de novo AML patients [19, 65].
In general, TP53 mutations independently predict lower
CR rate, higher relapse rate, shorter event-free survival
(EFS) and OS.

RAS mutations
RAS proteins (HRAS, KRAS and NRAS), which are acti-
vated by cytokine receptors in response to ligand stimu-
lation, control proliferation and survival of
hematopoietic progenitors [66–69]. Activated RAS muta-
tions are mostly single nucleotide substitutions in codon
12, 13 or 61 [70–73]. NRAS and KRAS mutations are

Fig. 2 The Circos plots depicting the relative frequency and pairwise co-occurrence of genetic alterations in 500 AML patients in Taiwan. The
length of the arc corresponds to the frequency of the first gene mutation, and the width of the ribbon corresponds to the proportion of the
second gene mutation. The data are derived from the mutation analyses of 500 patients diagnosed and treated at the National Taiwan
University Hospital
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Table 3 Risk stratification of AML according To 2017 ELN recommendations [24]

Risk profiles Subgroups

Favorable t(8;21)(q22;q22.1); RUNX1-RUNX1T1

inv (16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11

Mutated NPM1 without FLT3-ITD

Mutated NPM1 with FLT3-ITDlow

Biallelic mutated CEBPA

Intermediate Mutated NPM1 and FLT3-ITDhigh

Wild-type NPM1 without FLT3-ITD

Wild-type NPM1 with FLT3-ITDlow

t(9;11)(p21.3;q23.3); MLLT3-KMT2A

Cytogenetic abnormalities not classified

Adverse t(6;9)(p23;q34.1); DEK-NUP214

t(v;11q23.3); KMT2A rearranged

t(9;22)(q34.1;q11.2); BCR-ABL1

inv (3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); GATA2,MECOM(EVI1)

Complex karyotype, monosomal karyotype

-5 or del(5q); −7; −17/abn(17p)

Wild-type NPM1 and FLT3-ITDhigh

Mutated RUNX1

Mutated ASXL1

Mutated TP53

Low, low allelic ratio (< 0.5); high, high allelic ratio (≥0.5)

Fig. 3 Survival curves of 763 AML patients in Taiwan stratified according to the 2017 ELN risk stratification. The data are derived from the
mutation analyses of 763 patients diagnosed and treated at the National Taiwan University Hospital
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found in 8–12% and 2–5% of AML patients, respectively.
The prognostic relevance of RAS mutations in AML re-
mains controversial. Higher dose of cytarabine was re-
ported to decrease the relapse rate in RAS-mutated
AML patients [74].

Mutations of genes involving in epigenetic modifications
Deregulation of epigenetic modifiers, including alter-
ations in DNA methylation, DNA hydroxymethylation
and histone modifications, such as methylation, acetyl-
ation, phosphorylation, sumoylation and ubiquitination
etc., is now recognized as an important mechanism in
the pathogenesis of AML [75]. Somatic mutations in
genes regulating epigenetic modifications, such as IDH,
TET2, DNMT3A, ASXL1, EZH2 and KMT2A are fre-
quently detected in patients with AML, especially those
with intermediate-risk cytogenetics [19, 76–80]. The epi-
genetic alterations usually present as the early pre-
leukemic events [81–83] which cooperate with other
genetic alterations in the development of AML. Muta-
tions in ASXL1, TET2, and DNMT3A as well as MLL re-
arrangements confer poor prognosis, whereas IDH and
EZH2 mutations may bear clinical significance [75]. The
treatment of choice for patients with epigenetic muta-
tions is still under exploration. Induction chemotherapy
with high-dose daunorubicin, as compared with
standard-dose daunorubicin, improves OS among pa-
tients with DNMT3A mutations or MLL translocations
[41]. Further, retrospective studies suggested that allo-
geneic HSCT in first CR can overcome the poor progno-
sis of patients with MLL rearrangements [84–86],
DNMT3A mutations [87, 88], ASXL1 mutations [89],
and IDH mutations [90]. Nevertheless, prospective stud-
ies are warrant to clarify the point. Here we will specific-
ally focus on IDH, MLL, and EZH2 mutations in which
targeted agents are either available in clinical use or
under investigation.

IDH mutations
IDH1 and IDH2 genes encode two isoforms of isocitrate
dehydrogenase, which catalyzes the oxidative decarb-
oxylation of isocitrate to α-ketoglutarate (α-KG) [91].
Mutant IDH proteins convert α-KG to 2-
hydroxyglutarate (2-HG), an onco-metabolite that con-
tributes to tumor growth or malignant transformation
[92, 93]. IDH mutations impair TET2-mediated hydroxy-
methylation of cytosine through reduced production of
α-KG, a cofactor of TET2, thus result in global DNA
hypermethylation [94]. Mutations in IDH1 occur in 7.8–
16% of patients with cytogenetically normal (CN) AML
(CN-AML), and IDH2 mutations, in 10–19% of those
with CN-AML [75, 76, 78]. Both are less frequently de-
tected in cytogenetically abnormal AML. Occasionally,
IDH mutations can be detected in healthy older

individuals with age-related clonal hematopoiesis, sug-
gesting IDH mutations occur early in leukemogenesis
[95]. The impact of IDH mutations on prognosis re-
mains to be elucidated.

MLL rearrangements
The mixed lineage leukemia gene (MLL), also called
Histone-lysine N-methyltransferase 2A (KMT2A), is lo-
cated on chromosome 11q23 which encodes a DNA-
binding protein that methylates histone H3 lysine 4 pos-
ition (H3K4) and positively regulates Hox gene expres-
sion [96]. The incidence of MLL fusion and partial
tandem duplication (MLL/PTD) in AML is approxi-
mately 5–12% and 5–6%, respectively [75] and the pres-
ence of MLL rearrangements usually predict aggressive
course and poor outcome.

EZH2 mutations
Enhancer of Zest Homologue 2 gene (EZH2), located at
chromosome 7q, is a H3K27 methyltransferase that cata-
lyzes the Polycomb Repressive Complex 2 (PRC2) [97].
Mutations in EZH2 exert context-specific and some-
times opposing effects on tumorigenesis. Oncogenic
gain-of-function mutations are found in patients with
lymphoid malignancies [98]; in contrast, loss-of-function
EZH2 mutations at diverse sites were detected in mye-
loid neoplasms [99, 100], including AML (0–2%) [75].
Further, derepression of stage-specific gene profiles in-
duces polymorphic and contradictory phenotypes of
EZH2 protein in different phases of AML [101, 102].
During AML maintenance, wild-type EZH2 exerts an
oncogenic function as a facilitator of disease that may be
therapeutically targeted. In contrast, EZH2 acts as a
tumor suppressor during leukemia induction. The find-
ings offer a potentially attractive therapeutic approach in
AML with EZH2 mutations and the EZH2 inhibitor is
currently under development or early phase trials.

Splicing factor mutations
RNA splicing, a crucial post-transcription process, plays
an important role in gene regulation and increases gen-
omic diversity [103]. However, aberrant splicing patho-
logically drives the initiation and progression of cancers,
including hematologic malignancies. Mutations of the
splicing factor (SF) genes occur most frequently in
SRSF2, U2AF1, SF3B1 and ZRSR2 [104]. The reported
incidence of SF mutations in AML varied from 4.5 to
12.5% [19, 105–107]. Presence of SF mutations predict
lower CR rate and shorter DFS and OS [107]. The dis-
covery of somatic mutations in the spliceosome and/or
aberrant splicing in cancers has prompted interest to
novel therapeutic approaches by targeting splicing ca-
talysis, splicing regulatory proteins, and individual key
altered splicing events [108, 109].
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Targeted agents
Annotation of the mutational landscape in AML has
greatly facilitated the development of targeted therapy.
The breakthrough discovery of all-trans retinoic acid
and arsenic trioxide in the treatment of acute promyelo-
cytic leukemia [110], a specific subtype of AML, and
tyrosine kinase inhibitor in chromic myeloid leukemia
[111] has encouraged the searching for more novel tar-
geted therapy in AML. In the past 3 years, the U.S. Food
and Drug Administration (FDA) approved a total of
eight drugs for AML; some specifically target certain
gene mutations, biological pathways, or surface antigen.
Based on the patients recruited in the clinical trials, most
agents are approved at this moment for older patients or
those with comorbidities, in whom the treatment choice
is limited and the clinical outcome is very poor. It is ex-
pected that some of them may also be beneficial for
younger and fit patients, but further clinical trials target-
ing this group of patients are needed to clarify it.

FLT3 inhibitor
Given the adverse prognostic impact of FLT3-ITD and
high frequency of FLT3 mutations in de novo AML,
FLT3 mutations are attractive targets for therapy. Several
FLT3 inhibitors are now available for clinical use, while
more are under development in preclinical and clinical
studies. FLT3 inhibitors can be classified into first and
second generation inhibitors based on the potency and
target specificity of the drugs. First generation FLT3 in-
hibitors, such as sunitinib, sorafenib, lestaurtinib and
midostaurin, are relatively nonspecific multi-kinase in-
hibitors and generally have higher toxicities, while sec-
ond generation inhibitors, such as quizartinib,
crenolanib, and gilteritinib, are more selective and po-
tent FLT3 inhibitors and have fewer toxicities. FLT3 in-
hibitors can be further classified into type I and II
inhibitors based on the mechanism of interaction with
the receptor. Type I inhibitors are effective for both
FLT3-ITD and FLT3-TKD, while type II inhibitors, for
FLT3-ITD only [35].
Midostaurin (PKC412) is the first FLT3 inhibitor ap-

proved by the U.S. as well as Taiwan FDA for the treat-
ment of newly-diagnosed FLT3-mutated AML patients
based on its effect on improving OS when combined
with traditional chemotherapy [112, 113]. It is Type I in-
hibitor and effective regardless of types of FLT3 muta-
tions (ITD or TKD) or the allelic ratio of FLT3-ITD.
Recently, maintenance of sorafenib, another first gener-
ation inhibitor, following allogeneic HSCT has shown
encouraging results in FLT3-mutated AML by reducing
the post-transplant relapse rate [114, 115].
As for second generation FLT3 inhibitors, Crenolanib

and gilteritinib are type I inhibitors, whereas quizartinib
is type II inhibitor [116]. Gilteritinib has single-agent

activity in FLT3-mutated AML and was approved by the
U.S. FDA in November 2018 for treating adult patients
who have relapsed or refractory (R/R) FLT3-mutated
AML based on safety data and an interim analysis of the
response rate in the ADMIRAL trial (NCT02421939)
[117]. The final results showed that the median OS and
event-free survival (EFS) in the gilteritinib group was sig-
nificantly longer than that in the chemotherapy group.
The clinical trials to investigate its use as frontline treat-
ment or maintenance in AML patients with FLT3 muta-
tions are undergoing. Quizartinib (AC220) was shown
effective as single agent in R/R FLT3/ITD patients with
improving OS compared to chemotherapy. However,
Quizartinib is only approved in this setting in Japan, but
not in the USA and European Union (European Medi-
cines Agency, EMA) due to marginal survival benefits
and safety concerns. A number of other novel FLT3 in-
hibitors, such as tandutinib, crenolanib, cabozantinib,
etc., are currently under development or in clinical trials
[118].
Collectively, FLT3 inhibitors has emerged as an im-

portant part of therapy for FLT3-mutated patients in
both frontline and R/R status. Much is still to be learned
about how to advance the use of FLT3 inhibitors in fit
or frail patients (such as novel combinations), overcome
the primary and secondary acquired resistance, and
manage the adverse effects, especially in maintenance
therapy.

KIT inhibitor
KIT mutations occur frequently in CBF AML and may
confer poorer prognosis in this group of patients. Since
dasatinib is a potent oral multi-kinase inhibitor with
strong activity on KIT oncoprotein, it has the potential
to target this molecular aberration in AML patients. A
phase 2, open-label, multicenter trial (CALGB10801)
showed that chemotherapy plus dasatinib was well toler-
ated without any unexpected or dose-limiting toxicities
[119]. It provided excellent outcomes (90% CR rate and
77% OS at 3-year) to both younger and older patients
with KIT mutations, supporting further large-scale, pro-
spective randomized phase 3 trials to evaluate KIT in-
hibitors in combination with cytotoxic chemotherapy in
the treatment of KIT-mutated CBF AML.

TP53 inhibitor
A growing number of small low-molecular-weight com-
pounds including PRIMA-1 and the PRIMA-1 analog
APR-246 have been developed to restore tumor suppres-
sor function to mutant p53 [120–123]. In a preliminary
analysis of 45 TP53-mutated patients with myelodysplas-
tic syndrome (MDS), a pre-leukemia state, and oligoblas-
tic AML in a phase Ib/II combination study (APR-246
and azacitidine; NCT03072043) [124], the overall
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response rate (ORR) was 87% with 53% CR. The median
time to response was 2.1 months (range, 0.1–5.4) and
the median duration of response was 6.5 months with a
median follow-up of 10.5 months. The randomized
phase 3 study of APR-246 and AZA versus AZA alone
in TP53-mutated MDS is ongoing (NCT03745716).

RAS inhibitor
Since farnesylation is the primary translational modifica-
tion essential for the transforming activity of RAS onco-
protein, attempts to target RAS with farnesylation
inhibitors have been developed since 2000 [69, 125]. Al-
though preclinical activity was observed in RAS-mutant
cell lines and animal models, clinical activity of farnesy-
lation inhibitors in AML patients has been largely un-
successful and disappointing [126–128]. Clinical trials
targeting mitogen-activated protein kinase (MAPK) sig-
naling in NRAS-mutated leukemia with MAP-ERK kin-
ase (MEK) inhibitors are ongoing; the response is only
minimal though MEK inhibitors are generally well toler-
ated [129, 130]. Further studies are required to explore
other small-molecular inhibitors, select suitable patient
cohort and investigate synergistic combination therapies.

IDH inhibitor
Enasidenib (AG-221), first IDH mutation-specific inhibi-
tor, suppresses 2-HG production and induces cellular
differentiation in primary human IDH2-mutated AML
cells and xenograft mouse models [131]. In the interim
analysis of the landmark first-in-human phase I/II trial
for enasidenib (NCT01915498) [132], the ORR was
38.5%, including 20.2% CR in 109 adult R/R patients
with IDH2-mutated AML receiving 100 mg daily. The
median time to CR was 3.7 months and the duration of
response in patients who attained CR was 8.8 months
(range, 6.4-not reached). Accordingly, the U.S. FDA ap-
proved enasidenib in August 2017 for the treatment of
IDH2-mutated R/R AML. The final analysis of this trial
(n = 345) showed 46% attained their best response by
cycle 4 and 80%, by cycle 6 among responding patients,
implying failure to obtain early response with enasidenib
does not necessarily indicate treatment failure and the
importance of continuing enasidenib therapy for at least
5–6 cycles [133]. The clearance of IDH2-mutant clones
was associated with achievement of CR. Clinical trials in-
cluding enasidenib for R/R AML (phase 3,
NCT02577406), newly diagnosed AML (NCT02632708)
and post allogeneic HSCT maintenance (NCT03515512),
and in combination with azacitidine for R/R AML
(NCT03683433), etc. are ongoing.
Ivosidenib (AG-120) is a highly selective inhibitor for

IDH1 mutants. It lowers 2-HG in tumor models and en-
hances differentiation of primary AML samples [134].
Ivosidenib monotherapy was associated with durable

remissions in 179 patients with IDH1-mutated, R/R
AML in a phase 1 dose-escalation and dose-expansion
study (NCT02074839) [135]. The ORR was 41.6%, in-
cluding 30.4% CR/CR with partial hematologic recovery
(CRh); 21% of patients who had a CR or CRh had no re-
sidual detectable IDH1 mutations on digital polymerase-
chain-reaction assay. The median time to CR/CRh was
2.7 months (range, 0.9–5.6) and the duration of response
in these patients was 8.2 months (range, 5.5–12). In a
trial of ivosidenib for patients with newly-diagnosed
IDH1-mutated AML, the CR/CRh rate was 42% and the
median duration of response was not reached in 34 pa-
tients who received ivosidenib 500mg once daily [136].
Based on these findings, the U.S FDA approved ivoside-
nib in both the frontline and salvage treatment of IDH1-
mutated AML.

Epigenetic therapies
Hypomethylating agents (HMA)
The hypomethylating agents (HMA), azacytidine and
decitabine, have long been known for their effects in
AML patients with low blast percentages (20–30%) [137,
138]. However, their effects in AML patients with higher
blast percentages are not impressive, and efforts now are
focused on the combination of the drug with other novel
agents. Guadecitabine (SGI-110), a next-generation
HMA, is a dinucleotide of decitabine and deoxyguano-
sine resulting in slow release of decitabine and pro-
longed in vivo half-life; therefore, guadecitabine is
potentially more effective and less toxic than its parent
drug [139]. Unfortunately, phase III ASTRAL-1 study
failed to meet the primary endpoint of a statistical differ-
ence in CR and OS between guadecitabine and control
arm [140]. Nevertheless, a benefit was observed in sub-
group of patients who received 4 or more cycles, indicat-
ing that treatment duration is crucial to response. The
phase III QUAZAR AML-001 study (NCT01757535)
demonstrated that maintenance with CC-486, an oral
formulation of 5-azacitidine, resulted in significant im-
provements in OS and RFS, compared with placebo
[141]. CC-486 is the first HMA used in the maintenance
setting to improve clinical outcome in patients with
AML after achieving remission following induction
chemotherapy, with or without consolidation.

DOT1L inhibitor
The histone 3 lysine 79 (H3K79) methyltransferase dis-
ruptor of telomeric silencing-1 like (DOT1L) is proposed
to play a role in the development of leukemia in patients
with MLL translocations [142, 143]. Pharmacological in-
hibition of DOT1L enzymatic activity has been of inter-
est for the treatment of MLL-rearranged leukemias
[144]. The DOT1L inhibitor Pinometostat (EPZ − 5676)
exhibited modest clinical activity in a phase I study,
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which paves a road for further exploration of combin-
ation therapies in leukemia [145].

Bromodomain and extra-terminal (BET) protein inhibitors
Bromodomain and extra-terminal (BET) proteins bind
acetylated lysine residues on histone tail to facilitate
transcriptional activation [146]. BET proteins are in-
volved in aberrant chromatin states in AML through
MYC upregulation [147]. BET inhibitors, such as JQ1
and OTX015 (MK-8628) showed efficacy in cell lines,
mouse models and ex vivo patient samples of MLL-
fused, NPM1-, FLT3-, or IDH2-mutated leukemias [148].
So far single-agent activity is modest in R/R AML [149]
and the early phase studies of several BET inhibitors are
ongoing.

Lysine-specific demethylase 1 (LSD1) inhibitors
Lysine-specific demethylase 1 (LSD1), an enzyme re-
sponsible for the demethylation of H3K4 and H3K9, is
an essential regulator to sustain the oncogenic potential
of leukemic stem cells [150]. Several LSD1 inhibitors
have shown in vitro anti-leukemic activity but also strik-
ing hematologic toxicity in mouse models [150, 151].
Ladademstat (ORY-1001), a highly potent and selective
LSD1 inhibitor, induced blast differentiation and reduc-
tion of leukemic stem cell capacity in AML [152], and
exhibited potent synergy with standard-of-care drugs
and selective epigenetic inhibitors [152].

Histone deacetylase inhibitors
Several inhibitors of histone deacetylases (HDAC), such
as panobinostat and vorinostat, have been developed
[153, 154]. However, monotherapy with HDAC inhibi-
tors only showed modest effect in AML [155].

BCL2 inhibition
The B-cell leukemia/lymphoma-2 (BCL-2), a key regula-
tor of the mitochondrial apoptotic pathway, supports cell
survival by suppressing programmed cell death [156,
157]. BCL2 is aberrantly overexpressed in AML blasts,
specifically in leukemic stem cells [158], and enhanced
BCL-2 expression mediates chemotherapy resistance
[159, 160]. Venetoclax is a highly selective BH3 mimetic
agent showing potent BCL-2 inhibition. Venetoclax-
based therapy for heavily pretreated patients with R/R
AML showed fair activity with 19–22.5% of patients
achieving CR or CR with incomplete hematologic recov-
ery (CRi) [161, 162]. Impressively, in phase Ib/II clinical
trials, venetoclax in combination with low-dose cytara-
bine (LDAC) or HMAs in treatment-naive patients
showed very exciting results; rapid and deep response
could be seen in 54–67% of patients aged 75 years or
older or those with comorbidities that precluded inten-
sive chemotherapy [163, 164]. The response to

venetoclax-based therapy is mostly observed within 1–2
cycles and the median survival is not reached for pa-
tients obtaining CR/CRi. The results served as the basis
for accelerated approval by the U.S. FDA in Nov 2018
and herald a new era of AML therapy that largely avoids
traditional cytotoxic agents in unfit patients.
The phase III trials comparing venetoclax and azaciti-

dine to azacitidine alone (NCT02993523) and venetoclax
and LDAC to LDAC alone (NCT03069352) are ongoing
to confirm the clinical benefits. Besides, venetoclax is
also tested to combine with other targeted agents, such
as IDH inhibitors in IDH-mutated patients or FLT3 in-
hibitors in FLT3-mutated patients, to evaluate if such
combinations can enhance anti-leukemic efficacy.

Other agents
In addition to the targeted therapies mentioned above,
the most promising agents for non-mutation-targeted
novel agents approved by the U.S. FDA include CPX-
351 (Vyxeos), gemtuzumab ozogamicin (Mylotarg), and
glasdegib (Daurismo). CPX-351 is a dual drug liposomal
encapsulation of daunorubicin and cytarabine which is
approved for the treatment of therapy-related AML and
AML with myelodysplasia-related change [165]. Gemtu-
zumab ozogamicin (Mylotarg) is a humanized anti-CD33
monoclonal antibody linked to calicheamicin which is
approved for newly-diagnosed and R/R CD33+ AML
[166]. Glasdegib (Daurismo) is the first Hedgehog path-
way inhibitor. It is approved in combination with low-
dose cytarabine for newly diagnosed AML aged 75 or
more or those who have comorbidities that preclude use
of intensive induction chemotherapy [167].

Conclusion
Recent advances in genomics techniques have unraveled
the molecular heterogeneity of AML leukemogenesis
and further help refine risk stratification and prognosti-
cation. Patients with adverse-risk AML require more ag-
gressive treatment including allogeneic HSCT in first CR
and possibly novel targeted agents, to improve the prog-
nosis. However, the complex pattern of cooperativity
and mutual exclusivity among different mutations re-
main a clinical challenging. Since 2017 there has been an
explosion of newly approved treatment options to tailor
personalized treatment for AML. Each of these targeted
therapies has unique treatment timing, dosing, efficacy,
and adverse effects and appropriate management is cru-
cial to the success of treatment. Further combinations of
molecularly targeted therapies and standard cytotoxic
chemotherapy or other novel agents to enhance efficacy
are still under investigation. We believe it is clinically
relevant to comprehensively elucidate the molecular sig-
natures to better characterize the AML biology, precisely
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predict prognosis and tailor treatment strategies with
targeted agents.
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