Harris KM, Stevens JK: Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. J Neurosci. 1989, 9: 2982-2997.
CAS
PubMed
Google Scholar
Ehninger D, Li W, Fox K, Stryker MP, Silva AJ: Reversing neurodevelopmental disorders in adults. Neuron. 2008, 60: 950-960. 10.1016/j.neuron.2008.12.007.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ramocki MB, Zoghbi HY: Failure of neuronal homeostasis results in common neuropsychiatric phenotypes. Nature. 2008, 455: 912-918. 10.1038/nature07457.
Article
PubMed Central
CAS
PubMed
Google Scholar
Giusti-Rodriguez P, Gao J, Graff J, Rei D, Soda T, Tsai LH: Synaptic deficits are rescued in the p25/Cdk5 model of neurodegeneration by the reduction of beta-secretase (BACE1). J Neurosci. 2011, 31: 15751-15756. 10.1523/JNEUROSCI.3588-11.2011.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ferreira ST, Klein WL: The Abeta oligomer hypothesis for synapse failure and memory loss in Alzheimer's disease. Neurobiol Learn Mem. 2011, 96: 529-543. 10.1016/j.nlm.2011.08.003.
Article
PubMed Central
CAS
PubMed
Google Scholar
Spires-Jones T, Knafo S: Spines, plasticity, and cognition in Alzheimer's model mice. Neural Plast. 2012, 2012: 319836-
PubMed Central
PubMed
Google Scholar
Lin Y-L, Lei Y-T, Hong C-J, Hsueh YP: Syndecan-2 induces filopodia formation via the neurofibromin-PKA-Ena/VASP pathway. J Cell Biol. 2007, 177: 829-841. 10.1083/jcb.200608121.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang HF, Shih YT, Chen CY, Chao HW, Lee MJ, Hsueh YP: Valosin-containing protein and neurofibromin interact to regulate dendritic spine density. J Clin Invest. 2011, 121: 4820-4837. 10.1172/JCI45677.
Article
PubMed Central
CAS
PubMed
Google Scholar
Upadhyaya M: Genetic basis of tumorigenesis in NF1 malignant peripheral nerve sheath tumors. Front Biosci. 2011, 16: 937-951. 10.2741/3727.
Article
CAS
Google Scholar
Brossier NM, Carroll SL: Genetically engineered mouse models shed new light on the pathogenesis of neurofibromatosis type I-related neoplasms of the peripheral nervous system. Brain Res Bull. 2011, 10.1016/j.brainresbull.2011.08.005 [doi]
Google Scholar
Haines DS: p97-containing complexes in proliferation control and cancer: emerging culprits or guilt by association?. Genes Cancer. 2010, 1: 753-763. 10.1177/1947601910381381.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ralston SH: Pathogenesis of Paget's disease of bone. Bone. 2008, 43: 819-825. 10.1016/j.bone.2008.06.015.
Article
CAS
PubMed
Google Scholar
Schindeler A, Little DG: Recent insights into bone development, homeostasis, and repair in type 1 neurofibromatosis (NF1). Bone. 2008, 42: 616-622. 10.1016/j.bone.2007.11.006.
Article
CAS
PubMed
Google Scholar
Costa RM, Federov NB, Kogan JH, Murphy GG, Stern J, Ohno M, Kucherlapati R, Jacks T, Silva AJ: Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1. Nature. 2002, 415: 526-530. 10.1038/nature711.
Article
CAS
PubMed
Google Scholar
Hyman SL, Shores A, North KN: The nature and frequency of cognitive deficits in children with neurofibromatosis type 1. Neurology. 2005, 65: 1037-1044. 10.1212/01.wnl.0000179303.72345.ce.
Article
PubMed
Google Scholar
Hyman SL, Arthur Shores E, North KN: Learning disabilities in children with neurofibromatosis type 1: subtypes, cognitive profile, and attention-deficit-hyperactivity disorder. Dev Med Child Neurol. 2006, 48: 973-977. 10.1017/S0012162206002131.
Article
PubMed
Google Scholar
Mbarek O, Marouillat S, Martineau J, Barthelemy C, Muh JP, Andres C: Association study of the NF1 gene and autistic disorder. Am J Med Genet. 1999, 88: 729-732. 10.1002/(SICI)1096-8628(19991215)88:6<729::AID-AJMG26>3.0.CO;2-Q.
Article
CAS
PubMed
Google Scholar
Marui T, Hashimoto O, Nanba E, Kato C, Tochigi M, Umekage T, Ishijima M, Kohda K, Kato N, Sasaki T: Association between the neurofibromatosis-1 (NF1) locus and autism in the Japanese population. Am J Med Genet B Neuropsychiatr Genet. 2004, 131B: 43-47. 10.1002/ajmg.b.20119.
Article
PubMed
Google Scholar
Kuorilehto T, Poyhonen M, Bloigu R, Heikkinen J, Vaananen K, Peltonen J: Decreased bone mineral density and content in neurofibromatosis type 1: lowest local values are located in the load-carrying parts of the body. Osteoporos Int. 2005, 16: 928-936. 10.1007/s00198-004-1801-4.
Article
CAS
PubMed
Google Scholar
Easton DF, Ponder MA, Huson SM, Ponder BA: An analysis of variation in expression of neurofibromatosis (NF) type 1 (NF1): evidence for modifying genes. Am J Hum Genet. 1993, 53: 305-313.
PubMed Central
CAS
PubMed
Google Scholar
Szudek J, Birch P, Riccardi VM, Evans DG, Friedman JM: Associations of clinical features in neurofibromatosis 1 (NF1). Genet Epidemiol. 2000, 19: 429-439. 10.1002/1098-2272(200012)19:4<429::AID-GEPI13>3.0.CO;2-N.
Article
CAS
PubMed
Google Scholar
Xu GF, O'Connell P, Viskochil D, Cawthon R, Robertson M, Culver M, Dunn D, Stevens J, Gesteland R, White R: The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell. 1990, 62: 599-608. 10.1016/0092-8674(90)90024-9.
Article
CAS
PubMed
Google Scholar
Brannan CI, Perkins AS, Vogel KS, Ratner N, Nordlund ML, Reid SW, Buchberg AM, Jenkins NA, Parada LF, Copeland NG: Targeted disruption of the neurofibromatosis type-1 gene leads to developmental abnormalities in heart and various neural crest-derived tissues. Genes Dev. 1994, 8: 1019-1029. 10.1101/gad.8.9.1019.
Article
CAS
PubMed
Google Scholar
Jacks T, Shih TS, Schmitt EM, Bronson RT, Bernards A, Weinberg RA: Tumour predisposition in mice heterozygous for a targeted mutation in Nf1. Nat Genet. 1994, 7: 353-361. 10.1038/ng0794-353.
Article
CAS
PubMed
Google Scholar
Xu GF, Lin B, Tanaka K, Dunn D, Wood D, Gesteland R, White R, Weiss R, Tamanoi F: The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae. Cell. 1990, 63: 835-841. 10.1016/0092-8674(90)90149-9.
Article
CAS
PubMed
Google Scholar
Ballester R, Marchuk D, Boguski M, Saulino A, Letcher R, Wigler M, Collins F: The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell. 1990, 63: 851-859. 10.1016/0092-8674(90)90151-4.
Article
CAS
PubMed
Google Scholar
Martin GA, Viskochil D, Bollag G, McCabe PC, Crosier WJ, Haubruck H, Conroy L, Clark R, O'Connell P, Cawthon RM: The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell. 1990, 63: 843-849. 10.1016/0092-8674(90)90150-D.
Article
CAS
PubMed
Google Scholar
Guo HF, The I, Hannan F, Bernards A, Zhong Y: Requirement of Drosophila NF1 for activation of adenylyl cyclase by PACAP38-like neuropeptides. Science. 1997, 276: 795-798. 10.1126/science.276.5313.795.
Article
CAS
PubMed
Google Scholar
Hannan F, Ho I, Tong JJ, Zhu Y, Nurnberg P, Zhong Y: Effect of neurofibromatosis type I mutations on a novel pathway for adenylyl cyclase activation requiring neurofibromin and Ras. Hum Mol Genet. 2006, 15: 1087-1098. 10.1093/hmg/ddl023.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hsueh YP: Neurofibromin signaling and synapses. J Biomed Sci. 2007, 14: 461-466. 10.1007/s11373-007-9158-2.
Article
CAS
PubMed
Google Scholar
Guo HF, Tong J, Hannan F, Luo L, Zhong Y: A neurofibromatosis-1-regulated pathway is required for learning in Drosophila. Nature. 2000, 403: 895-898. 10.1038/35002593.
Article
CAS
PubMed
Google Scholar
Tong J, Hannan F, Zhu Y, Bernards A, Zhong Y: Neurofibromin regulates G protein-stimulated adenylyl cyclase activity. Nat Neurosci. 2002, 5: 95-96. 10.1038/nn792.
Article
CAS
PubMed
Google Scholar
Kweh F, Zheng M, Kurenova E, Wallace M, Golubovskaya V, Cance WG: Neurofibromin physically interacts with the N-terminal domain of focal adhesion kinase. Mol Carcinog. 2009, 48: 1005-1017. 10.1002/mc.20552.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hsueh YP, Roberts AM, Volta M, Sheng M, Roberts RG: Bipartite interaction between neurofibromatosis type I protein (neurofibromin) and syndecan transmembrane heparan sulfate proteoglycans. J Neurosci. 2001, 21: 3764-3770.
CAS
PubMed
Google Scholar
Lin YL, Hsueh YP: Neurofibromin interacts with CRMP-2 and CRMP-4 in rat brain. Biochem Biophys Res Commun. 2008, 369: 747-752. 10.1016/j.bbrc.2008.02.095.
Article
CAS
PubMed
Google Scholar
Volta M, Calza S, Roberts AM, Roberts RG: Characterisation of the interaction between syndecan-2, neurofibromin and CASK: dependence of interaction on syndecan dimerization. Biochem Biophys Res Commun. 2010, 391: 1216-1221. 10.1016/j.bbrc.2009.12.043.
Article
CAS
PubMed
Google Scholar
De Schepper S, Boucneau JM, Westbroek W, Mommaas M, Onderwater J, Messiaen L, Naeyaert JM, Lambert JL: Neurofibromatosis type 1 protein and amyloid precursor protein interact in normal human melanocytes and colocalize with melanosomes. J Invest Dermatol. 2006, 126: 653-659. 10.1038/sj.jid.5700087.
Article
CAS
PubMed
Google Scholar
Feng L, Yunoue S, Tokuo H, Ozawa T, Zhang D, Patrakitkomjorn S, Ichimura T, Saya H, Araki N: PKA phosphorylation and 14-3-3 interaction regulate the function of neurofibromatosis type I tumor suppressor, neurofibromin. FEBS Lett. 2004, 557: 275-282. 10.1016/S0014-5793(03)01507-2.
Article
CAS
PubMed
Google Scholar
Patrakitkomjorn S, Kobayashi D, Morikawa T, Wilson MM, Tsubota N, Irie A, Ozawa T, Aoki M, Arimura N, Kaibuchi K, Saya H, Araki N: Neurofibromatosis type 1 (NF1) tumor suppressor, neurofibromin, regulates the neuronal differentiation of PC12 cells via its associating protein, CRMP-2. J Biol Chem. 2008, 283: 9399-9413. 10.1074/jbc.M708206200.
Article
CAS
PubMed
Google Scholar
D'Angelo I, Welti S, Bonneau F, Scheffzek K: A novel bipartite phospholipid-binding module in the neurofibromatosis type 1 protein. EMBO Rep. 2006, 7: 174-179. 10.1038/sj.embor.7400602.
Article
PubMed Central
PubMed
Google Scholar
Welti S, Fraterman S, D'Angelo I, Wilm M, Scheffzek K: The sec14 homology module of neurofibromin binds cellular glycerophospholipids: mass spectrometry and structure of a lipid complex. J Mol Biol. 2007, 366: 551-562. 10.1016/j.jmb.2006.11.055.
Article
CAS
PubMed
Google Scholar
Watts GD, Wymer J, Kovach MJ, Mehta SG, Mumm S, Darvish D, Pestronk A, Whyte MP, Kimonis VE: Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet. 2004, 36: 377-381. 10.1038/ng1332.
Article
CAS
PubMed
Google Scholar
Weihl CC: Another VCP interactor: NF is enough. J Clin Invest. 2011, 121: 4627-4630. 10.1172/JCI61126.
Article
PubMed Central
CAS
PubMed
Google Scholar
Weihl CC: Valosin containing protein associated fronto-temporal lobar degeneration: clinical presentation, pathologic features and pathogenesis. Curr Alzheimer Res. 2011, 8: 252-260. 10.2174/156720511795563773.
Article
PubMed Central
CAS
PubMed
Google Scholar
Johnson JO, Mandrioli J, Benatar M, Abramzon Y, Van Deerlin VM, Trojanowski JQ, Gibbs JR, Brunetti M, Gronka S, Wuu J, Ding J, McCluskey L, Martinez-Lage M, Falcone D, Hernandez DG, Arepalli S, Chong S, Schymick JC, Rothstein J, Landi F, Wang YD, Calvo A, Mora G, Sabatelli M, Monsurro MR, Battistini S, Salvi F, Spataro R, Sola P: Borghero Get al.: Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron. 2010, 68: 857-864. 10.1016/j.neuron.2010.11.036.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hirabayashi M, Inoue K, Tanaka K, Nakadate K, Ohsawa Y, Kamei Y, Popiel AH, Sinohara A, Iwamatsu A, Kimura Y, Uchiyama Y, Hori S, Kakizuka A: VCP/p97 in abnormal protein aggregates, cytoplasmic vacuoles, and cell death, phenotypes relevant to neurodegeneration. Cell Death Differ. 2001, 8: 977-984. 10.1038/sj.cdd.4400907.
Article
CAS
PubMed
Google Scholar
Neumann M, Mackenzie IR, Cairns NJ, Boyer PJ, Markesbery WR, Smith CD, Taylor JP, Kretzschmar HA, Kimonis VE, Forman MS: TDP-43 in the ubiquitin pathology of frontotemporal dementia with VCP gene mutations. J Neuropathol Exp Neurol. 2007, 66: 152-157. 10.1097/nen.0b013e31803020b9.
Article
PubMed
Google Scholar
Weihl CC, Temiz P, Miller SE, Watts G, Smith C, Forman M, Hanson PI, Kimonis V, Pestronk A: TDP-43 accumulation in inclusion body myopathy muscle suggests a common pathogenic mechanism with frontotemporal dementia. J Neurol Neurosurg Psychiatry. 2008, 79: 1186-1189. 10.1136/jnnp.2007.131334.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ritson GP, Custer SK, Freibaum BD, Guinto JB, Geffel D, Moore J, Tang W, Winton MJ, Neumann M, Trojanowski JQ, Lee VM, Forman MS, Taylor JP: TDP-43 mediates degeneration in a novel Drosophila model of disease caused by mutations in VCP/p97. J Neurosci. 2010, 30: 7729-7739. 10.1523/JNEUROSCI.5894-09.2010.
Article
PubMed Central
CAS
PubMed
Google Scholar
Brunger AT, DeLaBarre B: NSF and p97/VCP: similar at first, different at last. FEBS Lett. 2003, 555: 126-133. 10.1016/S0014-5793(03)01107-4.
Article
CAS
PubMed
Google Scholar
Wang Q, Song C, Li CC: Molecular perspectives on p97-VCP: progress in understanding its structure and diverse biological functions. J Struct Biol. 2004, 146: 44-57. 10.1016/j.jsb.2003.11.014.
Article
CAS
PubMed
Google Scholar
Rouiller I, DeLaBarre B, May AP, Weis WI, Brunger AT, Milligan RA, Wilson-Kubalek EM: Conformational changes of the multifunction p97 AAA ATPase during its ATPase cycle. Nat Struct Biol. 2002, 9: 950-957. 10.1038/nsb872.
Article
CAS
PubMed
Google Scholar
Tang WK, Li D, Li CC, Esser L, Dai R, Guo L, Xia D: A novel ATP-dependent conformation in p97 N-D1 fragment revealed by crystal structures of disease-related mutants. EMBO J. 2010, 29: 2217-2229. 10.1038/emboj.2010.104.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schroder R, Watts GD, Mehta SG, Evert BO, Broich P, Fliessbach K, Pauls K, Hans VH, Kimonis V, Thal DR: Mutant valosin-containing protein causes a novel type of frontotemporal dementia. Ann Neurol. 2005, 57: 457-461. 10.1002/ana.20407.
Article
PubMed
Google Scholar
Kimonis VE, Mehta SG, Fulchiero EC, Thomasova D, Pasquali M, Boycott K, Neilan EG, Kartashov A, Forman MS, Tucker S, Kimonis K, Mumm S, Whyte MP, Smith CD, Watts GD: Clinical studies in familial VCP myopathy associated with Paget disease of bone and frontotemporal dementia. Am J Med Genet A. 2008, 146: 745-757.
Article
Google Scholar
Halawani D, LeBlanc AC, Rouiller I, Michnick SW, Servant MJ, Latterich M: Hereditary inclusion body myopathy-linked p97/VCP mutations in the NH2 domain and the D1 ring modulate p97/VCP ATPase activity and D2 ring conformation. Mol Cell Biol. 2009, 29: 4484-4494. 10.1128/MCB.00252-09.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vij N: AAA ATPase p97/VCP: cellular functions, disease and therapeutic potential. J Cell Mol Med. 2008, 12: 2511-2518. 10.1111/j.1582-4934.2008.00462.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jarosch E, Taxis C, Volkwein C, Bordallo J, Finley D, Wolf DH, Sommer T: Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nat Cell Biol. 2002, 4: 134-139. 10.1038/ncb746.
Article
CAS
PubMed
Google Scholar
Dreveny I, Kondo H, Uchiyama K, Shaw A, Zhang X, Freemont PS: Structural basis of the interaction between the AAA ATPase p97/VCP and its adaptor protein p47. EMBO J. 2004, 23: 1030-1039. 10.1038/sj.emboj.7600139.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yoshida H: ER stress and diseases. FEBS J. 2007, 274: 630-658. 10.1111/j.1742-4658.2007.05639.x.
Article
CAS
PubMed
Google Scholar
Uchiyama K, Kondo H: p97/p47-Mediated biogenesis of Golgi and ER. J Biochem. 2005, 137: 115-119. 10.1093/jb/mvi028.
Article
CAS
PubMed
Google Scholar
Ju JS, Weihl CC: p97/VCP at the intersection of the autophagy and the ubiquitin proteasome system. Autophagy. 2010, 6: 283-285. 10.4161/auto.6.2.11063.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tresse E, Salomons FA, Vesa J, Bott LC, Kimonis V, Yao TP, Dantuma NP, Taylor JP: VCP/p97 is essential for maturation of ubiquitin-containing autophagosomes and this function is impaired by mutations that cause IBMPFD. Autophagy. 2010, 6: 217-227. 10.4161/auto.6.2.11014.
Article
PubMed Central
CAS
PubMed
Google Scholar
Meyer H, Bug M, Bremer S: Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat Cell Biol. 2012, 14: 117-123. 10.1038/ncb2407.
Article
CAS
PubMed
Google Scholar
Weihl CC, Dalal S, Pestronk A, Hanson PI: Inclusion body myopathy-associated mutations in p97/VCP impair endoplasmic reticulum-associated degradation. Hum Mol Genet. 2006, 15: 189-199.
Article
CAS
PubMed
Google Scholar
Ju JS, Fuentealba RA, Miller SE, Jackson E, Piwnica-Worms D, Baloh RH, Weihl CC: Valosin-containing protein (VCP) is required for autophagy and is disrupted in VCP disease. J Cell Biol. 2009, 187: 875-888. 10.1083/jcb.200908115.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kondo H, Rabouille C, Newman R, Levine TP, Pappin D, Freemont P, Warren G: p47 is a cofactor for p97-mediated membrane fusion. Nature. 1997, 388: 75-78. 10.1038/40411.
Article
CAS
PubMed
Google Scholar
Otter-Nilsson M, Hendriks R, Pecheur-Huet EI, Hoekstra D, Nilsson T: Cytosolic ATPases, p97 and NSF, are sufficient to mediate rapid membrane fusion. EMBO J. 1999, 18: 2074-2083. 10.1093/emboj/18.8.2074.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hetzer M, Meyer HH, Walther TC, Bilbao-Cortes D, Warren G, Mattaj IW: Distinct AAA-ATPase p97 complexes function in discrete steps of nuclear assembly. Nat Cell Biol. 2001, 3: 1086-1091. 10.1038/ncb1201-1086.
Article
CAS
PubMed
Google Scholar
Uchiyama K, Jokitalo E, Kano F, Murata M, Zhang X, Canas B, Newman R, Rabouille C, Pappin D, Freemont P, Kondo H: VCIP135, a novel essential factor for p97/p47-mediated membrane fusion, is required for Golgi and ER assembly in vivo. J Cell Biol. 2002, 159: 855-866. 10.1083/jcb.200208112.
Article
PubMed Central
CAS
PubMed
Google Scholar
Uchiyama K, Jokitalo E, Lindman M, Jackman M, Kano F, Murata M, Zhang X, Kondo H: The localization and phosphorylation of p47 are important for Golgi disassembly-assembly during the cell cycle. J Cell Biol. 2003, 161: 1067-1079. 10.1083/jcb.200303048.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kano F, Kondo H, Yamamoto A, Tanaka AR, Hosokawa N, Nagata K, Murata M: The maintenance of the endoplasmic reticulum network is regulated by p47, a cofactor of p97, through phosphorylation by cdc2 kinase. Genes Cells. 2005, 10: 333-344. 10.1111/j.1365-2443.2005.00837.x.
Article
CAS
PubMed
Google Scholar
Vedrenne C, Hauri HP: Morphogenesis of the endoplasmic reticulum: beyond active membrane expansion. Traffic. 2006, 7: 639-646. 10.1111/j.1600-0854.2006.00419.x.
Article
CAS
PubMed
Google Scholar
Krick R, Bremer S, Welter E, Schlotterhose P, Muehe Y, Eskelinen EL, Thumm M: Cdc48/p97 and Shp1/p47 regulate autophagosome biogenesis in concert with ubiquitin-like Atg8. J Cell Biol. 2010, 190: 965-973. 10.1083/jcb.201002075.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mizuno Y, Hori S, Kakizuka A, Okamoto K: Vacuole-creating protein in neurodegenerative diseases in humans. Neurosci Lett. 2003, 343: 77-80. 10.1016/S0304-3940(03)00280-5.
Article
CAS
PubMed
Google Scholar
Forman MS, Mackenzie IR, Cairns NJ, Swanson E, Boyer PJ, Drachman DA, Jhaveri BS, Karlawish JH, Pestronk A, Smith TW, Tu PH, Watts GD, Markesbery WR, Smith CD, Kimonis VE: Novel ubiquitin neuropathology in frontotemporal dementia with valosin-containing protein gene mutations. J Neuropathol Exp Neurol. 2006, 65: 571-581. 10.1097/00005072-200606000-00005.
Article
CAS
PubMed
Google Scholar
Rumpf S, Lee SB, Jan LY, Jan YN: Neuronal remodeling and apoptosis require VCP-dependent degradation of the apoptosis inhibitor DIAP1. Development. 2011, 138: 1153-1160. 10.1242/dev.062703.
Article
PubMed Central
CAS
PubMed
Google Scholar
Li W, Cui Y, Kushner SA, Brown RA, Jentsch JD, Frankland PW, Cannon TD, Silva AJ: The HMG-CoA reductase inhibitor lovastatin reverses the learning and attention deficits in a mouse model of neurofibromatosis type 1. Curr Biol. 2005, 15: 1961-1967. 10.1016/j.cub.2005.09.043.
Article
CAS
PubMed
Google Scholar
Mendola CE, Backer JM: Lovastatin blocks N-ras oncogene-induced neuronal differentiation. Cell Growth Differ. 1990, 1: 499-502.
CAS
PubMed
Google Scholar
Sebti SM, Tkalcevic GT, Jani JP: Lovastatin, a cholesterol biosynthesis inhibitor, inhibits the growth of human H-ras oncogene transformed cells in nude mice. Cancer Commun. 1991, 3: 141-147.
CAS
PubMed
Google Scholar
Hering H, Lin CC, Sheng M: Lipid rafts in the maintenance of synapses, dendritic spines, and surface AMPA receptor stability. J Neurosci. 2003, 23: 3262-3271.
CAS
PubMed
Google Scholar
Cao J, Wang J, Qi W, Miao HH, Ge L, DeBose-Boyd RA, Tang JJ, Li BL, Song BL: Ufd1 is a cofactor of gp78 and plays a key role in cholesterol metabolism by regulating the stability of HMG-CoA reductase. Cell Metab. 2007, 6: 115-128. 10.1016/j.cmet.2007.07.002.
Article
CAS
PubMed
Google Scholar
Leichner GS, Avner R, Harats D, Roitelman J: Dislocation of HMG-CoA reductase and Insig-1, two polytopic endoplasmic reticulum proteins, en route to proteasomal degradation. Mol Biol Cell. 2009, 20: 3330-3341. 10.1091/mbc.E08-09-0953.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hartman IZ, Liu P, Zehmer JK, Luby-Phelps K, Jo Y, Anderson RG, DeBose-Boyd RA: Sterol-induced dislocation of 3-hydroxy-3-methylglutaryl coenzyme A reductase from endoplasmic reticulum membranes into the cytosol through a subcellular compartment resembling lipid droplets. J Biol Chem. 2010, 285: 19288-19298. 10.1074/jbc.M110.134213.
Article
PubMed Central
CAS
PubMed
Google Scholar