Schnaar RL, Suzuki A, Stanley P. Glycosphingolipids. 2nd. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2009. http://www.ncbi.nlm.nih.gov/pubmed/20301240. Accessed 28 Feb 2018.
Nores GA, Lardone RD, Comín R, Alaniz ME, Moyano AL, Irazoqui FJ. Anti-GM1 antibodies as a model of the immune response to self-glycans. Biochim Biophys Acta - Gen Subj. 2008;1780:538–45. https://doi.org/10.1016/j.bbagen.2007.09.008.
Article
CAS
Google Scholar
Huflejt ME, Vuskovic M, Vasiliu D, Xu H, Obukhova P, Shilova N, et al. Anti-carbohydrate antibodies of normal sera: findings, surprises and challenges. Mol Immunol. 2009;46:3037–49. https://doi.org/10.1016/j.molimm.2009.06.010.
Article
CAS
PubMed
Google Scholar
McVey J, Baker D, Parti R, Berg R, Gudino M, Teschner W. Anti-a and anti-B titers in donor plasma, plasma pools, and immunoglobulin final products. Transfusion. 2015;55:S98–104. https://doi.org/10.1111/trf.13114.
Article
CAS
PubMed
Google Scholar
Springer GF. Blood-Group and Forssman Antigenic Determinants Shared between Microbes and Mammalian Cells (Part 1 of 3). In: Progress in Allergy, vol. 15. Basel: KARGER; 1971. p. 9–29. https://doi.org/10.1159/000313046.
Chapter
Google Scholar
Alaniz ME, Lardone RD, Yudowski SL, Farace MI, Nores GA. Normally occurring human anti-GM1 immunoglobulin M antibodies and the immune response to Bacteria. Infect Immun. 2004;72:2148–51. https://doi.org/10.1128/IAI.72.4.2148-2151.2004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mizutamari RK, Wiegandt H, Nores GA. Characterization of anti-ganglioside antibodies present in normal human plasma. J Neuroimmunol. 1994;50:215–20. https://doi.org/10.1016/0165-5728(94)90048-5.
Article
CAS
PubMed
Google Scholar
Gleeson PA. Glycoconjugates in autoimmunity. Biochim Biophys Acta - Gene Struct Expr. 1994;1197:237–55. https://doi.org/10.1016/0167-4781(94)00008-Q.
Article
Google Scholar
Willison HJ, Yuki N. Peripheral neuropathies and anti-glycolipid antibodies. Brain. 2002;125:2591–625. https://doi.org/10.1093/brain/awf272.
Article
PubMed
Google Scholar
Kaida K. Antibodies to glycoconjugates in autoimmune neuropathies. Clin Exp Neuroimmunol. 2015;6:387–94. https://doi.org/10.1111/cen3.12267.
Article
CAS
Google Scholar
Yuki N. Molecular mimicry between gangliosides and lipopolysaccharides of campylobacter jejuni isolated from patients with Guillain-Barré syndrome and miller fisher syndrome. J Infect Dis. 1997;176:S150–3. https://doi.org/10.1086/513800.
Article
CAS
PubMed
Google Scholar
Yuki N. A bacterium lipopolysaccharide that elicits Guillain-Barre syndrome has a GM1 ganglioside-like structure. J Exp Med. 1993;178:1771–5. https://doi.org/10.1084/jem.178.5.1771.
Article
CAS
PubMed
Google Scholar
Nachamkin I, Ung H, Moran AP, Yoo D, Prendergast MM, Nicholson MA, et al. Ganglioside GM1 mimicry in campylobacter strains from sporadic infections in the United States. J Infect Dis. 1999;179:1183–9. https://doi.org/10.1086/314725.
Article
CAS
PubMed
Google Scholar
Allos BM. Association between campylobacter infection and Guillain-Barré syndrome. J Infect Dis. 1997;176:S125–8. https://doi.org/10.1086/513783.
Article
PubMed
Google Scholar
Willison HJ, Jacobs BC, Van Doorn PA. Guillain-Barré syndrome. Lancet. 2016;388:717–27. https://doi.org/10.1016/S0140-6736(16)00339-1.
Article
PubMed
Google Scholar
Lopez PHH, Lardone RD, Irazoqui FJ, Maccioni M, Nores GA. The origin of anti-GM1 antibodies in neuropathies: the “binding site drift” hypothesis. Neurochem Res. 2002;27:687–95. https://doi.org/10.1023/A:1020232318647.
Article
CAS
PubMed
Google Scholar
Ministry of Health of Argentina. Ethical Guidelines on Research Involving Human Subjects. Guía para Investigaciones con Seres Humanos. 2011. http://servicios.infoleg.gob.ar/infolegInternet/anexos/185000-189999/187206/texact.htm. Accessed 21 Mar 2018.
Dennis RD, Geyer R, Egge H, Menges H, Stirm S, Wiegandt H. Glycosphingolipids in insects: chemical structures of ceramide monosaccharide, disaccharide, and trisaccharide from pupae of Calliphora vicina (Insecta: Diptera). Eur J Biochem. 1985;146:51–8. https://doi.org/10.1111/j.1432-1033.1985.tb08618.x.
Article
CAS
PubMed
Google Scholar
Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 1957;226:497–509. http://www.ncbi.nlm.nih.gov/pubmed/13428781. Accessed 28 Feb 2019.
Yu RK, Ledeen RW. Gangliosides of human, bovine, and rabbit plasma. J Lipid Res 1972;13:680–686. http://www.ncbi.nlm.nih.gov/pubmed/5075512. Accessed 24 Nov 2018.
Watanabe K, Arao Y. A new solvent system for the separation of neutral glycosphingolipids. J Lipid Res. 1981;22:1020–4 http://www.ncbi.nlm.nih.gov/pubmed/6268725.
CAS
PubMed
Google Scholar
Cumar FA, Barra HS, Maccioni HJ, Caputto R. Sulfation of Glycosphingolipids and Related Carbohydrates by Brain Preparations from Young Rats. J Biol Chem. 1968;243:3807–16 http://www.jbc.org/content/243/14/3807.
CAS
PubMed
Google Scholar
Winer MA, Terryberry JW. Glycolipid (excluding ganglioside) autoantibodies. In: Autoantibodies: Elsevier Science B.V; 2007. p. 314–24. https://doi.org/10.1016/b978-044482383-0/50046-7.
Chapter
Google Scholar
Conrad K, Schneider H, Ziemssen T, Talaska T, Reinhold D, Humbel R-L, et al. A new line immunoassay for the multiparametric detection of antiganglioside autoantibodies in patients with autoimmune peripheral neuropathies. Ann N Y Acad Sci. 2007;1109:256–64. https://doi.org/10.1196/annals.1398.031.
Article
CAS
PubMed
Google Scholar
Nores GA, Mizutamari RK, Kremer DM. Chromatographic tank designed to obtain highly reproducible high-performance thin-layer chromatograms of gangliosides and neutral glycosphingolipids. J Chromatogr A. 1994;686:155–7. https://doi.org/10.1016/S0021-9673(94)89015-3.
Article
CAS
Google Scholar
Ilyas AA, Willison HJ, Quarles RH, Jungalwala FB, Cornblath DR, Trapp BD, et al. Serum antibodies to gangliosides in Guillain-Barré syndrome. Ann Neurol. 1988;23:440–7. https://doi.org/10.1002/ana.410230503.
Article
CAS
PubMed
Google Scholar
Adams D, Kuntzer T, Burger D, Chofflon M, Magistris MRR, Regli F, et al. Predictive value of anti-GM1 ganglioside antibodies in neuromuscular diseases: a study of 180 sera. J Neuroimmunol. 1991;32:223–30. https://doi.org/10.1016/0165-5728(91)90192-A.
Article
CAS
PubMed
Google Scholar
Li F, Pestronk A. Autoantibodies to GM1 ganglioside: different reactivity to GM1-liposomes in amyotrophic lateral sclerosis and lower motor neuron disorders. J Neurol Sci. 1991;104:209–14. https://doi.org/10.1016/0022-510X(91)90312-U.
Article
CAS
PubMed
Google Scholar
Nobile-Orazio E, Carpo M, Meucci N, Grassi MP, Capitani E, Sciacco M, et al. Guillain-Barré syndrome associated with high titers of anti-GM1 antibodies. J Neurol Sci. 1992;109:200–6. https://doi.org/10.1016/0022-510X(92)90169-L.
Article
CAS
PubMed
Google Scholar
Carpo M, Pedotti R, Allaria S, Lolli F, Matà S, Cavaletti G, et al. Clinical presentation and outcome of Guillain-Barre and related syndromes in relation to anti-ganglioside antibodies. J Neurol Sci. 1999;168:78–84. https://doi.org/10.1016/S0022-510X(99)00173-2.
Article
CAS
PubMed
Google Scholar
Press R, Matá S, Lolli F, Zhu J, Andersson T, Link H. Temporal profile of anti-ganglioside antibodies and their relation to clinical parameters and treatment in Guillain-Barré syndrome. J Neurol Sci. 2001;190:41–7. https://doi.org/10.1016/S0022-510X(01)00580-9.
Article
CAS
PubMed
Google Scholar
Tiberti C, Dotta F, Anastasi E, Torresi P, Multari G, Vecci E, et al. Anti-ganglioside antibodies in new onset type 1 diabetic patients and high risk subjects. Autoimmunity. 1995;22:43–8.
Article
CAS
PubMed
Google Scholar
Aoyama K, Ishikura H, Mishima S, Murai M, Tsumura H, Kumakura S, et al. Guillain-Barré syndrome complicated with hemolytic anemia in association with antiganglioside GM3 antibody. Am J Med. 2001;110:399–400.
Article
CAS
PubMed
Google Scholar
Klehmet J, Märschenz S, Ruprecht K, Wunderlich B, Büttner T, Hiemann R, et al. Analysis of anti-ganglioside antibodies by a line immunoassay in patients with chronic-inflammatory demyelinating polyneuropathies (CIDP). Clin Chem Lab Med. 2018;56:919–26. https://doi.org/10.1515/cclm-2017-0792.
Article
CAS
PubMed
Google Scholar
Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: From structure to effector functions. Front Immunol. 2014;5 OCT:520. https://doi.org/10.3389/fimmu.2014.00520.
Article
CAS
Google Scholar
Chan CE, Gotze S, Seah GT, Seeberger PH, Tukvadze N, Wenk MR, et al. The diagnostic targeting of a carbohydrate virulence factor from M.Tuberculosis. Sci Rep. 2015;5:10281. https://doi.org/10.1038/srep10281.
Article
CAS
PubMed
PubMed Central
Google Scholar
Horiya S, MacPherson IS, Krauss IJ. Recent strategies targeting HIV glycans in vaccine design. Nat Chem Biol. 2014;10:990–9. https://doi.org/10.1038/nchembio.1685.
Article
CAS
PubMed
PubMed Central
Google Scholar
Daniotti JL, Lardone RD, Vilcaes AA. Dysregulated Expression of Glycolipids in Tumor Cells: From Negative Modulator of Anti-tumor Immunity to Promising Targets for Developing Therapeutic Agents. Front Oncol. 2016;5 January:1–11. https://doi.org/10.3389/fonc.2015.00300.
Article
Google Scholar
Khasbiullina NR, Shilova NV, Navakouski ME, Nokel AY, Knirel YA, Blixt O, et al. Repertoire of abs primed by bacteria in gnotobiotic mice. Innate Immun. 2018;24:180–7. https://doi.org/10.1177/1753425918763524.
Article
CAS
PubMed
Google Scholar
Parker W, Lundberg-Swanson K, Holzknecht ZE, Lateef J, Washburn SA, Braedehoeft SJ, et al. Isohemagglutinins and xenoreactive antibodies: members of a distinct family of natural antibodies. Hum Immunol. 1996;45:94–104. https://doi.org/10.1016/0198-8859(95)00216-2.
Article
CAS
PubMed
Google Scholar
Massó F, Paéz A, Arista A, Salmón L, Montaño L. Antibody response of Mexican infants to Haemophilus influenzae type b capsular polyribosylribitol phosphate. Differences between natural and vaccine induced (oligosaccharide-CRM197 conjugated vaccine) immunization. Arch Med Res. 1996;27:539–45 https://www.scopus.com/record/display.uri?eid=2-s2.0-0029848973&origin=inward&txGid=c277994ca925b0696a503af54976b174.
PubMed
Google Scholar
Willison HJ, Goodyear CS. Glycolipid antigens and autoantibodies in autoimmune neuropathies. Trends Immunol. 2013;34:453–9. https://doi.org/10.1016/j.it.2013.05.001.
Article
CAS
PubMed
Google Scholar
van den Berg LH, Marrink J, de Jager AE, de Jong HJ, van Imhoff GW, Latov N, et al. Anti-GM1 antibodies in patients with Guillain-Barré syndrome. J Neurol Neurosurg Psychiatry 1992;55:8–11. http://www.ncbi.nlm.nih.gov/pubmed/1548508. Accessed 24 Nov 2018.
Wolfe GI, El-Feky WH, Katz JS, Bryan WW, Wians FH, Barohn RJ. Antibody panels in idiopathic polyneuropathy and motor neuron disease. Muscle Nerve. 1997;20:1275–83. https://doi.org/10.1002/(SICI)1097-4598(199710)20:10<1275::AID-MUS10>3.0.CO;2-2.
Article
CAS
PubMed
Google Scholar
Caudie C, Vial C, Bancel J, Petiot P, Antoine JC, Gonnaud PM. Antiganglioside autoantibody profiles in Guillain-Barre syndrome. Ann Biol Clin (Paris) 2002;60:589–597. http://www.ncbi.nlm.nih.gov/pubmed/12368145. Accessed 19 Jul 2018.
Fan C, Jin H, Hao H, Gao F, Sun Y, Lu Y, et al. Anti-ganglioside antibodies in Guillain-Barré syndrome and chronic inflammatory demyelinating polyneuropathy in Chinese patients. Muscle Nerve. 2017;55:470–5. https://doi.org/10.1002/mus.25266.
Article
CAS
PubMed
Google Scholar
Lopez PHH, Lardone RD, Irazoqui FJ, Villa AM, Di Egidio M, Saizar RD, et al. Variable patterns of anti-GM1 IgM-antibody populations defined by affinity and fine specificity in patients with motor syndromes: evidence for their random origin. J Neuroimmunol. 2001;119:131–6. https://doi.org/10.1016/S0165-5728(01)00355-1.
Article
CAS
PubMed
Google Scholar
Lardone RD, Yuki N, Odaka M, Daniotti JL, Irazoqui FJ, Nores GA. Anti-GM1 IgG antibodies in Guillain-Barré syndrome: fine specificity is associated with disease severity. J Neurol Neurosurg Psychiatry. 2010;81:629–33. https://doi.org/10.1136/jnnp.2009.183665.
Article
PubMed
Google Scholar
Lardone RD, Yuki N, Irazoqui FJ, Nores GA, Lardone Ricardo D, Yuki N, et al. Individual restriction of fine specificity variability in anti-GM1 IgG antibodies associated with Guillain-Barré syndrome. Sci Rep. 2016;6:19901. https://doi.org/10.1038/srep19901.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lardone RD, Alaniz ME, Irazoqui FJ, Nores GA. Unusual presence of anti-GM1 IgG-antibodies in a healthy individual, and their possible involvement in the origin of disease-associated anti-GM1 antibodies. J Neuroimmunol. 2006;173:174–9. https://doi.org/10.1016/j.jneuroim.2005.11.017.
Article
CAS
PubMed
Google Scholar
Lopez PHH, Villa AM, Sica REP, Nores GA. High affinity as a disease determinant factor in anti-GM1 antibodies: comparative characterization of experimentally induced vs. disease-associated antibodies. J Neuroimmunol. 2002;128:69–76. https://doi.org/10.1016/S0165-5728(02)00139-X.
Article
CAS
PubMed
Google Scholar
Kremer DM, López PHH, Mizutamari RK, Kremer LJ, Bacile EA, Nores GA. Factors defining target specificity in antibody-mediated neuropathy: density-dependent binding of anti-GD (1a) polyclonal IgG from a neurological patient. J Neurosci Res. 1997;47:636–41. https://doi.org/10.1002/(SICI)1097-4547(19970315)47:6<636::AID-JNR9>3.0.CO;2-E.
Article
CAS
PubMed
Google Scholar
Fewou SN, Rupp A, Nickolay LE, Carrick K, Greenshields KN, Pediani J, et al. Anti-ganglioside antibody internalization attenuates motor nerve terminal injury in a mouse model of acute motor axonal neuropathy. J Clin Invest. 2012;122:1037–51. https://doi.org/10.1172/JCI59110.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ogawa-Goto K, Funamoto N, Abe T, Nagashima K. Different ceramide compositions of gangliosides between human motor and sensory nerves. J Neurochem. 1990;55:1486–93. https://doi.org/10.1111/j.1471-4159.1990.tb04930.x.
Article
CAS
PubMed
Google Scholar
Mizutamari RK, Kremer LJ, Basile EA, Nores GA. Anti-GM1 ganglioside IgM-antibodies present in human plasma: affinity and biological activity changes in a patient with neuropathy. J Neurosci Res. 1998;51:237–42. https://doi.org/10.1002/(SICI)1097-4547(19980115)51:2<237::AID-JNR12>3.0.CO;2-5.
Article
CAS
Google Scholar
Qiu JX, Kai M, Padlan EA, Marcus DM. Structure-function studies of an anti-asialo GM1 antibody obtained from a phage display library. J Neuroimmunol. 1999;97:172–81. https://doi.org/10.1016/S0165-5728(99)00056-9.
Article
CAS
PubMed
Google Scholar
Thomas R, Patenaude SI, MacKenzie CR, To R, Hirama T, Young NM, et al. Structure of an anti-blood group a Fv and improvement of its binding affinity without loss of specificity. J Biol Chem. 2002;277:2059–64. https://doi.org/10.1074/jbc.M104364200.
Article
CAS
PubMed
Google Scholar
Yamamoto FI, Hakomori SI. Sugar-nucleotide donor specificity of histo-blood group a and B transferases is based on amino acid substitutions. J Biol Chem 1990;265:19257–19262. http://www.ncbi.nlm.nih.gov/pubmed/2121736. Accessed 29 Mar 2019.
Iobst ST, Drickamer K. Binding of sugar ligands to Ca2+−dependent animal lectins: II. Generation of high-affinity galactose binding by site-directed mutagenesis. J Biol Chem 1994;269:15512–15519. http://www.jbc.org/content/269/22/15512.full.pdf. Accessed 25 Jul 2019.
Kitaura K, Yamashita H, Ayabe H, Shini T, Matsutani T, Suzuki R. Different somatic Hypermutation levels among antibody subclasses disclosed by a new next-generation sequencing-based antibody repertoire analysis. Front Immunol. 2017;8:389. https://doi.org/10.3389/fimmu.2017.00389.
Article
CAS
PubMed
PubMed Central
Google Scholar