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The trace aminergic system: 
a gender‑sensitive therapeutic target for IBS?
Lesha Pretorius   and Carine Smith* 

Abstract 

Due to a lack of specific or sensitive biomarkers, drug discovery advances have been limited for individuals suffering 
from irritable bowel syndrome (IBS). While current therapies provide symptomatic relief, inflammation itself is rela-
tively neglected, despite the presence of chronic immune activation and innate immune system dysfunction. Moreo-
ver, considering the microgenderome concept, gender is a significant aetiological risk factor. We believe that we have 
pinpointed a “missing link” that connects gender, dysbiosis, diet, and inflammation in the context of IBS, which may 
be manipulated as therapeutic target. The trace aminergic system is conveniently positioned at the interface of the 
gut microbiome, dietary nutrients and by-products, and mucosal immunity. Almost all leukocyte populations express 
trace amine associated receptors and significant amounts of trace amines originate from both food and the gut 
microbiota. Additionally, although IBS-specific data are sparse, existing data supports an interpretation in favour of a 
gender dependence in trace aminergic signalling. As such, trace aminergic signalling may be altered by fluctuations 
of especially female reproductive hormones. Utilizing a multidisciplinary approach, this review discusses potential 
mechanisms of actions, which include hyperreactivity of the immune system and aberrant serotonin signalling, and 
links outcomes to the symptomology clinically prevalent in IBS. Taken together, it is feasible that the additional level 
of regulation by the trace aminergic system in IBS has been overlooked, until now. As such, we suggest that com-
ponents of the trace aminergic system be considered targets for future therapeutic action, with the specific focus of 
reducing oxidative stress and inflammation.
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Introduction
Irritable bowel disease (IBS) is a functional gastrointesti-
nal disorder, which is prevalent in more than 10% of the 
global population [72]. Although IBS is easily recognised 
(recurrent abdominal pain associated with change in 
stool consistency and frequency, as is the case in inflam-
matory bowel disorder (IBD) [16], but in the absence of 
structural abnormalities [121]), there is still a lack of any 
sensitive or specific biomarkers [194], limiting advance-
ment in terms of drug discovery for treatment of this 
debilitating condition.

It is important to note that epidemiological stud-
ies have consistently shown female predominance for 
IBS in both non-patient and patient populations, with 
ratios of up to 5:1 in tertiary care settings [157]. Further-
more, many women with IBS report gastrointestinal (GI) 
symptom fluctuation and exaggeration (flares) during 
pre-menses and pre-menopausal phases [96, 109, 230]. 
Although, some of these symptoms seem to be com-
mon among non-IBS or normally asymptomatic women 
too [23, 157]. However, the fact that IBS symptom onset 
often coincides with gonadal maturation, again impli-
cates hormone levels as confounder in IBS aetiology [97].

In terms of current IBS therapy, treatment strate-
gies range from microbiota-based therapies (probiot-
ics, prebiotics, synbiotics, non-absorbable antibiotics 
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and faecal microbiota transplants) to opioid receptor 
agonist/antagnoists, and dietary interventions, most 
of which provide symptomatic relief [45]. Of specific 
interest to this review, present-day strategies seem 
focused on addressing clinically evident symptoms 
only, with relative neglect of inflammation, despite the 
fact that chronic immune activation and innate immune 
system dysfunction is implicated in IBS pathogenesis 
[123]. The importance of considering inflammation in 
IBS, is underlined by several factors. Firstly, a recent 
review concluded that gender-differences in inflam-
mation—specifically the fact that prognosis in chronic 
inflammatory conditions are worse in females, in line 
with the female predominance in IBS—cannot be fully 
accounted for by hormonal differences between gen-
ders [38]. Secondly, psychosocial stress is the most gen-
erally recognized risk factor for both development and 
relapse of IBS [222]. Here again, females are more at 
risk, with a significant female predominance reported 
for anxiety and depression-associated disorders [3]. 
Taken together, it is clear that gender is a significant 
role player in IBS risk, but that hormone differences 
alone is probably not the only predictor of outcome.

We believe that we have identified a “missing link” 
that ties together gender, diet, inflammation and anxi-
ety in the context of IBS, which may be exploited as 
therapeutic target. The trace aminergic system was first 
described in non-human mammals, as having a “sexual 
cue” function. Most trace amine associated receptors 
associate closely with olfactory neurons, suggesting 
a pheromone-type function. In line with this, signifi-
cant gender differences were reported for trace amine 
levels [126]. Furthermore—and specifically relevant to 
the review topic and IBS—trace amine synthesis has 
been reported in human neurons, where it is thought 
to modulate neuronal signalling [17, 148, 177], and high 
levels of trace amines have been found in specific foods, 
as well as bacterial secretomes [13, 129, 153, 201]. 
Taken together, it is therefore possible that the trace 
aminergic system may be an additional level of control/
maladaptation in IBS that has been largely overlooked 
until now. It is also clear that in order to make advances 
in terms of therapeutic strategies, or even better under-
standing of disease aetiology, a multi-disciplinary 
approach is required.

This review therefore aims to provide an integrated 
and holistic picture of IBS aetiology, including a criti-
cal assessment of current methodologies employed in 
this context where relevant. Drawing from different dis-
ciplines in science, we then provide a comprehensive 
review of the literature on the trace aminergic system, 
in support of our hypothesis that this system may be tar-
geted therapeutically in the context of IBS.

The complexity that is IBS
Given the difficulty of IBS management, it would be fool-
ish to underestimate the complexity of the disease aetiol-
ogy. For the purpose of the current discussion, in the next 
few sections, we provide an overview of only the most 
relevant processes at play.

Oxidative stress and inflammation
Inflammation and oxidative stress go hand in hand, 
especially in chronic inflammatory disorders, where the 
poorer prognosis in females has been specifically linked 
to greater oxidative damage resulting from inflamma-
tion [1, 76]. While the susceptibility of cells to oxidative 
stress is largely variable between individuals and specific 
tissue types, a review by Jones et  al. [106] explains that 
the GI tract (GIT) is a particularly high reactive oxygen 
species environment. Furthermore, in cancer literature, 
the presence of estrogen receptors (ERs) are commonly 
known to render cells more sensitive to oxidative stress 
via diminished antioxidant activities [22, 150]. Similar 
results have been observed in IBS patients. For example, 
in a study including 36 IBS patients, plasma activities of 
xanthine oxidase and adenosine deaminase, and plasma 
concentrations of malondialdehyde (MDA) and nitric 
oxide, were significantly higher in patients than controls, 
while superoxide dismutase, catalase and glutathione 
peroxidase activities were significantly lower [147]. These 
results suggest that altered oxidant-antioxidant responses 
are prevalent in patients with IBS. While both males and 
females formed part of the study, no analysis in gender 
differences was performed. Furthermore, increased oxi-
dative stress-related markers (elevated MDA, decreased 
total antioxidant capacity) were reported in 90 IBS 
patients more recently [44], with a tendency for female 
patients to have a worse redox profile [43]. Together, 
these data suggest oxidative damage to be a major con-
tributor to female predominance of IBS.

Of course, plasma redox status is not necessarily an 
accurate indication of the status at tissue level. Although 
clinical evidence of oxidative stress within the intesti-
nal wall is lacking, studies in rodent models of IBS have 
reported evidence suggestive of oxidative stress in the 
intestinal wall as well. For example, the total antioxidant 
capacity (measured by FRAP) of large intestine homoge-
nates of rats (IBS induced by restraint-stress) was sig-
nificantly reduced compared to controls [156, 244]. 
Moreover, Mozaffari et  al. [156] reported significant 
increases myeloperoxidase activity and lipid peroxidation 
in the same homogenates. These reductions in anti-oxi-
dant capacity reportedly correlated with gastrointestinal 
symptomology as well. While similar studies in humans 
are lacking, it has been reported that neutrophil counts 
in colonic biopsies of patients with IBS are significantly 
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increased compared to control [39], which may in turn 
result in increased myeloperoxidase levels, for exam-
ple, in the colon tissue. Additionally, a very recent study 
utilising confocal laser endomicroscopy, reported that 
patients with IBS have a six-fold higher prevalence of 
colorectal mucosa micro-inflammation than healthy con-
trols [193]. Considering that inflammation and oxidative 
stress are linked, often occurring in tandem, it is likely 
that local effects of oxidative damage/stress are impli-
cated in IBS-related gastrointestinal symptomology.

As is the case for many chronic inflammatory dis-
eases, it is difficult to know whether oxidative stress or 
inflammation manifests first. However, given the self-
perpetuating cycle of oxidative stress and inflammation, 
it is not unexpected that a pro-inflammatory phenotype 
(increased TNFα and IL-17, decreased IL-10) is prevalent 
in IBS. Also, in the context of inflammation, a female bias 
has been reported, with females exhibiting higher inflam-
matory capacity and generally having poorer prognosis in 
chronic inflammatory disease [38].

Inflammation is, however, not just an outcome of oxi-
dative stress, but is interconnected with other signifi-
cant role players in IBS, as demonstrated in the following 
sections.

Serotonin dysregulation
Serotonin—or 5-hydroxytryptamine (5-HT)—is a well-
known neurotransmitter and neuro-hormone, which 
modulates several GI functions, such as motility, vis-
ceral sensitivity, immune function and blood flow [113]. 
Additionally, due to its prominent role in the gut–brain 
axis, perturbations in 5-HT signalling have also been 
implicated in the pathophysiology of IBS [35, 45, 54, 84, 
85, 170, 172]. Mucosal serotonergic enterochromaffin 
(EC) cells are sensory transducers that respond to lumi-
nal stimuli by secreting 5-HT into the intestinal wall to 
stimulate the primary afferent nerve fibers of the enteric 
nervous system [15, 134]. Although relatively rare (less 
than 1% of intestinal epithelia), EC cells produce more 
than 90% of the body’s 5-HT and have been suggested to 
affect a variety of physiological and pathophysiological 
states [84, 142].

Indeed, in IBS, evidence of dysregulated serotonergic 
signalling has been established. The most reproducible 
results indicate that patients with diarrhoea-predominant 
IBS have higher blood levels of 5-HT [14], while patients 
with constipation-predominant IBS have lower blood 
levels of 5-HT [6, 68] compared to healthy controls.

Also here, a gender-dependence is evident: 
17β-estradiol (E2) regulates the concentration of 5-HT 
via two mechanisms. Firstly, E2 increases synthesis of 
tryptophan hydroxylase [20, 21], which is the rate-lim-
iting factor in the conversion of tryptophan to 5-HT, 

thereby increasing the concentration of 5-HT [26, 215]. 
Secondly, E2 inhibits gene expression of the seroto-
nin reuptake transporter (SERT), and also acts as a 
SERT antagonist, consequently promoting the actions 
of 5-HT by increasing its availability in synapses and 
interstitial spaces [168, 175]. Beyond increasing con-
centration and availability of 5-HT, E2 also modulates 
the actions of 5-HT. This is because the activation of 
E2 receptors affects the state and distribution of 5-HT 
receptors. For example, higher levels of E2 in the pres-
ence of progesterone (Prog), upregulates ERβ—result-
ing in upregulation of the 5-HT2A receptor [169] [117, 
155]—and downregulates ERα [41]—resulting in a 
decreased NFκB-associated activation of 5-HT1A recep-
tors [234]. Therefore, during the reproductive phase of 
a female lifespan (higher E2 and Prog levels), E2 causes 
an increase in the density and binding of the 5-HT2A 
receptor.

It is notable that the 5-HT2A receptor gene is 
expressed in the brain and the gut [187], and has been 
reported as the main 5-HT receptor in the perception of 
pain [219], which may contribute to female bias in pain 
processing, specifically in an IBS context [146]. Inter-
estingly, a study by Pata et al. [172] implicated 5-HT2A 
receptor gene polymorphisms as a genetic component 
of IBS pathophysiology. Specifically, a high incidence 
of homozygous C allele of the 102 T/C polymorphism 
(also reported in patients with depression and anxiety) 
and homozygote A allele of the − 1438 G/A promoter 
region was reported in patients with IBS. Moreover, the 
patients with T/T genotype had a significantly higher 
visual analogue score (determines severity of chronic 
abdominal pain) than patients with other genotypes, 
suggesting that the T/T genotype potentates pain per-
ception, although it is not unique to IBS. It remains 
to be elucidated if a gender bias exists for this type of 
mutation. Nevertheless, in line with this data, abdom-
inal pain is a hallmark of IBS and is often a result of 
colonic distension and visceral hypersensitivity [53]. Of 
further relevance, it has been reported that 5HT2A−/− 
mice had smaller enterocytes, fewer paneth cells, and 
thinner muscle layers, compared to 5-HT2A+/+ litter-
mates [77]. However, since this receptor does not seem 
to affect colonic transit time, IBS treatments target-
ing 5-HT receptors have classically focused on 5-HT3 
(facilitates enteric to central nervous system signalling 
and promotes gut motility), 5-HT4 (augments peri-
stalsis and intestinal secretion), 5-HT1B (initiates peri-
stalsis) receptors [73] and even 5-HT1AR—for which 
decreased activity has been linked to exacerbated 
symptoms of depression [90], a known co-morbidity in 
IBS. The role of 5HT2A receptors in the context of IBS-
related pain remains to be fully elucidated.
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Altered colonic ion secretion
While colonic ion secretion is critically important in 
maintaining GI motility, there is no concrete evidence 
that patients with IBS (regardless of the subtype) suffer 
from primary secretory diathesis [34]. Moreover, it is rea-
sonable to suggest that different IBS subtypes would be 
characterised by different secretory ion profiles, result-
ing in either constipation (more common in females) or 
diarrhoea (more common in males). In terms of a repro-
ductive hormone effect, E2 is a known modulator of 
ion-secretion, also independent of its effect on 5-HT sig-
nalling. Both ERα and ERβ have been detected in distal 
colonic crypts [218], where E2 was shown to inhibit epi-
thelial chloride ion secretion in female rats [48], result-
ing in significant water and salt retention during high 
estrogen states [165]. Of interest, the gender bias for the 
anti-secretory action of estrogen was attributed to gen-
der specificity of ion transporter protein expression pro-
files [48]. Furthermore, E2 reduced currents mediated 
by the KCNQ1:KCNE3 potassium channel in an Ussing 
chamber model [4]. Similarly, more recent data shows 
that E2 links to intracellular calcium, cystic fibrosis trans-
membrane conductance regulator and Cl−/HCO3

− secre-
tion [239]. Seeing that E2 inhibits colonic chloride ion 
secretion (consequentially reducing water movement to 
the lumen), it makes sense that females with IBS gener-
ally present with reduced colonic transit/GI motility and 
constipation, symptoms which alter drastically during 
menses.

Gut dysbiosis
Up to now, gender-association has been a continuous 
thread through all factors contributing to IBS aetiology. 
However, although it is clear in other disease contexts, 
e.g. auto-immune disease, that a gender bias indeed also 
exist in terms of gut microbial content and/or function 
[191], this association is less clear in IBS, due to a relative 
lack of research in this context.

Nevertheless, the gut microbiota is widely regarded 
as a regulatory system that actively mediates numerous 
physiological functions as part of its symbiotic relation-
ship with its host, via generation of metabolites to affect 
both nearby and distant organs [137, 231], including the 
brain [139]. This ability to predict clinical phenotype 
was even recently suggested to be superior to the pre-
dictive power of genetics [197]. Indeed, altered bacte-
rial composition, the so-called dysbiosis, is associated 
with a spectrum of diseases, including neuropathology 
and inflammatory conditions [64]. For example, germ-
free animals demonstrate delayed gastric emptying and 
intestinal transit, reduced migrating motor complex 
cycling and propagation, and reduced GABA and VAP-
33 gene expression, when compared with animals raised 

in a normal laboratory environment [11]. Thus, it is not 
surprising that some form of compositional dysbiosis 
(altered microbial alpha and/or beta diversity) has been 
implicated as an etiological factor in the development 
of various gastrointestinal disorders, including IBS [114, 
159, 171, 185], where it is thought to drive persistent 
low-grade inflammation and chronic gut dysfunction 
[47]. Globally, data on IBS patients suggest reductions in 
microbial diversity, altered proportions of specific bac-
terial groups, shifts between mucosal and luminal bac-
terial abundance [36], and a higher degree of temporal 
instability of microbiota [64], when compared to healthy 
individuals.

However, there are several shortcomings of exploring 
compositional dysbiosis in the context of IBS. Firstly, the 
compositional alterations reported in the literature are 
not specific to IBS—similar changes in microbial diver-
sity are found in numerous diseases and conditions [47, 
64]. This raises questions regarding their specificity as 
potential disease biomarkers. Similarly, some authors 
have criticized whether a relative microbial imbalance 
that is assessed in a cross-sectional approach, would 
accurately represent a disease or reflect whether this 
imbalance occurs secondary to disease-related behav-
iours (poor lifestyle choices), as this requires analysis of 
consecutive samples with simultaneous disease varia-
tion [71]. Secondly, many of these studies have produced 
conflicting results within the IBS population [66] for 
various reasons commonly ascribed to methodology or 
study design [130, 140, 184, 217]. Thirdly, an improve-
ment in the fairly basic genus-species analysis most often 
employed [194] is required before significant advances in 
knowledge gain on the topic are made. This is corrobo-
rated by probiotic-focused studies that have emphasized 
strain-specificity in bacterial function [86], let alone 
species specificity. Fourthly, the profile of a ‘normal’ or 
healthy microbiota is unknown. In our opinion, and 
those of several other authors, it is impossible to define 
a healthy microbiome due to the high degree of inter-
individual variation [50, 58], cultural habitual dietary 
habits and other population-specific factors. This adds 
to the complexity of selecting suitable controls for gut 
microbiome studies. Accordingly, extreme care to choose 
controls similar not only in age and gender, but also cul-
tural background and nutritional habits, is vital to the 
reliability of any study (but may at the same time also 
limit its broader relevance). Lastly, efforts to standard-
ize testing, with the introduction of the ‘dysbiosis index’ 
[37] has thus far been unsuccessful, since the predictive 
value of the index was reportedly low and non-specific 
[71]. Given the fact that compositional analysis does not 
seem to be sufficiently sophisticated yet to lead to thera-
peutic advancement in medicine, another option is to 
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rather consider functional effects of the total microbiome 
secretome (i.e. the secretory products of all microbes 
present in the gut) on its host.

Indeed, another grouping of researchers tends towards 
analysing functional dysbiosis, or the alterations of the 
microbial secretomes, in diseased states [59, 104, 192, 
242, 243, 247]. This is achieved through mass spectrome-
try or nuclear magnetic resonance techniques, and allows 
researchers to associate the absence or presence of cer-
tain microbial-associated molecules to disease sympto-
mology [224], which may provide an avenue for discovery 
of disease-specific biomarkers or novel targets for ther-
apeutic treatment [5]. Given the fact that at least some 
microbial secretory products are competitive survival 
tactics, the relative absence of a “competing species” may 
alter secretome content (and thus effect on host cells) 
significantly, but linearity of secretome change to bacte-
rial predominance cannot be assumed, lending further 
support for favouring analysis of functional dysbiosis.

In the context of microbiome-associated functional 
effects, recent studies seem to highlight metabolites 
derived from microbial transformation of dietary com-
ponents as having significant effects on several physi-
ological processes [115, 116, 198, 246]. One of the first 
studies to explore microbial metabolism in the IBS con-
text reported that these patients had increased produc-
tion of hydrogen gas (H2) (fasted breath test) [118]. The 
authors suggest that the difference in H2 production may 
be associated with small intestinal bacterial overgrowth 
(SIBO), since SIBO is common among IBS patients [87] 
and is associated with higher levels of H2 production in 
fasted states [112]. Additionally, altered proportions of 
specific bacterial species, such as decreased Lactobacilli 
in IBS patients, may alter the amount/distribution of the 
by-products of microbial metabolism (H2). Indeed, Lac-
tobacilli are less gas producing than some other bacte-
ria, such as Clostridia and Enterobacteriaceae [162, 166]. 
This is confirmed by another study in which coloniza-
tion by Clostridium spp. was associated with excess gas 
production, abdominal discomfort and bloating among 
IBS patients [204]. As such, the relative dysbiosis of IBS 
patients may result in higher levels of excreted H2 as a 
functional consequence. Indeed, altered microbial fer-
mentation of carbohydrates results in the excessive pro-
duction of H2 and methane gases, the elimination of 
which is essential to maintain efficient fermentation in 
the gut.

While H2 only represents a single by-product of micro-
bial metabolism, these findings demonstrate the potential 
of microbial-derived metabolites to alter host function-
ing. The most obvious example of this lies in the rela-
tively successful use of probiotics as a treatment option 
for individuals with IBS. Probiotics are “live strains of 

strictly selected microorganisms which, when adminis-
tered in adequate amounts, confer a health benefit on the 
host” [99]. Theoretically, probiotics, primarily those con-
taining Lactobacillus and Bifidobacterium spp., should 
beneficially modulate the gut microbiota through pro-
duction of antimicrobial proteins, which should reduce 
pathogenic bacteria and interfere with epithelial adhesion 
[62, 78, 144, 210], among several other mechanisms of 
action [64]. In a meta-analysis including 35 RCTs, pro-
biotics were shown to have beneficial effects with regard 
to abdominal pain, bloating and flatulence scores in IBS 
patients [78]. Additionally, authors described superior-
ity of multispecies probiotics to single species probiot-
ics, but found no specific combination of multispecies 
probiotics predominant to another. As such, clarification 
with regards to which combinations of species are effec-
tive in treating specific IBS subtypes, and optimum treat-
ment dosages and durations are still required [124]. Thus, 
not enough is known for compounding of probiotics into 
treatment formulations, or to accurately prescribe probi-
otic strategies.

An integrated presentation of IBS-associated pathol-
ogy is also presented visually in Fig.  1. Taken together, 
the female bias towards exacerbation of IBS symptomol-
ogy is clear, as well as its prominent links to the actions 
of microbial-derived metabolites, or as we suggest, the 
trace aminergic system.We believe that trace amines 
(which are, at least in part, by-products of microbial 
metabolism) may provide the molecular link to explain 
the association between gut microbiome dysbiosis, IBS, 
inflammation and central nervous system conditions 
such as depression and anxiety (both high incidence co-
morbidities in IBS).

The trace aminergic system
Trace amines (TA) are a class of biogenic amines pro-
duced endogenously in humans, but also present in bac-
terial secretomes and certain foods. Common TA include 
β-phenylethylamine (PEA), tryptamine (TRP) and 
ρ-tyramine (TYR), which are derived from their respec-
tive amino acid precursors l-phenylalanine, l-trypto-
phan and l-tyrosine. Synthesis of TA primarily occurs 
through the enzymatic action of aromatic l-amino acid 
decarboxylases (AADC) [17]. While endogenous synthe-
sis of TA is often reported to be neuronal, AADC are also 
present in non-neuronal tissues, including the epithe-
lium of the GI tract [122, 226]. Additional sources of TA 
include those derived from food and microbes.

Trace amine-associated receptor (TAAR) 1 is the 
most thoroughly studied of the receptors in humans 
and has both central (acts as a rheostat of dopaminer-
gic, glutamatergic, and serotonergic neurotransmission) 
and peripheral (regulates nutrient-induced hormone 
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secretion and immune responses) roles [80]. In the next 
few sections, we review different aspects of the trace 
aminergic system, as it relates to IBS.

TA “toxicity” risk
Interestingly, foods containing high levels of TA, such as 
cheese, wine, sausages and other fermented foods—all 
commonly linked to exacerbated symptoms in IBS—are 
foodstuffs largely dependent on bacterial fermentation 
[107, 153, 155]. Lactic acid bacteria (LAB) are consid-
ered the primary biogenic amine producers in fermented 
foods. Indeed, various Lactobacillus spp. starter cultures 
have been studied with the aim of mitigating the poten-
tial health risks (headaches, heart palpitations, vomit-
ing and diarrhoea) associated with excessive biogenic 
amines levels [7]. Interestingly, the authors of this study 
reported that TYR and PEA were produced by 14.4% and 
12.4% of LAB isolates (fermented sausages) respectively, 
all belonging to L. curvatus species. As such, the authors 
recommended that L. sakie be used as the predominant 

LAB in preparation of these sausages in the future. In 
fact, the inability of a strain to synthesize biogenic amines 
is included in the selective criterion for malolactic starter 
cultures [220]. It is, however, important to highlight that 
the biogenic amine producing ability is a strain-specific 
characteristic, as variability in aminobiogenetic potential 
between different strains belonging to the same species is 
evident [13]. Regardless, the link between TA levels and 
fermentation is clear. Indeed, the expression (transcrip-
tional induction) and/or activation (catalytic modulation) 
of LAB amino acid decarboxylation systems is report-
edly an adaptive response to energy depletion, and is 
considered a strategy that counteracts acid stress [180], 
since decarboxylase activity can lead to membrane ener-
gization and increased environmental pH. Moreover, 
the strain dependent (rather than species specific) pres-
ence of decarboxylases genes involved in biogenic amine 
production eludes to horizontal gene transfer between 
strains as an adaptive mechanism of survival in specific 
environments (such as the GIT) [51, 131, 136]. Therefore, 

Fig. 1  A simplified visualisation of IBS-associated pathology. GI gastrointestinal, EC enterochromaffin, 5-HT serotonin



Page 7 of 19Pretorius and Smith ﻿J Biomed Sci           (2020) 27:95 	

these decarboxylation mechanisms represent an impor-
tant ecological tool, which can confer a competitive 
advantage in acid or nutritional stress conditions [75, 
178, 179, 195].

Of the potential health risks related to biogenic amines, 
the most severe symptoms are said to be caused by his-
tamine and TYR [13]. Interestingly, a study investigating 
the self-reported food intolerance of 197 IBS patients, 
reported that 84% of these individuals recounted symp-
toms related to at least one of the surveyed foodstuffs, of 
which, 58% experienced GI symptoms from foods rich 
in biogenic amines (wine, beer, salami and cheese) [28]. 
Additionally, histamine-containing food were also con-
sidered as causes of IBS-related symptoms. The resultant 
symptoms are reportedly induced via chemo-stimulation 
of gut or immune cell receptors [88]. Of note, the authors 
also reported that females reported more food items 
causing symptoms than males [28], although no potential 
explanation was provided. This study, along with several 
others, emphasises the high perceived food intolerance 
among IBS patients [57, 152, 211]. Histamine (a weak 
TAAR1 agonist) is directly involved in inflammation, 
while TYR intoxication facilitates the “cheese reaction”. 
This reaction, most commonly described in the context 
of cheese consumption, is the result of a food-drug inter-
action, where the food can be any TYR rich food and the 
drug usually a non-selective monoamine oxidase inhibi-
tor (MAOI). Mechanistically, TYR increases sympathetic 
responses by indirectly acting as a sympathomimetic 
(displaces stored norepinephrine (NE)), thereby increas-
ing the levels of circulating NE. The use of MAOI exac-
erbates this action by inhibiting the metabolism of both 
TYR and NE. As such, symptoms of the “cheese reaction” 
include dietary-induced migraine, nausea, vomiting, 
increased cardiac output, respiratory difficulties and ele-
vated blood glucose levels [135]. This has had important 
implications in patients using MAOI, in which not even 
low levels of biogenic amines can be metabolised effec-
tively [200]. MOAI have been prescribed to patients with 
chronic anxiety to improve 5-HT signaling, and intrigu-
ingly, 54 to 94% of treatment-seeking IBS patients will 
have a co-morbid psychiatric disorder [67, 199] of which, 
anxiety and depression are the most common. The result-
ant biogenic amine sensitivity that these patients experi-
enced led to the development of new generation MAOI, 
so-called reversible MAO-A inhibitors [145].

As mentioned, histamine is indeed a weak TAAR1 ago-
nist [250], and various reports suggest between 5 and 
> 50 μM are required for the activation of TAAR1 (similar 
potency as TRP, NE and synephrine) [29, 127, 237]. Even 
though patients with IBS reportedly have elevated levels 
of histamine in mucosal supernatants/biopsies, of up to 
50 ng/mL mg [32, 91], it is unlikely that these endogenous 

levels result in TAAR1 activation. However, exogenous or 
dietary histamine consumption could contribute signifi-
cantly to the levels of histamine in the gut, contributing 
to potentially detrimental effects—although most likely 
independent of TAAR1 activation. For example, certain 
fish and varieties of cheeses contain up to 2000  mg/kg 
of histamine, and the ingestion of 75 mg of histamine is 
reported to cause symptoms of intoxication in healthy 
individuals [188, 236]. A recent study by del Rio et  al. 
[60] also reported that co-treatment (on HT-29′s) with 
TYR and histamine was associated with stronger (or syn-
ergistic) cytotoxic effects in  vitro than treatment with 
either TYR or histamine alone, an effect achieved in the 
absence of TAAR1. These results indicate that histamine 
increases the cytotoxicity of TYR at concentrations prev-
alent in some foods (levels generally considered safe for 
consumption) [60].

While the symptoms of the “cheese reaction” and hista-
mine intoxication are not specific to IBS, other biogenic 
amines may similarly trigger IBS-specific symptoms by 
promoting visceral hypersensitivity via the action of bio-
active mediators and/or luminal distention [10, 55, 238]. 
As such, other biogenic amines (PEA, putrescine, cadav-
erine, agmatine and spermidine) can also cause toxicity, 
but in cases where multiple biogenic amines are present, 
they are said to potentiate the effects of histamine and 
TYR by inhibiting their metabolizing enzymes [176]. 
Taken together, the toxicity of any biogenic amine will 
depend on the type of amine, the amount of amine, the 
individual host sensitivity or allergy, and the consump-
tion of MOA inhibitory drugs (or ethanol), which inhibits 
or reduces the aminooxidase enzymatic systems respon-
sible for the detoxification of exogenous amines [207].

While these health risks are well-researched with 
regard to food safety and regulation [201], it is concerning 
that many LAB are commonly used as probiotics. Indeed, 
another study has raised concern that some Lactobacillus 
rhamnosus strains often used in probiotics may produce 
biogenic amines [129]. Moreover, not only LAB predomi-
nant probiotics should be considered, but probiotics with 
Enterococcus, Streptococcus, and Lactococcus species may 
also potentially produce biogenic amines [13]. In fact, 
decarboxylase activity is often expressed independently 
of cell viability, since these enzymes maintain activ-
ity after cell lysis, even in harsh environmental condi-
tions [82, 120, 154, 196]. As such, it may be premature to 
advocate probiotic treatment as a blanket supplementa-
tion strategy for therapeutic relief of IBS patients, and at 
least some individualisation is required to increase effi-
cacy and mitigate risks of adverse outcomes. Beyond the 
importance of investigating the decarboxylation activity 
of probiotic or functional cultures before their use, in the 
context of gastrointestinal disease and symptomology, 
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it may also be important to elucidate negative effects (if 
any), that chronic exposure to low levels of these biogenic 
amines could cause.

Microbial‑derived TA modulate host functioning
It is proposed that through the production of bioactive 
metabolites, such as biogenic amines, the gut microbiota 
may increase an individual’s susceptibility to GI inflam-
mation via modification of intestinal epithelial function 
and mucosal immune activity [46, 235]. For example, 
several intestinal microbes synthesize various amino acid 
decarboxylases, which means that they have the capa-
bility to sequester amino acids, convert them into TA, 
and thereby alter the distribution of metabolites, such 
as calcium, 5-HT, trimethylamine N-oxide (TMAO) and 
immune cell mediators in the host, as part of the symbi-
otic relationship between the gut microbiome and host. 
However, changes in TA metabolism have already been 
correlated to both inflammation of the bowel [233] and 
decreased microbiome complexity (dysbiosis) [205], 
which suggests that in pathological states, this altered TA 
metabolism may have functional consequences, that may 
manifest as or promote disease symptomology. Given 
the strong links of IBS with depression, and that micro-
bial-derived biogenic amines are similar in structure to 
monoamine neurotransmitters, TA/TAAR1 should be 
considered as potential biomarkers and/or therapeutic 
targets. To motivate this point, this section will discuss 
(i) the significant presence of TA-producing microbes in 
the gut, (ii) the optimal conditions of a dysbiotic gut for 
the generation of microbial-derived TA and, finally (iii) 
an example of functional modulation by trimethylamine 
(TMA) and TMAO.

Firstly, in intestinal metagenomes of healthy individu-
als, tryptophan decarboxylase homologs were found to 
be present in 9% to 17% of individuals, suggesting that 
microbe-derived TRP may be more prevalent in the gut 
than previously thought [232]. Indeed, the gut micro-
biome of IBS patients is often dominated by Firmicutes 
[105], the phylum from which the majority of the tryp-
tophan decarboxylases derive. In fact, the gut micro-
biota features a myriad of metabolizing enzymes, such 
as various decarboxylases, dehalogenases and amine 
oxidases, which may facilitate the formation of other 
TAs (e.g. octopamine and synephrine), as well as func-
tionally active TA-metabolites. While no studies have 
investigated the percentage of TA producing bacteria in 
IBS populations compared to healthy individuals, these 
results suggest that the TA-production capacity of the 
gut microbiome is significant, and has been largely over-
looked or underestimated.

Secondly, according to two independent in vitro stud-
ies on known microbial producers of TA (Lactobacillus 

brevis CECT 4669, Enterococcus faecium BIFI-58 and 
E. faecium EF37), various physiochemical factors influ-
ence microbial synthesis of TA [81, 138]. These factors 
include incubation temperature and time, environmen-
tal pH, pyridoxal-5-phosphate supplementation, sodium 
chloride concentration and most importantly, amino acid 
substrate availability, most of which are optimal within 
the human GIT. Of note, some of these factors may be 
altered in pathological states, towards promoting micro-
bial TA production. For example, luminal pH is report-
edly altered in individuals with dysbiosis, and this may 
contribute to mucosal inflammation and enterocyte 
dysfunction [24]. With regard to IBS, Ringel-Kulka et al. 
[190] reported that colonic intraluminal pH levels were 
significantly lower in IBS patients (all disease subtypes) 
when compared to controls. Similar findings have also 
been reported in patients with IBD [164], with one study 
reporting low colonic luminal pH values (pH 5.3 patients 
vs pH 6.8 controls), which were associated with active 
disease states [206]. Interestingly, a pH range of 4 to 5.5 is 
reported to increase amino acid decarboxylase activities 
and thus enhance TA production [81, 138]. This micro-
bial response is a well-documented adaption to pH/acid 
stress (as already briefly discussed in “TA “toxicity” risk” 
section), and suggests that more efficient TA production 
may occur in individuals with dysbiosis.

Finally, TMA is a selective agonist of TAAR5 [126, 227, 
245], and there is no known mammalian pathway for its 
synthesis. As such, the production of TMA seems to be 
exclusive to the metabolism of choline, betaine, and car-
nitine by microbes [52, 108, 248], with the administration 
of antibiotics to mice, reducing the levels of urinary TMA 
[79, 240]. Interestingly, raised levels of TMA have been 
reported to result from dysbiosis at various mucosal sites, 
such as intestines, in both mice and human models [74, 
246]. While increased levels of TMAO are generally asso-
ciated with extra-intestinal diseases (CVD), TMAO may 
cause intestinal inflammation and oxidative stress [40]. 
Considering that TAAR5 expression has been reported 
for several leukocyte populations [8], particularly B lym-
phocytes, it is clear that increased levels of either TMA 
or TMAO could be involved in initiating or perpetuating 
intestinal inflammation, as is common in IBS. Moreover, 
altered levels of TMA/TMAO can reportedly alter the 
growth and secretion of metabolites of several intestinal 
bacteria [102]. As such, TMA/TMAO not only affects 
host functioning, but can alter the luminal environment 
too, perpetuating dysbiosis.

Mechanism of action of TA in the gut
Perhaps due to a relative lack of cross-disciplinary com-
munication in this context, despite the knowledge of 
their existence, or perhaps as a result of the bias in favour 
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of compositional, rather than functional assessment of 
the gut microbiome, data on the specific actions of TA in 
the human gut are still relatively limited. However, some 
insights into the function of TA in the context of IBS may 
be derived by considering their extra-intestinal effects.

Direct cellular effects of TA
Direct cytotoxic effects of PEA, TRP and TYR on Mon-
oMac-6 and HEK293 cell lines was investigated (MTT 
assay) [133]. Data showed that 62.5  μg/mL of each TA 
independently reduced MonoMac-6 viability by 20%, and 
125 μg/mL of TRP reduced MonoMac-6 viability by 80%. 
While the HEK293 cells were more resistant to the cyto-
toxic effects of the TA, 500 μg/mL of TRP also reduced 
viability by more than 80%. From this study, the most 
cytotoxic TA seems to be TRP, while TYR had the least 
cytotoxic effects. However, the lack of an in vivo context 
limits the interpretations which can be made by these 
data. Moreover, the lack of reported absolute concentra-
tions of endogenous TAs in the gut/intestinal mucosa of 
humans makes it difficult to draw firm conclusions on the 
physiological relevance of these findings and the specific 
doses. To “bridge” this gap in literature, we propose the 
consideration of firstly, the contribution of exogenous TA 
consumption (in food) to levels in the gut. For example, 
it has been previously reported that dietary concentra-
tions of PEA and TYR indeed stimulate the gut, altering 
intestinal blood flow in an ex vivo model [31]. Secondly, 
we considered that the contribution of TAs derived from 
major TA-producing microbes in  vitro, suggests that 
the TA range selected for the generation of the WST-1 
data is feasible. For example, Staphylococcus pseudinter-
medius ED99 cultured in media containing 2  mg/mL 
of l-tryptophan, l-phenylalanine and l-tyrosine pro-
duces 231 ± 10  μg/mL TRP, 557 ± 8  μg/mL of PEA and 
360 ± 9  μg/mL TYR in  vitro [133]. These data suggest 
that in the gut, in the presence of potentially numerous 
TA-producing microbes, significant concentrations of 
TAs may be present. Thus, while the endogenous levels 
of TAs are not known, the exogenous (and potentially 
endogenous) contribution may be significant enough to 
suggest physiological relevance.

Moreover, the presence or production of TA is 
reported to enhance the ability of Staphylococcus and 
Enterococcus spp. to adhere to intestinal epithelium, 
promoting consequential internalization and entero-
cyte cytokine secretion [75, 133], potentiating coloniza-
tion as a potential adaptive advantage for these species. 
Indeed, TA bound to the α2-adrenergic receptor induced 
cytoskeletal reorganisation, which facilitated host cell 
colonization to boost adherence of both TA-producing 
and non-TA-producing bacteria [133]. Interestingly, the 
addition of 10 mM tyrosine (which resulted in formation 

of ± 140  nmol TYR) significantly improved bacterial 
adherence to colon epithelium by threefold, while direct 
supplementation with 140  μM of TYR did not affect 
adherence [75]. The authors speculated that the activa-
tion of the TYR biosynthetic pathway, rather than the 
production of TYR, could be involved in the enhance-
ment of microbial adhesion. Nevertheless, this data illus-
trates the complex mechanisms at play to facilitate TA 
effects.

Taken together, these results suggest that dose specific-
ity is an important consideration. What is not known, is 
the range in which microbes potentially benefit from TA 
(producing or produced), while conferring host cytotox-
icity, and what implications this could have for IBS.

In terms of enteroendocrine function, PEA was 
reported to stimulate gastrin secretion from stomach 
G cells in a rat model [61]—which in the IBS context is 
linked to ulceration and dyspepsia [69]. This again points 
to a direct detrimental effect of TA in the IBS context.

With regard to colonic ion secretion, TRP in particu-
lar was reported to promote colonic ion secretion [232], 
however the nature of this ion secretion and potential 
preference to a specific ion(s) were not reported and thus, 
require further investigation before interpretation of the 
significance of this finding is possible. Nevertheless, this 
data potentially suggests that TRP-mediated signalling 
might affect GI transit. Furthermore, from the known 
effects already outlined for E2, we can postulate that in 
general E2 and TAs, such as TRP, have opposing effects 
on colonic ion secretion and GI motility. This could 
explain an exacerbation of symptomology during menses, 
when ion secretion and thus GI motility shifts from one 
side of the spectrum to the other in female patients, an 
effect that would be heightened in the presence of a high 
TA (or at least TRP) load. The potential of manipulating 
TRP levels to achieve optimal GI transit in IBS, warrants 
TA profiling in IBS.

Modulation of oxidative stress and inflammation
Intracellular accumulation of Ca2+ is commonly associ-
ated with oxidative stress, damage and inflammation in 
various chronic conditions. Of relevance in this context, 
binding of TA to human TAAR1 results in the influx of 
Ca2+ as a result of activated TAAR1 coupling to Gαs and 
Gq proteins [158]. Upon stimulation of these G-proteins, 
intracellular messengers such as cAMP and IP3 accumu-
late and activate downstream proteins such as PKB and 
PKC, which mobilize intracellular Ca2+ stores, as well as 
promote extracellular Ca2+ influx [29, 30, 33, 127]. Exces-
sive Ca2+ influx may lead to endoplasmic reticulum stress 
and mitochondrial dysfunction, rendering a cell with an 
unfavourable redox profile, and thus several regulatory 
mechanisms intricately control intracellular Ca2+ levels. 
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However, in overabundance of TA, regulatory mecha-
nisms may be overwhelmed. In line with this, hista-
mine—a known mediator of inflammation and known to 
be increased in IBS—has also been reported to increase 
the intracellular Ca2+ response in an EC cell line (P-STS) 
[181]. Apart from the resultant direct oxidative stress, 
histamine and TA may also exacerbate aberrant 5-HT 
signalling linked to IBS symptomology (altered GI motil-
ity, visceral hypersensitivity and immune activation). 
Interestingly, TA may also indirectly cause increased sus-
ceptibility to oxidative stress through their modulation 
of serotonin, as 5-HT2A receptor activity was found to 
increase intracellular calcium via the mitogen-activated 
protein kinase pathway [229]. This may cause an intracel-
lular Ca2+ burden within the surrounding intestinal tis-
sue, resulting in symptoms such as abdominal pain. As 
such, it may be important to consider targeting TA avail-
ability or modulation of TAAR1 expression in an effort 
to curb Ca2+-associated visceral hypersensitivity in IBS 
patients with severe abdominal pain.

Another common trace amine, 3-iodothyronamine 
(T1AM), may also contribute to changes in Ca2+ home-
ostasis and alter the pro- and antioxidant balance in the 
intestine and surrounding tissue by interacting with vari-
ous receptors (such as α2-adrenergic receptor) [101, 249]. 
For example, T1AM reportedly increased the amount 
of hydrogen peroxide released by rat liver mitochon-
dria [223]. Interestingly, Chiellini et  al. [42] reported 
that exogenous T1AM (and its metabolites) primarily 
undergo biliary and urinary excretion, and subsequent 
reports have suggested the presence of significant endog-
enous levels of T1AM in stomach and intestine, at least 
in mice [100], suggesting that the pro-oxidative effects 
of T1AM may not be limited to the liver. While the pre-
cise biosynthesis of T1AM in humans remains to be con-
firmed, Hoefig et  al. [100] has demonstrated that the 
intestine expresses the enzymatic machinery (intestinal 
deiodinases and ornithine decarboxylase) required for 
T1AM biosynthesis from thyroxine, while other authors 
highlight the potential of the gut microbiota to generate 
T1AM [89, 203]. In terms of relevance to IBS, interac-
tions of T1AM with histaminergic circuitries has been 
proposed [249], warranting investigation in the con-
text of both inflammation and oxidative stress related 
symptomology.

In terms of inflammation a relatively recent metabo-
lomics study indicated elevated faecal PEA levels in 
patients with Crohn disease [103], suggesting a pro-
inflammatory effect for trace aminergic signalling. Simi-
larly, abundance of Faecalibacterium prausnitzii—a 
species that has a reported role in mitigating inflamma-
tion in the colon [128, 149]—also correlated inversely 
with PEA levels in IBD patients [205]. Since significant 

consumption of phenylalanine is associated with growth 
of F. prausnitzii [95], its absence in dysbiotic conditions 
may increase the availability of phenylalanine to TA-pro-
ducing microbes, resulting in elevated PEA levels. This 
potential mechanism should be evaluated more compre-
hensively in IBS-specific models.

Furthermore, PEA and TYR are chemotactic for poly-
morphonuclear cells (PMN) [8], major role players in 
inflammation and in particular, secondary damage to 
host tissue during inflammation. Considering that low 
levels of TA are normally present in the GIT—the inter-
face between mucosal immunity and microbes—it is pos-
sible that in dysbiosis, the ensuing immune activation 
and altered microbial behaviour may promote or exacer-
bate intestinal inflammation. Within the context of IBS, 
and specifically female-predominance, it is necessary for 
future experiments to elucidate the contribution of TA 
to chronic intestinal inflammation, and whether or not 
female reproductive hormones affect this in any way.

The role of TAARs
Most TAAR-related research to date was performed in 
microbiology contexts. Although some neurophysiol-
ogy investigations have reported on TAAR, this niche 
is largely unexplored. Generally, the available litera-
ture seem to suggest that TA and TAAR are not exclu-
sively “paired”, with TA able to act as ligand for several 
other receptors. Furthermore, TAARs—in particular 
TAAR1—seems to be a rate-limiting factor in TA-associ-
ated effects, as its presence have been linked to opposite 
effects than described for TA.

For example, in contrast to the over secretion of gas-
trin linked to TA, TAAR1 activation by a selective small 
molecule agonist was associated with elevated plasma 
levels of peptide tyrosine tyrosine (PYY) and glucagon-
like peptide-1 (GLP-1) [186], which may be protective, as 
decreased levels of secreted PYY and GLP-1 from L-cells 
are implicated in IBS pathogenesis and symptomology 
[70, 167]. Similarly, in terms of modulation of leukocyte 
responses specifically, TAAR1 is differentially expressed 
in several leukocyte populations, such as PMN, B and T 
lymphocytes, monocytes, and natural killer cells [8, 56, 
160, 214], thus TAAR1 activation may regulate leukocyte 
differentiation and activation. Indeed, expression of both 
TAAR1 mRNA and protein components are upregulated 
in primary human lymphocytes after activation with 
PMA and PHA [160, 228]. However, one would expect 
in the context of IBS, that chronic (rather than acute) 
activation may downregulate TAAR expression over-
time. As such, the importance of conducting in/ex vivo 
testing should be emphasized, and certainly warrants 
future investigations. Furthermore, T helper lymphocyte 
differentiation toward Th2 phenotype may be regulated 
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by the activation of leukocyte TAAR1 and TAAR2 [8]. 
However, in the same study, TAAR1 and TAAR2 activa-
tion were also reported to mediate IL-4 secretion from T 
lymphocytes and immunoglobulin E (IgE) secretion from 
B lymphocytes [8]. Of relevance to the allergy-like symp-
toms prevalent in IBS, both IL-4 and IgE mediate allergic 
inflammatory responses [173, 216], inducing mast cells to 
release histamine upon IgE binding, and are implicated 
as central role players in IBS [12, 125]. This seemingly 
dichotomous role for TAAR in the activation of immune 
cells remain to be further elucidated.

In terms of its effect on serotonergic signalling, highest 
predominance of TAAR1 is described in neuronal amin-
ergic pathways [18]. Of specific relevance, in a rodent 
knockout model, the absence of TAAR1 was associated 
with increased aminergic (dopaminergic and serotoner-
gic) signalling [177], again suggesting a dampening effect 
for TAAR1. In terms of applicability to this review, IBS-
associated 5-HT dysregulation—which is implicated in 
altered GI motility [132, 221] and visceral hypersensitiv-
ity [143]—is already therapeutically targeted by 5-HT3R 
antagonists [85, 141]. Assuming that a higher TA load 
results in reduced TAAR1 expression (specifically in EC 
cells) in chronic conditions, a more accurately targeted 
approach might include modulation of trace aminer-
gic signalling, thereby eliminating the cause of 5-HT 
dysregulation.

It is important to note, however, that TAAR signal-
ling is additionally complicated by three factors. Firstly, 
genetic variations in the form of TAAR polymorphisms, 
as well as their clinical relevance, cannot be excluded 
[46], since function-altering polymorphisms of TAAR1 
[209] and TAAR2 [27] have already been reported. Sec-
ondly, TAAR expression is often recorded in acute, 
in vitro models. According to basic ligand/receptor rela-
tions, receptor expression is generally downregulated 
when ligands are overexpressed chronically, however, this 
notion is complicated by the very location and nature of 
TAARs. It is generally accepted that TAAR1 is primarily 
located intracellularly [177]. How this unique behaviour 
translates to altered receptor expression is still unknown. 
Lastly, TAAR reportedly undergoes heterodimeriza-
tion, which may result in biased signalling outputs [19]. 
Indeed, it has been reported that this heterodimerization 
modulates the signalling capacities of GPCRs, thereby 
altering their sensitivity for ligands [63, 202]. Putative 
candidates include adrenergic, serotoninergic, dopamin-
ergic and glutaminergic receptors, and as such, signal 
modulation by receptor pairs is largely underestimated, 
especially considering the vast expression of GPCRs in 
any one cell [189]. Interestingly, GPCR distribution and 
expression is dependent on several factors, including 
gender and disease condition. To add to the complexity, 

intermediate receptor pairings have also been suggested 
[212], further complicating pharmacological and drug 
discovery studies. As such, Berry et al. [18] suggested tar-
geting GPCR dimers, which should mitigate undesired 
side effects and increase ligand selectivity.

These data suggest that TAAR1 may have a modula-
tory (down-regulatory) role in trace aminergic signalling, 
but that this effect may be dependent on nature of recep-
tors with which heterodimers are formed upon ligand 
binding. Given the clear role for TA in IBS aetiology and 
symptomology, elucidation of the potential of TAAR as 
therapeutic target is high priority.

The importance of the trace aminergic system as a mul-
tipronged role player, which effects many sites, is visu-
ally represented in Fig. 2. This includes a summary of the 
known functions of TA in the GIT, and the plausible links 
to IBS symptomology.

Is trace aminergic signalling gender dependent?
Turning attention back now to the female predominance 
in IBS, it is important to consider whether trace amin-
ergic signalling also shows gender-dependence, as this 
may impact on not only drug discovery, but also patient 
management.

Indeed, with the emergence of the concept “micro-
genderome”, researchers have shown that the microbi-
ome is both shaped by reproductive hormones and that 
the microbes in turn are able to regulate levels of these 
hormones [76]. An example of this is prevalent when one 
considers the more specific “estrobolome” [119, 183], 
which collectively encompasses intestinal microbes (or 
rather their gene repertoire) capable of producing estro-
gen metabolizing enzymes (such as β-glucuronidase). 
In healthy individuals the actions of the estrobolome 
increases intestinal reabsorption of estrogens, while in 
dysbiotic conditions this is reduced [9]. Similarly, the 
microgenderome can also modulate 5-HT signaling (as 
discussed earlier) and interestingly again do so via estro-
gens. As such, the effect that altered trace aminergic sig-
nalling could have on 5-HT release and action, could be 
predetermined by lifelong exposure to and priming by E2.

Furthermore, TAAR signalling is differentially acti-
vated by distinct TA profiles in different genders. Indeed, 
in a study by Liberles and Buck [126] murine TAAR5 
was reported to respond strongly to extremely diluted 
urine from male mice, but not female mice or prepubes-
cent males. Notably, three ligands identified for murine 
TAARs (mTAARs) are natural components of mouse 
urine: PEA, isoamylamine and TMA, which act as ligands 
for mTAAR4, mTAAR3 and mTAAR5 respectively, of 
which isoamylamine and TMA are enriched in male vs 
female mouse urine [83, 161]. Furthermore, isoamyla-
mine in male urine is reported to act as a pheromone, 
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fast-tracking the onset of puberty in female mice [161]. 
Thus, by utilizing mTAAR5, mice could theoretically 
determine the gender and sexual status of other mice, 
which suggest that at least some mTAARs detect social 
cues [94, 163] that may stimulate certain behaviours or 
physiological responses. While this study has not been 
replicated in humans, we are of the opinion that altered 
trace aminergic signalling (as reported in modern chronic 

diseases) may be the result of altered gender dynamics. 
In modern society, with the rise of female emancipation 
and modern hygiene practices, both females and males 
may have inadvertently altered their ‘social cues’. This of 
course remains to be confirmed, as this may have far-
reaching implications for disease preventative strate-
gies in IBS-high risk populations. Nevertheless, the little 
available data suggest that amount and distribution of at 

Fig. 2  Altered trace aminergic homeostasis as a potential aetiological factor in IBS pathogenesis. The predominant risk factor promoting altered 
trace aminergic signalling in the GIT is functional microbial dysbiosis, which varies TA load. This altered signalling is gender dependent, and results 
in functional consequences, which manifest as clinical IBS symptoms. TA trace amine, TAAR​ trace amine associated receptor, IgE immunoglobulin E, 
IL-4 interleukin 4, GLP-1 glucagon-like peptide-1, PYY peptide tyrosine tyrosine, HPA hypothalamic pituitary axis, 5-HT serotonin, ENS enteric nervous 
system, GI gastrointestinal, PMN polymorphonuclear cells
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least some TA within a host are gender (or even sexual 
status) specific, which may have implications for diseases 
in which onset parallels the onset of puberty, such as IBS.

Another link between gender and altered TA homeo-
stasis is chronic psychological stress. According to sev-
eral studies, elevated PEA levels in urine correlated with 
increased stress and stress response, in both humans 
and rodents [65, 92, 174, 213]. Typically, it was thought 
that women are more vulnerable to life stress [208, 241], 
and are more prone to depression, anxiety and somatiza-
tion than men [2, 25, 49]. Women also seem to present 
with exaggerated IBS symptoms when stressed [98]. In 
addition, gender-related differences in the prevalence of 
depression becomes apparent after menarche and con-
tinued until peri-menopause [93], which parallels IBS 
symptom peak onset. These studies, along with several 
more recent studies, report evidence for sexual dimor-
phism in stress response in the context of IBS [110, 
111, 225]. However, the link between chronic stress and 
increased urinary PEA levels is less clear, although lim-
ited research to date does again point to an estrogen link 
in this context. Interestingly, in a study investigating the 
relationship of urinary PEA levels and personality traits 
(MMPI) in healthy individuals, reported that males had 
lower PEA levels [151], a finding that had previously also 
been reported [182]. Although concrete mechanisms 
and IBS specific data is lacking, current data supports an 
interpretation in favour of a gender dependence in trace 
aminergic signalling. As such, fluctuations of especially 
female reproductive hormones may alter trace aminer-
gic signalling. Given the comprehensive body of litera-
ture that already exist on female reproductive hormone 
replacement therapy, it may be possible to expand on the 
manipulation of hormone levels for therapeutic effect in 
IBS. This option warrants further research in this context.

Where to from here?
From the literature reviewed here, both female reproduc-
tive hormones (especially E2) and TA potentially modu-
late EC cell functioning. While no studies have directly 
explored the role of an altered trace aminergic system 
in patients with IBS, it is eluded to. The fact that TAARs 
are present in almost all leukocyte populations, and the 
supply of significant amounts of their ligands (TA) origi-
nate from food and gut microbiota, suggests that the 
trace aminergic system is conveniently positioned at the 
interface of diet/nutrition, gut microbiome, and mucosal 
immunity, all of which are implicated as aetiological fac-
tors in IBS pathogenesis. In terms of proposed mecha-
nisms, dyshomeostasis of the trace aminergic system 
may result in altered colonic ion secretion, hyperreactiv-
ity of the immune system and fluctuations of 5-HT lev-
els causing aberrant 5-HT signalling. While disruption 

of trace aminergic homeostasis may occur due to TAAR 
polymorphisms or increased TA supply due to changes 
in diet, functional microbial dysbiosis seems to be the 
predominant risk factor. Aberrant trace aminergic func-
tioning can result in altered leukocyte differentiation, 
activation and chemotaxis, all while microbes more effi-
ciently adhere to and infiltrate intestinal epithelium. The 
ensuing pro-inflammatory state of the gut could mani-
fest in the symptomology clinically prevalent in IBS. As 
such, we suggest that microbial-derived TA (and the 
functional consequences perpetuated by the trace amin-
ergic system) should be considered aetiological factors 
in the pathogenesis of IBS. Furthermore, since an altered 
trace aminergic system results in fluctuations of intes-
tinal 5-HT, which is already targeted for modulation by 
current medications for IBS, then it is feasible to suggest 
that TAARs be considered targets for future therapeutic 
action, with the specific focus of reducing oxidative stress 
and inflammation.

Conclusions
In conclusion, the microgenderome concept may explain, 
at least in part, the gender bias observed in many chronic 
inflammatory conditions. The notion of host-intrinsic 
factors, which are reinforced and manipulated by com-
mensal bacteria, could underpin the relationship between 
an altered trace aminergic homeostasis and female pre-
dominance in IBS. In order to elucidate the nature of 
relationship between the trace aminergic system and 
reproductive hormones, specifically E2, and their influ-
ence on IBS, areas of overlap, such as modulation of sero-
tonin and ion secretion and susceptibility to oxidative 
stress and inflammation requires further investigation.
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