McGaugh JL. Time-dependent processes in memory storage. Science. 1966;153:1351–8.
Article
CAS
Google Scholar
Baddeley A. The fractionation of working memory. Proc Natl Acad Sci U S A. 1996;93:13468–72.
Article
CAS
Google Scholar
Cowan N. What are the differences between long-term, short-term, and working memory? Prog Brain Res. 2008;169:323–38.
Article
Google Scholar
Khader P, Ranganath C, Seemuller A, Rosler F. Working memory maintenance contributes to long-term memory formation: evidence from slow event-related brain potentials. Cogn Affect Behav Neurosci. 2007;7:212–24.
Article
Google Scholar
Berg DH. Working memory and arithmetic calculation in children: the contributory roles of processing speed, short-term memory, and reading. J Exp Child Psychol. 2008;99:288–308.
Article
Google Scholar
Zhang J, Norman DA. A representational analysis of numeration systems. Cognition. 1995;57:271–95.
Article
CAS
Google Scholar
Shu SY, Penny GR, Peterson GM. The 'marginal division': a new subdivision in the neostriatum of the rat. J Chem Neuroanat. 1988;1:147–63.
CAS
Google Scholar
Shu SY, McGinty JF, Peterson GM. High density of zinc-containing and dynorphin B- and substance P-immunoreactive terminals in the marginal division of the rat striatum. Brain Res Bull. 1990;24:201–5.
Article
CAS
Google Scholar
Lavoie B, Parent A. Pedunculopontine nucleus in the squirrel monkey: projections to the basal ganglia as revealed by anterograde tract-tracing methods. J Comp Neurol. 1994;344:210–31.
Article
CAS
Google Scholar
Shammah-Lagnado SJ, Alheid GF, Heimer L. Afferent connections of the interstitial nucleus of the posterior limb of the anterior commissure and adjacent amygdalostriatal transition area in the rat. Neuroscience. 1999;94:1097–123.
Article
CAS
Google Scholar
Talley EM, Rosin DL, Lee A, Guyenet PG, Lynch KR. Distribution of alpha 2A-adrenergic receptor-like immunoreactivity in the rat central nervous system. J Comp Neurol. 1996;372:111–34.
Article
CAS
Google Scholar
Shu SY, Bao X, Li S, Niu D, Xu Z, Li Y. A new subdivision of mammalian neostriatum with functional implications to learning and memory. J Neurosci Res. 1999;58:242–53.
Article
CAS
Google Scholar
S.Y. Shu, X.M. Bao, Y.M. Wu, J. Wang, B. Leonard, Hippocampal long-term potentiation attenuated by lesions in the marginal division of neostriatum, Neurochem Res, 28 (2003) 743–747.
Zeng J, Shu SY, Bao X, Zou F, Ji A, Ye J. Properties of acetylcholine receptor ion channels in the acutely dissociated neurons of the marginal division in the rat striatum. Neurochem Res. 1999;24:1571–5.
Article
CAS
Google Scholar
Shu SY, Wu YM, Bao XM, Wen ZB, Huang FH, Li SX, Fu QZ, Ning Q. A new area in the human brain associated with learning and memory: immunohistochemical and functional MRI analysis. Mol Psychiatry. 2002;7:1018–22.
Article
CAS
Google Scholar
Shu SY, Song C, Wu Y, Mo L, Guo Z, Liu SH, Bao X. Learning and memory deficits caused by a lesion in the medial area of the left putamen in the human brain. CNS Spectr. 2009;14:473–6.
Article
Google Scholar
Dehaene S. Varieties of numerical abilities. Cognition. 1992;44:1–42.
Article
CAS
Google Scholar
McCloskey M. Cognitive mechanisms in numerical processing: evidence from acquired dyscalculia. Cognition. 1992;44:107–57.
Article
CAS
Google Scholar
Dehaene S. The number sense: how the mind creates mathematics. New York: Oxford University Press; 1997.
Google Scholar
Schmithorst VJ, Brown RD. Empirical validation of the triple-code model of numerical processing for complex math operations using functional MRI and group independent component analysis of the mental addition and subtraction of fractions. NeuroImage. 2004;22:1414–20.
Article
Google Scholar
D'Esposito M, Postle BR, Rypma B. Prefrontal cortical contributions to working memory: evidence from event-related fMRI studies. Exp Brain Res. 2000;133:3–11.
Article
CAS
Google Scholar
Rowe JB, Passingham RE. Working memory for location and time: activity in prefrontal area 46 relates to selection rather than maintenance in memory. NeuroImage. 2001;14:77–86.
Article
CAS
Google Scholar
Walter H, Bretschneider V, Gron G, Zurowski B, Wunderlich AP, Tomczak R, Spitzer M. Evidence for quantitative domain dominance for verbal and spatial working memory in frontal and parietal cortex. Cortex. 2003;39:897–911.
Article
Google Scholar
Wolf RC, Walter H. Evaluation of a novel event-related parametric fMRI paradigm investigating prefrontal function. Psychiatry Res. 2005;140:73–83.
Article
Google Scholar
Z.Q. Zhang, S.Y. Shu, S.H. Liu, Z.Y. Guo, Y.M. Wu, X.M. Bao, J.L. Zheng, H.Z. Ma, Activated brain areas during simple and complex mental calculation--a functional MRI study, Sheng Li Xue Bao, 60 (2008) 504–510.
Shu SY, Jiang G, Zeng QY, Wang B, Li H, Ma L, Steinbusch H, Song C, Chan WY, Chen XH, Wu YM, Bao R, Chen YC, Wu JY. The marginal division of the striatum and hippocampus has different role and mechanism in learning and memory. Mol Neurobiol. 2015;51:827–39.
Article
CAS
Google Scholar
Zhang Z, Liu Y, Zhou B, Zheng J, Yao H, An N, Wang P, Guo Y, Dai H, Wang L, Shu S, Zhang X, Jiang T. Altered functional connectivity of the marginal division in Alzheimer’s disease. Curr Alzheimer Res. 2014;11:145–55.
Article
CAS
Google Scholar
Chen Z, Liu M, Liu M, Li J, Shan H, Liu S, Lou X, Shu S, Ma L. Effect of normal aging on the structure of marginal division of neostriatum as measured by MR phase imaging and diffusion tensor imaging. J Magn Reson Imaging. 2017;45:1343–51.
Article
Google Scholar
Kaufmann L, Vogel SE, Wood G, Kremser C, Schocke M, Zimmerhackl LB, Koten JW. A developmental fMRI study of nonsymbolic numerical and spatial processing. Cortex. 2008;44:376–85.
Article
Google Scholar
Yi Y, Driesen N, Leung HC. Behavioral and neural correlates of memory selection and interference resolution during a digit working memory task. Cogn Affect Behav Neurosci. 2009;9:249–59.
Article
Google Scholar
Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9:97–113.
Article
CAS
Google Scholar
Miller GA. The magical number seven plus or minus two: some limits on our capacity for processing information. Psychol Rev. 1956;63:81–97.
Article
CAS
Google Scholar
Bor D, Owen AM. A common prefrontal-parietal network for mnemonic and mathematical recoding strategies within working memory. Cereb Cortex. 2007;17:778–86.
Article
Google Scholar
Libertus ME, Brannon EM, Pelphrey KA. Developmental changes in category-specific brain responses to numbers and letters in a working memory task. NeuroImage. 2009;44:1404–14.
Article
Google Scholar
Pessoa L, Gutierrez E, Bandettini P, Ungerleider L. Neural correlates of visual working memory: fMRI amplitude predicts task performance. Neuron. 2002;35:975–87.
Article
CAS
Google Scholar
Henson RN, Burgess N, Frith CD. Recoding, storage, rehearsal and grouping in verbal short-term memory: an fMRI study. Neuropsychologia. 2000;38:426–40.
Article
CAS
Google Scholar
Lycke C, Specht K, Ersland L, Hugdahl K. An fMRI study of phonological and spatial working memory using identical stimuli. Scand J Psychol. 2008;49:393–01.
Article
Google Scholar
Elgh E, Larsson A, Eriksson S, Nyberg L. Altered prefrontal brain activity in persons at risk for Alzheimer’s disease: an fMRI study. Int Psychogeriatr. 2003;15:121–33.
Article
Google Scholar
Munk MH, Linden DE, Muckli L, Lanfermann H, Zanella FE, Singer W, Goebel R. Distributed cortical systems in visual short-term memory revealed by event-related functional magnetic resonance imaging. Cereb Cortex. 2002;12:866–76.
Article
Google Scholar
Todd JJ, Marois R. Posterior parietal cortex activity predicts individual differences in visual short-term memory capacity. Cogn Affecti Behav Neurosci. 2005;5:144–55.
Article
Google Scholar
James C, Morand S, Barcellona-Lehmann S, Michel CM, Schnider A. Neural transition from short- to long-term memory and the medial temporal lobe: a human evoked-potential study. Hippocampus. 2009;19:371–8.
Article
Google Scholar
Crowder RG. Short-term memory: where do we stand? Mem Cogn. 1993;21:142–5.
Article
CAS
Google Scholar
Wager TD, Smith EE. Neuroimaging studies of working memory: a meta-analysis. Cogn Affect Behav Neurosci. 2003;3:255–74.
Article
Google Scholar
Pinel P, Le Clec HG, van de Moortele PF, Naccache L, Le Bihan D, Dehaene S. Event-related fMRI analysis of the cerebral circuit for number comparison. Neuroreport. 1999;10:1473–9.
Article
CAS
Google Scholar
Wood G, Nuerk HC, Willmes K. Neural representations of two-digit numbers: a parametric fMRI study. NeuroImage. 2006;29:358–67.
Article
Google Scholar
Haarmann HI, Cameron KA, Ruchkin DS. Neural synchronization mediates on-line sentence processing: EEG coherence evidence from filler-gap constructions. Psychophysiology. 2002;39:820–5.
Article
Google Scholar
Ruchkin DS, Grafman J, Cameron K, Berndt RS. Working memory retention systems: a state of activated long-term memory. Behav Brain Sci. 2003;26:709–28 discussion 728-777.
Google Scholar
Blumenfeld RS, Ranganath C. Dorsolateral prefrontal cortex promotes long-term memory formation through its role in working memory organization. J Neurosci. 2006;26:916–25.
Article
CAS
Google Scholar
Lewis-Peacock JA, Postle BR. Temporary activation of long-term memory supports working memory. J Neurosci. 2008;28:8765–71.
Article
CAS
Google Scholar
Chang C, Crottaz-Herbette S, Menon V. Temporal dynamics of basal ganglia response and connectivity during verbal working memory. NeuroImage. 2007;34:1253–69.
Article
Google Scholar
Delazer M, Domahs F, Lochy A, Karner E, Benke T, Poewe W. Number processing and basal ganglia dysfunction: a single case study. Neuropsychologia. 2004;42:1050–62.
Article
Google Scholar
Thevenot C, Barrouillet P. Encoding numbers: behavioral evidence for processing-specific representations. Mem Cogn. 2006;34:938–48.
Article
Google Scholar