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Abstract

Mesenchymal stem/stromal cells (MSCs) are a promising resource for cell-based therapy because of their high immu-
nomodulation ability, tropism towards inflamed and injured tissues, and their easy access and isolation. Currently,
there are more than 1200 registered MSC clinical trials globally. However, a lack of standardized methods to character-
ize cell safety, efficacy, and biodistribution dramatically hinders the progress of MSC utility in clinical practice. In this
review, we summarize the current state of MSC-based cell therapy, focusing on the systemic safety and biodistribu-
tion of MSCs. MSC-associated risks of tumor initiation and promotion and the underlying mechanisms of these risks
are discussed. In addition, MSC biodistribution methodology and the pharmacokinetics and pharmacodynamics of
cell therapies are addressed. Better understanding of the systemic safety and biodistribution of MSCs will facilitate
future clinical applications of precision medicine using stem cells.
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Introduction

Cell therapy has become one of the most important
emerging medical treatments in the world. Treatments
utilizing stem cells, induced pluripotent stem cells
(iPSCs), somatic cells, and immune cells are well docu-
mented [1]. Many cell therapy products have already
received global market approval. Among them, the mes-
enchymal/stromal stem cells (MSCs) present a promising
tool for the treatment of various diseases.
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MSCs were first isolated and described by Friedenstein
and his colleagues as adherent and highly replicative cells
that can differentiate into mesodermal lineages including
osteoblasts, chondrocytes, adipocytes, and hematopoi-
etic stroma [2]. Since then, these cells have gained atten-
tion in the field of cell therapy for their tropism towards
injured/inflamed tissues, their immunomodulatory
capabilities [3], and their relative ease of isolation and
expansion [4]. MSCs can be isolated from many sources,
including bone marrow [5], umbilical cord [6], adipose
tissue [7], cord blood [6], placenta [8], dental pulp [9],
endometrium [10], amniotic fluid [11], skeletal muscle
tissue [12], lung tissue [13], liver tissue [7, 12] and der-
mal tissue [12], and many of these cells have been used
in clinical studies (Fig. 1a). The characteristics of MSCs
make them attractive as cellular therapeutic agents for
regenerative medicine and immune-related diseases.
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(See figure on next page.)

Fig. 1 MSC sources and clinical indications in clinical studies. As of October 11, 2020, 1,242 registered studies were identified on clinicaltrials.gov
by searching keywords ‘mesenchymal stem cell” or ‘mesenchymal stromal cell” (Additional file 1). After excluding studies with no longer available/
suspended/ temporarily not available/ terminated/ unknown/ withdrawn status, unknown phase information, and studies that did not use MSCs in
their intervention arm, 639 studies remained. Nine of these 639 studies investigated MSCs from two tissue origins, generating a total of 648 studies
for analysis. a Tissue origins of MSCs in clinical studies, b number of MSC-related clinical studies by medical specialty, and ¢ the top 20 disease

indications of MSC-related clinical studies

The first clinical trial of MSCs was reported in 1995 in
patients with hematologic malignancies. Lazarus et al.
demonstrated that ex vivo expansion and subsequent
infusion of human bone marrow-derived stromal progen-
itor cells (BMMSCs) in patients caused no severe adverse
effects [14]. Subsequently, treatment with BMMSCs was
shown to provide clinical improvement in the rare skel-
etal disease osteogenesis imperfecta [15]. Furthermore,
many clinical trials have examined the feasibility and
efficacy of MSCs for the treatment of various conditions,
including acute organ failure [16-18], graft-versus-host
disease (GVHD) [19-21], ischemic heart disease [22, 23],
cardiovascular disease [24, 25], liver cirrhosis [26], diabe-
tes [27, 28], spinal cord injury [29-31], and bone/carti-
lage injury [32-37] (Table 1). According to the National
Institutes of Health (http://www.clinicaltrial.gov/), the
number of registered MSC-based clinical trials was over
1,200 as of October 11, 2020, of which approximately 600
had defined phase and status (Fig. 1b, ¢, Additional file 1
and Additional file 2). Most of the studies to date are
phase 1 and phase 2 trials which evaluate safety and fea-
sibility, and evidence of therapeutic efficacy is still lack-
ing (Fig. 1). The most common indications of MSC-based
cellular therapy include osteoarthritis, ischemic heart
disease, graft-versus-host disease, spinal cord injury, and
multiple sclerosis (Fig. 1c). In addition, since the eleva-
tion of coronavirus disease-19 (COVID-19) outbreak
to pandemic status on March 11, 2020 [38], numerous
MSC-based studies have been registered, and COVID-
19 related pneumonia and acute respiratory distress syn-
drome (ARDS) has risen as the second most common
indication as of October 11, 2020 (Fig. 1c). The rapid
global response and increase of COVID-19 related MSC
trials highlighted the promise of MSCs in treatment of
inflammatory and immune diseases.

Although studies on MSCs are well-documented, MSC-
based cellular products still have not been approved by
the US Food and Drug Administration. The lack of con-
sistent and standardized methods for characterizing the
safety and efficacy of MSC products is a major concern,
which dramatically slows the progress of MSC therapy
towards clinical use. The safety of cellular products is
always the first priority. Although some MSCs have been
shown to be safe for clinical use in a previous meta-anal-
ysis, whether this conclusion can be extended to MSCs

from other tissue origins or different culture conditions
is still uncertain (Fig. 1a) [39]. The risk associated with
MSC products centers around their capability to initiate
and promote tumors. These risks, as well as the biodis-
tribution of systemically administered cells must be bet-
ter clarified before the widespread use of MSCs in clinical
practice. In this review article, we focus on the effects of
MSCs on tumor promotion and suppression, and discuss
methods to study their biodistribution.

MSC-based mechanisms of action

Several possible mechanisms by which MSCs exert their
beneficial effects have been proposed. Early studies
reported that MSCs could migrate to sites of injury and
then differentiate into functional cells [40], or that they
could fuse with compromised cells to regenerate dam-
aged tissues [41, 42]. More recent studies have demon-
strated that paracrine factors [43, 44], mitochondrial
transfer [45], and extracellular vesicle secretion [46] have
important roles in mediating the effects of MSCs.

Paracrine effects

MSCs secrete paracrine factors, including cytokines,
chemokines, growth factors, and miRNAs. MSC trans-
plantation or administration of isolated secreted factors
enables MSC paracrine factors to get to injured tissues,
to help restore a healthy microenvironment to promote
tissue repair [47] (Table 2). MSC paracrine factors play
important roles in immunomodulation [48, 49], tissue
regeneration and healing [50, 51], anti-fibrosis [52, 53],
anti-apoptosis [54], and angiogenesis [55]. As such, many
studies have focused on altering culture conditions in
order to steer the secretome of MSCs towards therapeu-
tic agents. Alterations have included using MSCs from
different types of tissue [56, 57], oxygen concentration
[58], growth factor incubation or cytokine pretreatment
[59], passage number [60—62], three-dimensional sphe-
roid culturing [63], and mechanical strain [64].

The capability of MSCs for immunomodulation has
made them a useful treatment approach for inflammatory
disorders such as multiple sclerosis [65], Crohn’s disease
[66], GVHD [67], systemic lupus erythematosus [67],
and type I diabetes [68]. Inmunomodulation is depend-
ent on crosstalk between MSCs and the immune micro-
environment of the target tissue. In an inflammatory
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Table 1 Summary of MSC-based clinical/preclinical trials
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Indication Cell source Model

Quantification modality In vivo distribution

Acute organ failure Bone marrow, Bone Rat[17, 18]

Graft-versus-host disease (GvHD) Bone marrow

Histology/RT-PCR

Patients [19]  PCR

More exogenous human MSCs localized to injured
tissues

MSC DNA detected in lymph nodes

Ischemic disease Bone marrow Swine [22, 23] Histology/qPCR DAPI staining confirmed rapid cell loss after trans-
plantation
Lung cancer Umbilical cord Mouse [252]  PET-CT MSCs remained in the lungs up to 1 week after

Liver cirrhosis Bone marrow Patients [26]

Planar whole-body
acquisitions/SPECT

injection

MSCs accumulated in the lung first, MSCs in the
liver increased from 0.0%-2.8% to 13.0%—17.4% in
10 days

Diabetes Bone marrow Rat [28] Histology/qPCR MSCs detected in the diabetic kidneys at 24 and 48 h
after cell infusion. Cell engraftment also observed
in spleen and thymus at 24 h

Spinal cord injury Bone marrow Rat [299] CT/MRI After transplantation of BMMSCs, the hypersignal

Cartilage/bone injury Adipose

Rabbit [37] MRI

emerged in spinal cord in TTWI starting at day 7
that was focused at the injection site, which then
increased and extended until day 14

Representative tibial joint, regenerated meniscus and
joint surface of tibia at 6 and 12 weeks after surgery

BM bone marrow, MSCs mesenchymal stem/stromal cells, PCR polymerase chain reaction, PET positron emission tomography, SPECT single-photon emission

computed tomography, MRl magnetic resonance imaging, CT computed tomography

Table 2 MSC secreted factors involved in tumor promotion

Factors involved in tumor promotion

Cytokines IL6, TGF-B1, IL-8
Chemokines SDF-1, CXCL1, CCL2, CCL5
Angiogenic factors VEGF, Ang-1, PDGF, IGF
Growth factor NRG!1

Other factors periostin, PAI-1, Sema-7A

microRNAs

miR-21-5p, miR-410, MiR-142-3p, miR-23b

[125,132,133,139, 147,150, 159, 162, 165]
[123,124,136,142-144,150, 160, 162]
[148,162]

[135]

[134,162]

[126, 136, 145, 158]

microenvironment, proinflammatory cytokines, includ-
ing IL-1p, IL-6, IL-23, IFN-y, and TNF-a, can stimulate
MSC:s to secrete anti-inflammatory factors such as TNFa
stimulated gene (TSG)-6 [69], nitric oxide (NO) [70],
IL-10 [71], galectins [72], prostaglandin E2 (PGE2) [73],
and transforming growth factor (TGF)-p [3, 71]. Upon
exposure to these MSC-secreted anti-inflammatory sig-
nals, nuclear factor (NF)-kB activity and consequent
inflammatory cytokine expression in macrophages, den-
dritic cells, and T cells are inhibited, and immune cells
will express higher levels of anti-inflammatory cytokine
IL-10 as a result [3, 74]. The MSC paracrine factors also
interact with other immune cells and have been reported
to skew macrophage polarization towards the M2 phe-
notype, which downregulates both innate and adaptive
immune responses [75]. Regulatory T cells (Treg) were
also reported to stimulate MSCs to secrete indoleamine
2,3-dioxygenase (IDO), thereby augmenting the Treg
response and attenuating acute liver injury [3, 76].

In addition to their immunomodulation ability, MSCs
are able to secrete factors that can promote cell prolif-
eration, increase angiogenesis, and reduce cell apoptosis.
For example, MSCs can secrete growth and angiogen-
esis-promoting factors such as basic fibroblast growth
factor (bFGF) [77], insulin-like growth factor (IGF) [78],
TGE-p [3, 55], stromal cell-derived factor (SDF)-1a [79],
secreted frizzled-related protein-1/2 (SFRP1/2) [80, 81],
angiopoietins, and vascular endothelial growth factor
(VEGF) [82, 83].

It has been demonstrated that MSCs can inhibit fibro-
sis via paracrine factors [84]. Chronic inflammation is a
major factor that drives the fibrosis process, which can
alter the normal architectural structure of tissues and
lead to deteriorated functioning. Because MSCs can
be used to reduce inflammation, they have become an
attractive therapeutic strategy for suppressing fibrosis.
MSC-derived conditioned medium (CM) was shown
to attenuate liver fibrosis by reducing Th17 cells in a
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IDO-dependent manner [85]. MSC-secreted interleu-
kin 1 receptor antagonist (IL-1Ra) was also shown to
inhibit stellate cell activation and decrease type I col-
lagen expression, a key component of liver fibrosis [86].
Administration of MSC-CM also reduced fibrotic score
and collagen deposition in both bleomycin- and silica-
induced lung injury models [87, 88]. In MSC-treated
cells, levels of HGF, KGF, and BMP-7 increased while
levels of TGF-f1 and TNF-a decreased. These results
suggest that the anti-fibrotic effect of MSCs may be
mediated via paracrine mechanisms [88]. In support
of this, a bleomycin-induced lung injury model showed
that the stanniocalcin-1 (STC-1) secreted by MSCs in
response to TGF-B1 exerted antifibrotic effects by reduc-
ing oxidative stress, endoplasmic reticulum (ER) stress,
and TGF-B1 production in alveolar epithelial cells [89].
Likewise, MSCs were able to decrease the expression of
fibrosis-associated tissue inhibitor of matrix metallo-
proteinase 1 (TIMP)-1, to improve cardiac function in a
myocardial infarction model [90].

Mitochondrial transfer

Mitochondrial dysfunction is a hallmark of the aging
process, and has been implicated in the pathogenesis
of numerous diseases [91]. MSC-based mitochondrial
transfer has therefore been a promising therapeutic
strategy, by either replenishing or replacing the dam-
aged mitochondria in targeted diseased cells [92]. Stud-
ies have observed increased tunneling nanotube (TNT)
and gap junction formation with mitochondrial transfer
between MSCs and injured epithelial/endothelial cells
under inflammatory or hypoxic conditions, and MSC-
derived mitochondria transfers could prevent apoptosis
of recipient cells [93-95]. In addition, it was found that
iPSC-derived MSCs could attenuate alveolar damage and
fibrosis via mitochondrial transfer by TNT [96]. The tis-
sue origin of MSCs may affect mitochondrial transfer
ability. For example, iPSC-derived MSCs were shown
to be more effective at mitochondria transfer compared
with MSCs derived from bone marrow [96]. Mechanis-
tically, mitochondrial transfer was found to alleviate epi-
thelial injury through mitochondrial Rho-GTPase Mirol
regulation in an asthma model [97].

Despite these beneficial findings of MSC-mediated
mitochondrial transfer, there are also potential risks, as
mitochondrial transfer can increase the risk of tumor
promotion. In acute myeloid leukemia (AML), NOX2
stimulated mitochondrial transfer from BMMSCs to
cancer cells, and this promoted the survival of the can-
cer cells [98]. Mitochondrial transfer also increased
the resistance of leukemic cells to chemotherapeutic
agents, and transfer occurred bidirectionally [99, 100].
In an in vitro co-culture of BMMSCs and T cell acute
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lymphoblastic leukemia (T-ALL) cells, upon induction
of oxidative stress by the addition of chemotherapeu-
tic agents, T-ALL cells transferred their mitochondria
to BMMSCs, but received few mitochondria from the
BMMSCs, raising the chemoresistance of the T-ALL cells
[99]. Neutralizing the cell adhesion molecule ICAM-1
and disrupting intercellular mitochondrial transfer
restored the sensitivity of the T-ALL cells to the chemo-
therapeutic agent [99].

Extracellular vesicle (EV) transfer

MSC-derived extracellular vesicles (EVs) have raised
increasing interest as a non-cellular alternative to MSC-
based therapy, as this approach eliminates concerns
of unintended lineage differentiation [101]. EVs refer
to exosomes, microvesicles, and apoptotic bodies, and
are membrane-enclosed entities secreted by a cell in
response to stimulation or apoptosis. The size and con-
tents of these vesicles are highly variable and heteroge-
neous, involving proteins, mRNAs, and miRNAs [101].
Their role in MSC-mediated cellular therapy remains elu-
sive due to their heterogeneous nature, but it is currently
believed that they play an important role in many biolog-
ical processes and intercellular communication [101].

Exosomes from MSCs have shown beneficial effects
in disease models of autoimmune uveitis [102], retinal
detachment [103], myocardial infarction [104], type 1
diabetes [105], wound healing [106], bone repair [107],
burn injury [46], traumatic brain injury [108], spinal
cord injury [109], and several other conditions [110]. The
most commonly suggested mechanism responsible for
the effects of exosomes is via their capability to regulate
immune cells and immune microenvironments. MSC-
derived exosomes can suppress the expression of pro-
inflammatory cytokines TNF-a, IL-1f3, IL-6, IL-17, IEN-y,
and MIP-1« in immune cells [103, 105, 109, 111]. Addi-
tionally, MSC-derived exosomes significantly increased
the levels of anti-inflammatory cytokines IL-4, IL-10,
and TGF-f in a type 1 diabetes animal model [105]. In a
drug-induced liver injury model, MSC-derived exosomes
enhanced the local expression of cytokines TGF-B and
HGE both of which are key factors in liver regenera-
tion [112]. The underlying mechanism involved changes
in the immune cell population, including increased M2
polarization [106, 108, 109], increased Th2 and regula-
tory T cell differentiation [105, 112], decreased Th17
differentiation [111], and decreased local immune cell
infiltration [102].

In addition to promoting immunomodulation,
MSC-derived exosomes participate in other biologi-
cal processes. MSC-derived exosomes were found to
promote neoangiogenesis in diabetic and burn wounds
via increased VEGF-A expression, the Wnt4/[-catenin
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pathway, and increased tube formation and proliferation
of endothelial cells [106, 113]. MSC-derived exosomes
also activate Akt, ERK, and STAT3 pathways and induce
expression of HGF, IGF1, NGF, SDF1, and TGEF-f, which
critically regulate wound healing and tissue repair [114].
In addition, MSC-derived exosomes can aid in tissue
repair by enhancing autophagy and inhibiting apoptosis
[103].

In contrast to microvesicles and exosomes from MSCs,
apoptotic bodies are entities specifically generated by
cells during apoptosis. Apoptotic bodies containing
ubiquitin ligase RNF146 and miR328-3p were shown to
help maintain MSC multipotency via the Wnt/B-catenin
pathway [115]. In support, it was recently shown that
apoptotic bodies released from donor MSCs improved
myocardial infarction via autophagy regulation in recipi-
ent cells [116].

The lack of consistent or standardized methods to iso-
late and identify EVs presents a challenge for current
therapeutics. A recent study has shown that compared to
EVs, MSC-CM resulted in more effective immunomodu-
lation [117]. Further studies are necessary to decipher the
optimal MSC culture conditions and the specific subpop-
ulations of secreted components that contribute to the
most effective therapeutic benefit.

Clinical applications of MSC-derived EVs have gained
increasing interest, as many of the safety concerns of
MSC-based therapy might be avoided, including unde-
sired differentiation of implanted cells in tumor forma-
tion/promotion risks, and the cell-derived secondary
ischemic damage by vessel clotting. As MSC-derived EVs
are still in their clinical infancy, there is currently little
information on clinical safety. To monitor biodistribu-
tion, most of the in vivo studies utilize lipophilic dyes to
label the EVs [118, 119]. While the injected MSC-derived
EVs migrated and accumulated at the injured tissue, they
also aggregated in the lung, liver, and spleen [118, 119].

MSC safety consideration: Tumor initiation, promotion,
and suppression

MSC-related cell therapy is a promising therapeutic
strategy because of the high immune modulation ability
and the absence of tumor initiation risk of MSCs. How-
ever, there is still concern that MSCs can pose a risk for
promoting tumor cell growth [120, 121]. MSCs share
some characteristics with fibroblast cells, which are able
to transform into cancer-associated fibroblasts (CAFs)
in tumor niches. The tumor niche involves local fibro-
blasts, endothelial cells, immune cells, and cancer asso-
ciated MSCs. Increasing evidence shows that the tumor
niche is not only trophic to cancer cells, but also highly
associated with tumor initiation and growth, and is able
to increase cancer stemness-related properties, including
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the capacity for cell migration, invasion, and chemo-
therapy resistance. Therefore, cancer treatment strategies
have expanded from solely targeting the tumor cells, to
altering the tumor milieu.

Since MSCs have an excellent ability for homing to
tumor sites, the possibility for therapeutic MSCs to
transform into cancer-associated MSCs exists. Several
studies have examined the effect of MSCs on different
types of tumor cells. Not surprisingly, conclusions among
these studies are unclear (Fig. 2). Studies using MSCs
from different tissue origins, different cultivation pro-
cesses, and different cancers can lead to diverse results
and interpretations.

On the other hand, taking advantage of the ability of
MSCs to home to tumor sites enables MSCs to serve as
therapeutic carriers that deliver anticancer agents to
appropriate sites [122]. As highly progressive and late
stage malignancies constitute a major health burden, for
which current treatments are unsatisfactory and curative
therapies are unavailable, MSC-related drug carriers may
provide new hope for cancer treatments, particularly for
late stage cancers.

MSC Promotion effects on tumor cell growth

and metastasis

The underlying mechanisms responsible for MSC tumor
promotion are complicated and diverse (Table 3). They
are classified below according to MSC type and signaling
pathway, and are listed systematically in Table 4 and sum-
marized in Fig. 3.

Cell type

BMMSCs

Several studies have examined the effects of MSCs on
tumor cell growth (Fig. 2). MSCs derived from human
bone marrow (hBMMSCs) have been shown to enhance
the motility of prostate cancer cells via SDF-1 regulation
in vitro [123]. Additionally, hBMMSCs were reported to
promote glioblastoma bone metastasis in vivo through
the activation of SDF-1/CXCR4 and SDF-1/CXCR7
signaling [124]. It has also been shown that exosomes
derived from glioma cells induce hBMMSC transforma-
tion to a tumor-like phenotype by activating glycolysis
[125]. hBMMSCs that were pre-challenged with hypoxia
increased tumor growth, cell proliferation, intra-tumoral
angiogenesis and M2 polarization of macrophages in
lung adenocarcinomas. The underlying mechanism
involved downregulation of PTEN, PDCD4 and RECK
gene expression by miR-21-5p derived from hBMMSCs
exosomes [126]. Furthermore, hBMMSCs were shown
to mediate osteosarcoma and hepatocellular carcinoma
(HCC) cell migration and invasion through the regula-
tion of CXCR4 [127]. Human MSCs (hMSCs) promote
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Fig. 2 Promotion and suppression effects of MSCs on different cancer types. Data analysis from published studies listed in Tables 4 and 5, but
excluding engineered MSCs. N.R. not reported

HCC tumor growth via the MAPK pathway and pro-
mote metastasis by epithelial-mesenchymal transition
(EMT) and integrin a5. Furthermore, hMSC treatment
promoted HCC progression, increased IL-6 and TNF-a
expression, and decreased the number of natural killer
(NK) cells in tumor niches [128].

In addition to their paracrine effect, hABMMSCs also
promote colorectal carcinoma (CRC) and gastric can-
cer progression by directly differentiating to CAFs and
exerting their trophic effects [129-131]. In colorec-
tal adenocarcinomas, IL6 secreted from hBMMSCs
not only increased cancer cell CD133 expression via

activation of the JAK2/STAT3 pathway [132], but also
activated Akt and ERK in endothelial cells by induc-
ing the secretion of endothelin-1 (ET-1) [133]. Fur-
thermore, hBMMSC-secreted PAI-1 and NRG1 were
shown to promote CRC progression; the latter activates
the PIBK/AKT pathway in a HER2/HER3-dependent
manner [134, 135]. Indirect co-culture of CRCs with
hBMMSCs enhanced the invasiveness of CRCs via sup-
pression of RNA-binding protein PTBP1 [136]. The
up-regulation of cancer stemness-related properties
in CRCs is correlated with activation of the Notch sig-
nalling pathway by miR-142-3p, which downregulates
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Table 3 MSC tumor promoting signaling pathways

Tumor promoting signaling pathways

TGF-B1 Smad2/3, Akt/GSK-3[3/B-catenin, PI3K/Akt, NF-kB, p38 MAPK [159]

IL6 JAK2/STAT3 [132]

I-8 FAK [140]

SDF-1 CXCR4, CXCR7 [124]

CXCL1 CXCR1/2 [150]

CXCR4 PI3K/Akt, Ras/Erk [127]

CCL5 CCR1/B-catenin/Slug, CCR5 — CSF1 secretion — recruitment of TAM and MDSC [137,142]
NRG1 HER2(HER3)/PI3K/AKT [41]
miR-21-5p Downregulation of PTEN, PDCD4 and RECK; M2 polarization [126]

miR-410 Downregulation of PTEN [158]
miR-142-3p Activating Notch signalling by downregulation of Numb [136]

miR-23b Downregulation of MARCKS [145]

Direct contact NOTCH [136, 144, 149]

Numb expression and is transmitted via hBMMSC
exosomes[136].

One approach to mimic the inflammatory niche is to
generate TNF-a-primed-hBMMSCs that secrete high
levels of CCL5, which is involved in the CRC-related
CCl5/CCR1/B-catenin/Slug signaling pathway that pro-
motes tumor cell proliferation, EMT, migration, and inva-
sion [137]. Activation of the Hedgehog signaling pathway
by hBMMSC-derived exosomes leads to increased tumor
cell growth in both gastric cancer and in osteosarcoma
[138]. hABMMSC-secreted IL6 and IL-8 have been shown
to increase tumor growth and metastasis in osteosar-
comas by activation of the STAT3 and FAK signaling
pathways, respectively [139, 140]. Meanwhile, elevated
levels of GRO-a, MCP-1, IL-6 and IL-8 in the tumor
microenvironment promoted osteosarcoma invasion and
transendothelial migration via cross-talk between tumor
cells and CAFs from hBMMSCs [141]. CCL5 secreted by
hBMMSCs increased the motility of breast cancer cells
(BCCs) by activation of CCL5-CCR5 signaling [142]. This
signalling also promotes BCCs to secret CSF1, which will
bind to the CSF1 receptor on MSCs, tumor-associated
macrophages and myeloid-derived suppressor cells, and
drive recruitment of myeloid-derived suppressor cells
(MDSCs) and tumor-associated macrophage (TAMs)
[143]. Elevated CCL5 (RANTES), CCL2 (MCP-1), and
CXCL8 (IL-8) in TNFo/IL-1B primed triple-negative
subtype of breast cancer cells (TNBCs): hBMMSCs co-
cultures increase BCC lung metastases [144]. Moreover,
physical interactions between TNBCs and hBMMSCs
primed with TNFa or IL-1P, activates Notchl, which
leads to CXCL8 production and increased tumor cell
migration and invasion [144]. Exosomes derived from
hBMMSCs promote the acquisition of dormant phe-
notypes by suppressing MARCKS expression in a
bone marrow-metastatic human breast cancer cell line

through miR-23b [145]. In head and neck squamous cell
carcinoma (HNSCC) and esophageal squamous cell car-
cinoma (ESCC), increased tumor cell invasion was corre-
lated with induction of ALP and MMP?9 activity by direct
contact between tumor cells and hBMMSCs, and by acti-
vation of the Gremlinl-dependent TGF-B/BMP signaling
pathway by hBMMSC-CM, respectively [146, 147]

ADMSCs

The effect of MSCs on promoting tumor cell growth
may be mediated via angiogenic factors VEGF, Ang-1,
PDGE, and IGF and SDF-1 [148]. In addition, adipose
tissue-derived mesenchymal stem cells (ADMSCs)-
differentiated CAFs promote the EMT of lung cancers
by activating the NOTCH pathway [149]. hADMSC-
secreted CXCL1/8 enhances the growth and angiogen-
esis of BCCs by activating CXCL1/8-CXCR1/2 signaling
[150]. hADMSCs and human amniotic fluid-derived stem
cells (hAFMSCs) increase ciprofloxacin resistance in
renal cell carcinomas (RCCs) and bladder cancer cells
[151]. Additionally, elevating the expression of MMP2
and MMP9 in ovarian cancer cells causes increased
tumor growth and metastasis in both direct and indi-
rect co-cultures with hADMSCs [152]. LL-37, which
is usually overexpressed in ovarian cancer, can recruit
and stimulate MSCs to release trophic factors, which
increase tumor growth and angiogenesis [153]. In addi-
tion to MSCs, the CM and the EVs derived from human
ADMSCs showed the ability to increase tumor growth
and migration and to decrease H,0,—induced tumor
cell apoptosis [154]. Meanwhile, the hRADMSC-CM and
exosomes were shown to increase doxorubicin resistance
and tumor cell migration either by increasing breast can-
cer resistance protein (BCRP) levels or by activating the
Wnt signaling pathway in BCCs, respectively [155, 156].
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Fig. 3 Schematic diagram of tumor promoting mechanisms of MSCs. MSCs influence cancer cells and immune cells to promote tumor cell
proliferation, invasion, migration and metastasis. Secreted microRNA-containing exosomes, soluble factors, and contact-dependent signaling
pathways are summarized

UCMSCs and WJMSCs

hUCMSCs promote proliferation and migration of BCCs
by activating ERK signaling, including down-regulating
E-cadherin expression, and up-regulating N-cadherin,
ZEB1 and PCNA expression [157].

The EVs derived from hUCMSCs also have the abil-
ity to increase tumor cell proliferation and to decrease
tumor cell apoptosis in lung adenocarcinomas via trans-
mission of miR-410, which reduces PTEN expression

[158]. Additionally, exosomes derived from hUCMSCs
increased tumor EMT, invasion, and migration through
TGEF-B1-mediated signaling pathways [159]. Further-
more, CD133% glioblastoma stem cells exhibited the abil-
ity to recruit hUCBMSCs, which can further promote
tumor growth in vivo, via exosomes containing MCP-1/
CCL2 and SDE-1/CXCL12 [160].

An increase in the cancer stemness-related ALDH™
and CD133" cell populations was observed in lung
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adenocarcinomas treated with Wharton’s Jelly mesenchy-
mal stem cell CM (WJMSC-CM) [161]. WIMSC-CM also
showed effects of increasing tumor growth and migration
of glioblastoma cells by secreted cytokines (eg. CCL2,
PDGEF-C, Sema-7A, periostin, IL6) [162]. Besides the
cytokines and chemokines secreted by MSCs, WJMSC
microvesicles (MVs) transfer RNA to RCCs, which
induces HGF synthesis and further activates AKT and
ERK1/2 signaling [163].

Signaling pathways

Chemokine signaling

Chemokine signaling plays an important role in MSC-
dependent tumor promotion (Fig. 3). CD133% glioblas-
toma stem cells induce hUCMSC migration to tumor
regions by secreting CCL2 and CXCL12. Once in the
tumor region, MSCs then promote tumor proliferation
and glial invasiveness [160]. In addition, SDF-1 secreted
from hBMMSCs promotes neuroblastoma migration and
invasion via CXCR4 and CXCR7 [124]. hBMMSCs also
enhance osteosarcoma and HCC cell migration and inva-
sion by activating the AKT and ERK pathways of tumor
cells via CXCR4 [127]. These observations suggest that
chemokine signaling may be involved in bone metastasis.
Furthermore, Chaturvedi et al. demonstrated that there is
a delicate crosstalk among BCCs, hBMMSCs and TAMs/
MDSCs involving chemokine signaling, and that there
are two signaling loops among these cell types. In the
second loop, CCL5 secreted from MSCs activates BCCs
via CCR5, which promotes the BCCs to secret CSF1 and
further recruits TAMs and MDSCs to the tumor region
[143]. In addition, hBMMSCs weakly enhance the inva-
siveness and metastasis of metastatic human BCCs
through CCL5-CCR5 signaling regulation [142]. CCL5
secreted from TNF-a-primed hBMMSCs also showed
the ability to promote CRC progression and EMT via
the CCL5/CCR1/p-catenin/Slug signaling pathway [137].
In addition to tumor and immune cells, chemokine
signaling affects other cells in tumor niches. For exam-
ple, CXCL1/8 derived from hADMSCs can enhance
the migration and tube formation of human umbilical
vein endothelial cells (HUVECsS) in vitro by CXCR1 and
CXCR2, which promote angiogenesis in a breast tumor
xenograft mouse model [150]. CXCL8 derived from
hBMMSCs was also shown to activate FAK signaling in
osteosarcomas and to promote tumor metastasis [140].

TGF-f signaling

TGF-p is well known as an EMT promotor, but it can also
induce cell cycle arrest and apoptosis [164]. In lung can-
cer cells, \UCMSCs have been shown to promote tumor
cell EMT, invasion, and migration, but also to decrease
tumor proliferation and promote tumor apoptosis by
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TGE-B1 from exosomes secreted by MSCs. The TGF-B1
activates Smad2/3, Akt/GSK-3p/p-catenin, NF-kB, ERK,
JNK, and the p38 MAPK signaling pathway in cancer
cells. Silencing TGF-f1 or inhibiting exosome secre-
tion can eliminate the MSC-dependent effects on cancer
cells described above [159]. hBMMSCs also increased
tumor progression, but decreased pulmonary metasta-
sis with decreased TGEpB1 levels in HCC [165]. Further-
more, Hong et al. demonstrated that hBMMSC-CM can
enhance the proliferation, viability and invasiveness of
esophageal cancer cells via Gremlinl, which activates
the TGF-B/Smad2/3 signaling pathway by inhibiting the
BMP4/Smad1/5/8 signaling pathway in cancer cells [147].

MicroRNA signaling
Accumulating evidence shows that EV-derived miRNA
contributes to tumor initiation, angiogenesis, drug resist-
ance, metastasis and immune suppression in cancer
[166]. EVs derived from hBMMSCs pre-challenged with
hypoxia can promote tumor growth, cancer cell prolif-
eration, invasion, intra-tumoral angiogenesis and M2
polarization of macrophages in non-small cell lung can-
cer cells. This occurs via miR-21-5p, which decreases
PTEN, PDCD4 and RECK protein levels in cancer cells
while enriching for CD1637CD206", M2 macrophage-
related cell surface marker macrophages, and decreas-
ing the CD407CD86", M1 macrophage-related cell
surface marker macrophage population. Transfecting
miR-21-5p inhibitor or re-overexpressing PTEN abro-
gated the tumor promoting and M2 polarization effects
that the hypoxia pre-challenged EVs induced [126]. Dong
et al. also reported that miR-410 derived from hUCMSC-
secreting EVs repressed PTEN protein levels in lung
adenocarcinoma cells, further increased tumor cell pro-
liferation, and decreased tumor cell apoptosis [158].
miRNA is also reported to be involved in the dynam-
ics of the cancer stem cell population. Increased can-
cer stem cell-like traits, including sphere formation,
Lgr5tCD133" population, colony formation, drug resist-
ance, and tumourigenesis, were reported in CRCs upon
treatment with hBMMSC-derived exosomes that trans-
mitted miR-142-3p. Mechanistically, it was found that
miR-142-3p inhibits the expression of the Numb gene,
which results in increased mRNA and protein levels
of Notch target genes Hesl, P21, and cyclin D3 mRNA
[136]. On the other hand, Ono et al. demonstrated that
miR-23b delivered via hBMMSC-derived exosomes
caused bone marrow-metastatic human breast can-
cer cells to acquire dormant phenotypes, characterized
by decreases in tumor cell proliferation, tumourigenic
capacity, CD44" population, invasion capacity, and sen-
sitivity to docetaxel. The miR-23b may exert its effects by
targeting MARCKS [145].
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MSC suppression effects on tumor growth

While MSCs utilize diverse mechanisms for tumor pro-
motion, they suppress tumor growth mainly by inducing
apoptosis of tumor cells. MSCs have been shown to sup-
press the growth of breast [167-169], brain [148, 170—
174], lung [170, 175], liver [175, 176], ovarian [167, 177,
178], bone [167, 179], esophageal [168], bladder [180],
colorectal [170] and hematological malignancies [181—
183]. The underlying mechanisms responsible for MSC
tumor suppression are classified below as well in Table 5,
and are summarized in Fig. 4.

Apoptosis, autophagy and senescence

The majority of MSC tumor suppressing mechanisms
involve increasing tumor cell apoptosis and impeding cell
cycle progression. Upregulation of caspase-3, caspase-9,
pl6, p21, p53, TRAIL, pro-apoptotic BAX, ATG5, ATG7,
BECLINI and cellular H,0, levels [148, 167-170, 173,
180, 182]; activation of Smac/DIABLO [173]; and down-
regulation of survivin, XIAP, cyclin D1, Cdk4, Cdkeé, cyc-
lin A2, cyclin E1, AKT/pAKT, Bcl-2, B-catenin, c-Myc,
pro-caspase-7, PCNA, Bcl-xL. and MMPs have been
demonstrated to be involved in the MSC-dependent
tumor cell apoptosis seen with MSC-CM, MSC cell lysate
(CL) and with direct cell-cell interaction [167, 168, 170—
176, 178, 180].

Boosting immunity

The immunomodulation ability of MSCs is also corre-
lated with tumor suppression. Lin et al. demonstrated
that 3 kDa MWCO-WJMSC-CM concentrate can induce
immunogenic cell death in lymphoma cells, which
showed decreased viability and increased apoptosis, as
well as increased levels of the ER stress markers eLF2a
and XBP-1. Increased levels of surface damage-associ-
ated molecular pattern markers ecto-CRT, ecto-Hsp70
and ecto-Hsp90, as well as extracellular ATP and high
mobility group box 1 were also observed. When cocul-
tured with WJMSC-CM-treated lymphoma cells, den-
dritic cells had enhanced CD80 and CD86 expression. Yet
lymphoma cells treated with WJMSC-CM concentrate
had decreased CD47 and PD-L1 expression [181].

Anti-angiogenesis

In addition to directly inhibiting tumor cell growth,
coculturing with hBMMSCs or hUCBMSCs decreased
angiogenesis in glioblastoma. The underlying mechanism
may involve the down-regulation of PDGF-BB and IL1j
secretion or decreases in FAK, VEGF or Akt [184, 185].
Another attractive source of MSCs, human endometrial
mesenchymal stem cells (EnSCs), also show an ability to
decrease tumor growth and to increase angiogenesis in
ovarian cancer by inhibiting AKT phosphorylation and
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decreasing expression of VEGFA and HIF-1a, possibly
via nuclear translocation of FoxO3a [186].

Anti-migration and invasion

hUCBMSCs are also reported to decrease glioblastoma
cell invasion and migration by increasing PTEN or Mad1
expression and downregulating PI3K/AKT, c¢-Myc/ERK
or EGFR/c-Met activities [187, 188]. Inhibition of Wnt
signaling has been shown to decrease tumor growth and
migration after treatment with hUCMSC- or hADMSC-
CM in bile duct cancer and breast cancer, respectively
[189, 190].

Other mechanisms

Human BMMSC-secreted oncostatin M (OSM) has been
reported to inhibit tumorigenicity and EMT by activat-
ing the OSM/STAT1 signaling pathway in lung adeno-
carcinoma cells [191]. Decreased cancer cell proliferation
was also correlated with suppressed NF-kB expression
and activity in HCCs and BCCs by MSCs derived from
fetal bone marrow or fetal dermal tissue [192]. Vascular
wall-resident MSCs as well as hBMMSCs displayed a
capacity for decreasing the risk of lung metastasis after
radiation-induced injury in breast cancer and melanoma
by downregulating endothelial MMP2 and SASP factors
CCL2 and Plau/uPA, which were induced by radiation
injury [193]. In addition to suppressing tumor progres-
sion, hUCMSCs promote granulocytic differentiation of
immature myeloid cancer cells in acute promyelocytic
leukemia (APL), which drives the disease into remission
by activating MEK/ERK pathways [194].

Engineered MSCs
Another promising strategy to treat progressive malig-
nancy is the use of engineered MSCs, which show a
remarkable ability to suppress tumor progression [195].
UCBMSCs with exogenous overexpression of CXCR1
and CXCR4 displayed enhanced tropism towards gliomas
[196]. In addition, irradiation of glioma cells enhanced
IL-8 expression, which promoted the tropism of hUCBM-
SCs equipped with TRAIL migration to tumors, and
further induced tumor cell apoptosis [197]. hBMMSCs
overexpressing TRAIL can also induce apoptosis in
CD133-positive primary glioma cells in vitro [198]. Mod-
ified interleukin-12 (IL-12p40N220Q; IL-12 M), which
enhances expression of the IL-12p70 heterodimer that is
necessary for induction of Thl and CTL immunity, was
overexpressed in hUCBMSCs and found to significantly
decrease tumor growth and angiogenesis, as well as to
increase the survival of glioma-bearing mice and to con-
fer tumor-specific long-term T-cell immunity [199].

In human glioma studies, IL-24-hUCMSCs promoted
tumor cell apoptosis, and IFN-beta-hBMMSCs were
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Tumor suppressive mechanism
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Fig. 4 Schematic diagram of tumor suppressing mechanisms of MSCs. MSCs suppress tumor progression predominantly by promoting tumor cell
apoptosis, autophagy, and senescence; and by boosting immunity, anti-angiogenesis, and anti-tumor cell migration and invasion

shown to prolong animal survival [200, 201]. Meanwhile,
IFN-beta-WJMSCs and IFN-beta-hBMMSCs exhibited
the ability to suppress tumor growth in bronchioloal-
veolar carcinomas [202] and HCCs, respectively, the
latter exerting its effect by increasing expression of p21,
p27 and FOXO3a, as well as decreasing protein levels of
cyclin D1, pRb and AKT [203]. In addition, engineered
BMP4-secreting hADMSCs could suppress tumor cell
migratory ability and increase survival in glioblastoma
[204]. As for hematological cancers, treatment with hUC-
MSCs equipped with Tandab (a tetravalent bispecific
tandem diabody with two binding sites for CD3 and two
for CD19) combined with IDO pathway inhibitor showed
significantly decreased B cell lymphoma growth by way of
decreasing CD98 and Jumonji, and by restoring the pro-
liferation of T cells [205]. Another study demonstrated
that UC-MSCs overexpressing IDO can inhibit prolif-
eration of leukemia cells [206]. hWJMSCs engineered
with scFvCD20-sTRAIL fusion protein, which targets
CD20-positive cells and induces apoptosis through
SsTRAIL, inhibited proliferation in B cell lymphoma [207].
Another study showed that hWJMSCs transfected with
vector coding STRAIL driven by AFP promoter had sig-
nificant antitumor activity in HCC [208]. Decreased
tumor growth was also observed in gastric cancer and
in epithelial ovarian cancer using hUCBMSCs deliver-
ing TNFSF14 or IL-21, respectively [209, 210]. In a syn-
geneic pancreatic tumor mouse model, IL15-hUCBMSCs
inhibited tumor growth and increased survival of tumor-
bearing mice. The IL15-hUCBMSCs induced NK- and
T-cell accumulation at the tumor site and established

tumor-specific T-cell memory immunity [211]. Cytosine
deaminase-expressing hADMSCs serving as a prodrug
converting vehicle, showed significant decreases in colo-
rectal cancer growth in the presence of prodrug 5-fluoro-
cytosine [212].

Summary of promotion and suppression effects of MSCs

in cancer

MSCs can contribute to tumor promotion as well as to
tumor suppression. Although it may appear that these
effects occur randomly, closer examination provides
a more promising picture. Summarizing a total of 110
reports, (excluding engineered MSCs) reveals that in
58.6% of the studies, BMMSCs promoted tumor growth,
while 9.8% of studies found that BMMSCs suppressed
growth. Although the tendency of ADMSCs is not as
obvious as that of BMMSCs, they also exhibit a prefer-
ence for tumor promotion (Fig. 2). In general, MSCs
derived from reproduction-related sources, including
placenta, umbilical cord, Wharton’s jelly, and umbili-
cal cord blood, show a higher likelihood for tumor sup-
pression (Fig. 2). In regards to tumor type, we found that
BMMSCs show an overwhelming promoting effect on
cancers of the bone (100%, 6/6), breast (100%, 7/7) and
GI tract, (liver, bile duct, colorectal, gastric and esopha-
geal; 93.75%, 15/16) (Fig. 2a).

MSCs demonstrate an impressive suppressive ability in
hematological cancers. In all 7 studies, MSCs from dif-
ferent tissue types showed tumor suppression. Similarly,
in a total of 8 studies of MSCs and ovarian cancer, only
one study reported that MSCs promoted tumor growth
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(Fig. 2b). To date, there is no report showing a tumor
promoting effect for MSCs from placental tissue.

MSCs can exert their effects directly by contacting
tumor cells, or indirectly by secreting soluble factors and
microRNAs that the affect the tumor cells. The mecha-
nisms by which different types of MSCs promote or sup-
press the growth of different tumor types are complicated
(Tables 2, 3, 5, Fig. 4). Factors that may affect the prop-
erties of MSCs and cause different outcomes, include (1)
the origin of the MSCs; (2) different processes of isola-
tion, purification, and expansion of MSCs; and (3) differ-
ent culture conditions and passages of the MSCs. Most
of the results described herein were derived from direct
or indirect in vitro co-culture systems or from in vivo
co-injection experiments, but the underlying mecha-
nisms were not always examined. It will be necessary
to elucidate these underlying mechanisms, as well as to
find potential biomarkers of MSC-tumor interactions for
future clinical applications of MSCs.

Biodistribution of therapeutic cells in a preclinical
evaluation

In light of the tremendous potential of MSCs for treating
various diseases, it is necessary to define the systemic dis-
tribution and to quantify the administered cells in order
to facilitate our understanding of the safety and efficacy
of MSC-based cell therapy. This information is criti-
cal in clinical trials since it is vitally important to know
whether the transplanted cell products home to the tar-
get diseased sites to deliver their intended effects. Indeed,
several factors can affect the pharmacokinetics (PK) of
the administered MSCs, including cell size, cell source,
immunological features and labeling, detection methods,
route of administration, and size of the animal model.

Factors that affect the biodistribution of MSCs

The typical diameter of a MSC is between 15-30 um;
in comparison, lymphocytes have a diameter of only
4-12 pm [213]. Furthermore, MSCs become larger
after serial ex vivo cell passaging [214]. The relatively
large size of MSCs explains their initial mechanical
entrapment at lung capillary systems after intravenous
administration, a phenomenon referred to as the pul-
monary first-pass effect [26, 215]. Redistribution to
liver, spleen, and other inflamed tissues subsequently
takes place in the following hours to days, with gradual
clearance from the lungs [26]. In some studies, MSCs
were still detected in the lungs up to 150 days after
transplantation in vivo [216]. MSCs retained at the
lungs potentially decrease the number of cells available
for therapeutic effects [217]. To decrease the mechani-
cal entrapment of MSCs at the lungs, several strategies
may be implemented, including pretreatment with the
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vasodilator sodium nitroprusside in order to increase
the effective diameter of the pulmonary capillary sys-
tem; delivery via an extravascular route; or delivery
via multiple smaller doses [215, 217, 218]. Although
administering MSCs intra-arterially may decrease the
extent of mechanical entrapment at the lungs [219],
the effect of cell size still has important implications,
as larger MSCs may be associated with vascular occlu-
sions that could cause subsequent ischemia and infarcts
of unintended tissues and organs [220, 221]. Engineer-
ing of MSCs might potentially alter this adverse effect.
For example, by overexpressing integrin a4 (ITGA4),
which mediates leukocyte trafficking of MSCs, Cui
et al. observed that cell aggregation of MSCs were sig-
nificantly decreased, and MSC-associated cerebral
embolism was ameliorated in rat model of stroke [222].
Furthermore, the risk of embolism has been found to
be positively associated with cell dose of infusion and
low infusion velocity [223].

In addition, aging of either donor or recipient could
affect the biodistribution of inoculated MSCs, with
decreased transplantation efficiency observed with aged
donor MSCs and recipients [224]. Furthermore, when
MSCs were extracted from older donors, they exhibited
lower proliferative and differentiation capabilities [225,
226]. The culture condition also plays a role in the kinet-
ics of administered MSCs. For example, hypoxic precon-
ditioning increased MSC migration to injured tissue via
enhanced HGF/cMET signaling and MSC recruitment,
thus affecting biodistribution of the administered cells
[227].

Immunogenic reactions also affect clearance and bio-
distribution of injected cells, as the allogeneic MSCs are
not completely immune-privileged [228]. When MSCs
are transplanted in an allogeneic host, the transplanted
MSCs have decreased survival compared with their sur-
vival in a syngeneic host [229]. Formation of antibodies
against injected MSCs could explain the reduced effec-
tiveness and increased adverse effects that were observed
with repeated inoculations in some studies [230].

Furthermore, the injected cells can also trigger an
instant blood-mediated inflammatory reaction (IBMIR),
which causes reduced graft survival and thromboembo-
lism [231]. A portion of injected MSCs do not reach their
intended destination due to the host’s immune reaction,
embolization, and micro-ischemia [232]. Previous litera-
ture has demonstrated that the extent of IBMIR is related
to the level of tissue factor (TF) expressed by MSCs;
expression levels vary among different tissue origins of
MSCs, and with culture conditions [233]. Compared with
ADMSCs and UCMSCs, BMMSCs express lower levels
of TF [233]. Thus, selecting TF-deficient BMMSCs may
reduce the risk of IBMIR and improve the chances for
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Table 6 Comparison of methods used for quantitative mesenchymal stem/stromal cells (MSC) detection (Adapted from ref. [300])

Technique Detection

Advantages

Disadvantages

PCR/histology Transplanted-cell specific DNA

sequences or antigens

Optical imaging Fluorescent dyes/proteins

Flow cytometry Fluorescent dyes/proteins

High sensitivity
No need to label the cells

High throughput
Good for longitudinal studies

High specificity,

Need animal sacrifice, biopsy,
Postmortem samples from patients
Small animals only,

Low resolution,

Non-stable

Preclinical use only

Quantification of live cells

MRI Contrast agents

Clinically useful
High spatial resolution

Quantification is difficult
Cytotoxicity of certain labeling agents

Whole-body scanning

Radionuclear Radioisotope labels

Quantification feasible using SPECT
Whole-body scanning

Limited spatial resolution
lonizing radiation

High sensitivity

FND Fluorescence

Large animal models (pigs)

Need animal sacrifice

PK/PD of transplanted cells
Biodistribution of transplanted cells
Background-free imaging
Single-cell detection sensitivity
High throughput quantification

No interference with cell potency

PCR polymerase chain reaction, PET positron emission tomography, SPECT single-photon emission computed tomography, FND fluorescent nanodiamond, PK

pharmacokinetic, PD pharmacodynamics

clinical success. Otherwise, co-treatment with an anti-
coagulant may be an important consideration for clinical
applications [234].

Methods of tracking MSCs in vivo

A critical step in generating pharmacokinetic models of
cell products is tracking the fate of cells following trans-
plantation. An ideal quantification technique should have
the following features: high sensitivity and specificity;
long-term detection and monitoring; and spatiotempo-
ral resolution. The advantages and disadvantages of cur-
rently available methods for quantitative MSC detection
are summarized in Table 6. Polymerase chain reaction
(PCR) has been used to track human MSCs in murine
xenogeneic models by detecting human DNA [19, 235-
237]. The low limit of detection of quantitative PCR ena-
bles detection of 100 MSCs per gram of organ tissue,
making it feasible to detect MSCs in patient biopsies.
Both flow cytometry and optical imaging require labeling
MSCs with fluorescent dyes or proteins. Flow cytom-
etry enables estimation of the number of live MSCs per
weight unit of tissue, and optical imaging uses a variety
of dyes, such as 4/,6-diamidino-2-phenlindole (DAPI),
that can bind reversibly or irreversibly to the MSCs
[238-241]. The use of red fluorescent protein (RFP) or
green fluorescent protein (GFP) expressing MSCs has
the advantage of providing viability information of trans-
planted cells [242]. However, the transfection efficiency
is not consistent, and the transfected cells could have
altered potency and expression and cannot be accurately

tracked over time [243]. Therefore, the biodistribution
and quantitative data produced by fluorescent protein
labeling methods may be incomplete. Bioluminescence
imaging (BLI) which utilizes luciferase reactions also has
the advantage of providing viability information of trans-
planted cells, but this method suffers from poor tissue
penetration and low spatial resolution. MSCs can also
be labeled with gold nanoparticle and tracked by com-
puted tomography (CT) image in vivo [244, 245]. These
gold nanoparticles have advantage of exerting negligible
influence on viability, proliferation, and differentiation
ability of labeled MSCs, and offer good spatial resolution
and long-term tracking when used in conjunction with
CT modality [244]. However, sensitivity is relatively poor,
and there is still difficulty deriving quantitative informa-
tion from CT images [246].

Magnetic resonance imaging (MRI) can be used to
track MSCs in vivo by labeling MSCs with superpara-
magnetic iron oxide nanoparticles (SPIONs) or fluo-
rine-19 (*F). Direct labeling of MSCs with SPIONSs is
possible as these agents are readily taken up by MSCs
and show up as hypointense signals on MRI [247]. How-
ever, some studies have shown that proliferative and dif-
ferentiation capabilities of MSCs could be affected when
labeled at higher concentrations [247]. The downside of
SPION labeling is that the specificity of SPION-labeled
cells could be low and the signals could be hard to dif-
ferentiate from acutely injured tissues containing hemor-
rhages. In contrast, °F-labeling offers better specificity as
endogenous fluorine level is low, minimizing background
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interference and is a better labeling agent when the tar-
geting lesion involves hemorrhage [248]. In general,
MRI offers good spatial resolution but suffers from poor
temporal resolution. Positron emission tomography
(PET), single-photon emission computed tomography
(SPECT) [26, 249-251] and radioisotope labeling [26,
252, 253] have been used to image and track the migra-
tion dynamics, and inter-patient variability of MSCs in
clinical patients, but quantifying cell numbers with these
methods is difficult and only semi-quantitative infor-
mation on the biodistribution of the transplanted cells
can be obtained. Photoacoustic imaging, which com-
bines ultrasonography with optical imaging, is another
attractive approach, as ultrasonography has the unique
advantage of providing real-time information while
still maintaining good spatial resolution. By using gold
nanorods coated with reactive oxygen species (ROS) sen-
sitive dye as probe, Dhada et al. were able to also detect
viability of implanted cells [254]. However, photoacous-
tic imaging suffers from operator dependent variability
[255]. More recently, multimodal imaging probes that
combine the advantage of different imaging modalities
have been developed, including PET/MRI imaging agent
[256], SPECT/MRI/fluorescent imaging agent [257], and
SPECT/MRI/BLI imaging agent [258].

An ideal cell tracking method should be biocompat-
ible and nontoxic, require no genetic modification, have
single-cell detection sensitivity, and permit quantifica-
tion of cell numbers at any anatomic location. Optical
imaging utilizing nanoparticles as exogenous contrast
agents is suitable for this purpose, although the tech-
nique is mainly used for animal models in preclinical
experimentation due to the limited penetration depth
of visible photons into tissue. Among various exogenous
contrast agents, fluorescent nanodiamond (FND) has
emerged as an attractive option because it is chemically
inert and inherently biocompatible [259, 260]. A viable
application of FNDs for background-free imaging and
quantitative tracking of MSCs in animal models beyond
rodents has been demonstrated using magnetic modula-
tion [261-263]. The magnetic modulation fluorescence
(MMF) method uses magnets to modulate the fluores-
cence intensity of FNDs. This technique, which allows
background-free imaging, together with the inertness of
ENDs and the large quantity of the nanoparticles taken
up by the cells, has permitted studies of the biodistri-
bution and pharmacokinetics of FND-labeled MSCs in
preclinical settings. This strategy can also be applied to
the characterization of cell-based products in order to
accelerate their progression towards commercialization
to meet the needs of patients. The technique has excel-
lent compatibility with time-gated fluorescence imag-
ing, which has been shown to be a powerful means of
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acquiring high-contrast fluorescence imaging of FND-
labeled cells in tissues. The ability to find single cells is
particularly valuable for ex vivo histological detection of
MSCs in clinical trials. This combined approach repre-
sents an appealing alternative to hazardous radioisotope
labeling techniques in cell tracking applications. The
technique can be used with immune cells, stem cells, and
other cell types used for cell therapy. Here, we put these
technologies together, and describe how they could be
used to contribute to the development of pharmacoki-
netic modeling of MSC-based cell products.

An FND-based platform to track therapeutic cells in vivo
The ability to monitor the behavior of transplanted cells
in vivo is required for cell therapy. When cellular prod-
ucts are submitted for investigational new drug (IND)
status, pharmaceutical studies must provide evidence
of not only the safety of the cell product, but also infor-
mation regarding cell location, cell migration, PK and
pharmacodynamics (PD), and cell biodistribution after
transplantation in animal models. There are three criti-
cal issues that must be addressed for cell therapy: (1)
whether therapeutic cells maintain their potency after
transplantation, (2) the appropriate dosage for curing
diseases and (3) a route of administration and a formu-
lation that permits successful drug delivery. Over the
past decade, the traditional concepts, confined to low
molecular weight organic compounds and large biomole-
cules, have been challenged with the advent of new drugs
based upon cells, which we refer to here as cell therapy.
As for all drugs, understanding the pharmacology of
cell-therapy products is critical for their effective appli-
cation in the clinical setting. For example, tissue section
and PCR does not provide sufficient information of cell
behavior in vivo, because these procedures select a sam-
ple from a population, making it difficult to provide PK
and PD information for the whole animal. In contrast, the
FND-labelled tracking technique provides a new method
to achieve high throughput whole organ treatment and
analysis, providing accurate pharmacology information,
such as PK, PD and biodistribution of the cellular ther-
apy (Fig. 5a). This method not only provides immediate
and highly specific cell localization data after gathering
histological sections from the animal, but also provides a
one-step, one-tube analysis for any kind of animal tissue.
Compared to the qPCR sampling method, this protocol
can provide more accurate data for whole organ/tissue
analysis and takes less time for validation and analysis.
We use a healthy mouse model to demonstrate that
the FND-labelled platform can provide evidence of
cell biodistribution. Figure 5b shows the biodistribu-
tion analysis of FND-labelled placenta choriodecidual
membrane-derived MSCs (pcMSCs) for one week in a
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mouse model using the FND-based labelling platform.
Our results show that the majority (up to 70%) of FND-
labelled pcMSCs localized to the lungs after intra-
venous administration, which is consistent with the
pulmonary first-pass effect [217, 264]. The trapping of
MSCs in the lungs is due to space restriction [265], as

pcMSCs are more than ~20 pum in diameter and much
larger than the width of the micro-capillaries of the
lung. After intravenous infusion, FND-labelled pcM-
SCs disappeared from the lungs as time passed, and
migrated to other tissues/organs such as the liver and
spleen, or to injured sites. Nevertheless, the number of
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FND-labelled pcMSCs decreased in the heart and kid-
neys (Fig. 5b).

As it has been reported that MSCs will migrate to
injured sites [266], we induced an ischemia-reperfusion
injury to the left kidney in our animal model (Fig. 6a)
and examined whether FND-labelled pcMSCs injected

into the portal vein would appear in the injured kid-
ney, to test the concept that MSCs will migrate to sites
of injury. In our mouse model with healthy kidneys, the
number of pcMSCs in the kidneys decreased over time
(Fig. 6b, upper panel) and the decrease was evident in
both the left and right kidneys. (Fig. 6b, lower panel). In
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contrast, in the mouse model with the injury the num-
ber of FND-labelled pcMSCs in the injured kidney was
highest on day 5 (3%; Fig. 6¢). As seen in the lower panel
of Fig. 6¢, the injured kidney (L kidney) had significantly
more FND-labelled pcMSCs than the healthy kidney (R
kidney). The percent of FND-labelled pcMSCs remained
consistent over time (~0.25%) in the healthy right kidney
(R kidney) (*P<0.5, *P <0.01, ***P<0.001, ****P<0.0001.)
(Fig. 6¢, lower panel). Given these data, it appears that
the percentage of MSCs that migrate to kidneys is limited
to about 4%, and it appears that the kidneys have the abil-
ity to redistribute MSCs in vivo. In addition to providing
fast and accurate results, this technique is completely
safe to the cell tissue. The FND-labelling technique does
not alter any properties of the cell, including cell viabil-
ity, proliferation, differentiation and immunomodulation,
making this method very biocompatible.

Clinical applications of MSCs in cell therapy: safety

and potency

The potential and promise of MSC therapy is highly
anticipated in recent and coming decades. As with all
emerging new medical technologies, patient safety is
always the first priority. As we have discussed, although
the ability to modulate immune environment and pro-
mote tissue regeneration have been well reported in pre-
clinical studies, the aspect regarding tumor induction or
promotion is still one of the many concerns. The MSCs
derived from different tissue origins or expanded under
different culture conditions present different immune
profiles which may result in tumor promotion [126].
Additionally, as the double sided blades of the MSCs’
strong immune modulation ability [262], evaluation of
both the specific MSC properties as well as the patient’s
immune conditions is strongly needed. The patient’s
immune condition both before, during, and after treat-
ment should be closely monitored.

Some reports showed that artificial engineering pro-
cess may decrease the tumor induction and increase
tumor-suppressing function of MSCs [263]. However,
genetically engineered MSCs also raise other safety con-
cerns. Although several clinical trials claimed the safety
of MSC-treated patients, however, most of the trials only
showed short-term safety and are without the examina-
tion of tumor-associated biomarkers [267, 268].

A recent systematic review and meta-analysis reap-
praised 55 randomized controlled trials and over 2000
patients to investigate the safety of systemically inocu-
lated MSCs [39]. The risk of fever was significantly
greater in the group of patients receiving MSCs. There
was no significant increase in the risk of infection,
thrombo-embolic events, malignancy or ectopic tissue
formation, while the risk of death was significantly lower

Page 29 of 38

in the MSC-treated patients. Among the included stud-
ies, severe adverse events, including treatment related
fever, in-stent thrombosis with death, acute coronary
artery occlusions after intra-coronary delivery, grade 1
anaphlyactoid reaction, gastric ulcer perforation, hyper-
sensitivity reaction, and anal cancer, have been reported
to be possibly related to MSC treatment. Although
the conclusion of the meta-analysis ends on a promis-
ing note, it was also emphasized that an a priori plan to
monitor safety should be outlined in every clinical study
design, including immediate allergic reactions, local com-
plications (hematoma formation, local infection), vascu-
lar obstructions (dyspnea, oliguria, myocardial infarction,
venous thromboembolic events), systemic complications
(systemic infection, abnormal liver or renal function),
malignancy or ectopic manifestation of implanted MSCs,
and other disease-specific safety considerations [39].

Additionally, patients with medical history of ischemic
diseases, cardiovascular diseases, lung fibrosis, concur-
rent neoplasm, and family history of hereditary cancer
should be carefully reviewed during MSC treatment.
The cell dose, infusion route and rate should be docu-
mented. The product profiles of the MSCs from different
tissues and different generation processes, such as tran-
scriptome, epigenome, proteomic data, cell populations,
potential potency biomarkers, preclinical data from cell
and animal studies, should be provided.

The therapeutic efficacy of MSCs in different disease
indication is still under evaluation, as most of the studies
to date have been limited to phase 1 and phase 2 studies
(Fig. 1b and 1c, Additional file 2). As we have discussed
in this review, the differences in MSC tissue origins and
the variety of cell culture conditions would be some of
the important factors determining MSC potency in vivo
[269]. Thus, the development of surrogate potency assays
using preclinical animal model is needed [270]. Recently
the International Society for Cellular Therapy (ISCT)
have announced some strategies to identify the potential
effective factors of MSC action mechanism, including the
combined the matrix assay and multiple techniques, such
as quantitative RNA analysis for the specific genes, flow
cytometry analysis for cell surface markers, and the pro-
tein-based assay of secretome [271]. Potency assessments
in evaluating cell pharmacology, cell delivery route, as
well as the cell-drug interaction are still under develop-
ment to improve the MSC precision therapy [272-275].
Although the matrix assays were reported to serve as a
platform to identify the biomarkers for MSC potency
in vitro [276, 277], whether this in vitro assays are able
to identify the MSC potency are still under discussion.
For example, the use of allogeneic human peripheral
blood mononuclear cells for mixed lymphocyte reac-
tion (MLR) assays is a popular assay to demonstrate the
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MSC immunomodulation capacity. However, the lack
of robustness, accuracy, and reproducibility is of con-
cern [278-280]. Additionally, the correlation between
the in vitro assays and in vivo pre-clinical/clinical data
requires further evaluation.

Cryopreservation could be another factor affecting
MSC potency. It has been documented that the MSC
cryostorge, the so-called “cryo stun effect’, may decrease
MSC therapeutic efficacy, leading to failures in MSC
clinical trials [278]. Recently, a systematic review regard-
ing the impact of cryopreservation on BMMSCs showed
that the cryopreservation appears to affect the cell via-
bility, apoptosis, cellular attachment, immunomodula-
tion, and metabolism of BMMSCs [279]. Furthermore,
these impaired viability or functions of the MSCs can
be restored, partially or totally, by following an acclima-
tion period [279-281], or by IFNYy licensing before cryo-
preservation [282].

In summary, the use of standardized potency assays
should be incorporated into future MSC product release
criteria. Thus, development of surrogate potency assays
for different disease indications should be highlighted.
The optimal process of cryopreservation and thaw-
ing may be another important factor requiring further
attention.

Conclusions

MSCs are a major cornerstone to the advancement of
cell therapy, yet much remains to be learned about their
pharmacokinetics and pharmacodynamics after systemic
application in vivo. The different tissue origins of MSCs
not only confer different biological activities that affect
their therapeutic usefulness, but also raise the concern
of different safety profiles. Many methods, including
herein discussed fluorescent nanodiamond, are available
for tracking inoculated MSCs in vivo, each with different
advantages and disadvantages. These imaging platforms
will facilitate future studies to discern and optimize the
use of different MSCs for future clinical therapies.
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