Das K. Antivirals targeting influenza a virus. J Med Chem. 2012;55(14):6263–77.
Article
PubMed
CAS
Google Scholar
Syrjänen RK, Jokinen J, Ziegler T, Sundman J, Lahdenkari M, Julkunen I, Kilpi TM. Effectiveness of pandemic and seasonal influenza vaccines in preventing laboratory-confirmed influenza in adults: a clinical cohort study during epidemic seasons 2009-2010 and 2010-2011 in Finland. PLoS One. 2014;9(9):e108538.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rajão DS, Pérez DR. Universal vaccines and vaccine platforms to protect against influenza viruses in humans and agriculture. Front Microbiol. 2018;9:123.
Article
PubMed
PubMed Central
Google Scholar
Taubenberger JK, Morens DM. 1918 influenza: the mother of all pandemics. Emerg Infect Dis. 2006;12(1):15–22.
Article
PubMed
PubMed Central
Google Scholar
Garten RJ, Davis CT, Russell CA, Shu B, Lindstrom S, Balish A, et al. Antigenic and genetic characteristics of swine-origin 2009 a(H1N1) influenza viruses circulating in humans. Science. 2009;325(5937):197–201.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chan JF, To KK, Tse H, Jin DY, Yuen KY. Interspecies transmission and emergence of novel viruses: lessons from bats and birds. Trends Microbiol. 2013;21(10):544–55.
Article
PubMed
CAS
PubMed Central
Google Scholar
Palese P. Influenza: old and new threats. Nat Med. 2004;10(12 Suppl):S82–7.
Article
PubMed
CAS
Google Scholar
Jagger BW, Wise HM, Kash JC, Walters KA, Wills NM, Xiao YL, et al. An overlapping protein-coding region in influenza a virus segment 3 modulates the host response. Science. 2012;337(6091):199–204.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wise HM, Foeglein A, Sun J, Dalton RM, Patel S, Howard W, et al. A complicated message: identification of a novel PB1-related protein translated from influenza a virus segment 2 mRNA. J Virol. 2009;83(16):8021–31.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kreijtz JH, Fouchier RA, Rimmelzwaan GF. Immune responses to influenza virus infection. Virus Res. 2011;162(1–2):19–30.
Article
PubMed
CAS
Google Scholar
Tong S, Zhu X, Li Y, Shi M, Zhang J, Bourgeois M, et al. New world bats harbor diverse influenza a viruses. PLoS Pathog. 2013;9(10):e1003657.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chambers BS, Parkhouse K, Ross TM, Alby K, Hensley SE. Identification of Hemagglutinin residues responsible for H3N2 antigenic drift during the 2014–2015 influenza season. Cell Rep. 2015;12(1):1–6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wu X, Wu X, Sun Q, Zhang C, Yang S, Li L, Jia Z. Progress of small molecular inhibitors in the development of anti-influenza virus agents. Theranostics. 2017;7(4):826–45.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rossman JS, Lamb RA. Influenza virus assembly and budding. Virology. 2011;411(2):229–36.
Article
PubMed
CAS
Google Scholar
Gaymard A, Le Briand N, Frobert E, Lina B, Escuret V. Functional balance between neuraminidase and haemagglutinin in influenza viruses. Clin Microbiol Infect. 2016;22(12):975–83.
Article
PubMed
CAS
Google Scholar
Das K. Antivirals targeting influenza a virus. J Med Chem. 2012;55(14):6263–77.
Article
PubMed
CAS
Google Scholar
Das K, Aramini JM, Ma LC, Krug RM, Arnold E. Structures of influenza a proteins and insights into antiviral drug targets. Nat Struct Mol Biol. 2010;17(5):530–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
De Clercq E. Antiviral agents active against influenza a viruses. Nat Rev Drug Discov. 2006;5(12):1015–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hayden FG, Sugaya N, Hirotsu N, Lee N, de Jong MD, Hurt AC, et al. Baloxavir marboxil for uncomplicated influenza in adults and adolescents. N Engl J Med. 2018;379(10):913–23.
Article
PubMed
CAS
Google Scholar
von Itzstein M. The war against influenza: discovery and development of sialidase inhibitors. Nat Rev Drug Discov. 2007;6(12):967–74.
Article
CAS
Google Scholar
Stouffer AL, Acharya R, Salom D, Levine AS, Di Costanzo L, Soto CS, Tereshko V, Nanda V, Stayrook S, DeGrado WF. Structural basis for the function and inhibition of an influenza virus proton channel. Nature. 2008;451(7178):596–9.
Article
PubMed
CAS
Google Scholar
Schnell JR, Chou JJ. Structure and mechanism of the M2 proton channel of influenza a virus. Nature. 2008;451(7178):591–5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Barik S. New treatments for influenza. BMC Med. 2012;10:104.
Article
PubMed
PubMed Central
Google Scholar
Sheu TG, Fry AM, Garten RJ, Deyde VM, Shwe T, Bullion L, Peebles PJ, Li Y, Klimov AI, Gubareva LV. Dual resistance to adamantanes and oseltamivir among seasonal influenza a(H1N1) viruses: 2008-2010. J Infect Dis. 2011;203(1):13–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chamni S, De-Eknamkul W. Recent progress and challenges in the discovery of new neuraminidase inhibitors. Expert Opin Ther Pat. 2013;23(4):409–23.
Article
PubMed
CAS
Google Scholar
Fukao K, Noshi T, Yamamoto A, Kitano M, Ando Y, Noda T, Baba K, Matsumoto K, Higuchi N, Ikeda M, Shishido T, Naito A. Combination treatment with the cap-dependent endonuclease inhibitor baloxavir marboxil and a neuraminidase inhibitor in a mouse model of influenza a virus infection. J Antimicrob Chemother. 2019;74(3):654–62.
Article
PubMed
Google Scholar
Laborda P, Wang SY, Voglmeir J. Influenza neuraminidase inhibitors: synthetic approaches, derivatives and biological activity. Molecules. 2016;21(11):1513–53.
Article
PubMed Central
CAS
Google Scholar
Moscona A. Neuraminidase inhibitors for influenza. N Engl J Med. 2005;353(13):1363–73.
Article
PubMed
CAS
Google Scholar
Dunn CJ, Goa KL. Zanamivir, a review of its use in influenza. Drugs. 1999;58(4):761–84.
Article
PubMed
CAS
Google Scholar
Cheer SM, Wagstaff AJ. Zanamivir, an update of its use in influenza. Drugs. 2002;62(1):71–106.
Article
PubMed
CAS
Google Scholar
Kim CU, Lew W, Williams MA, Wu H, Zhang L, Chen X, Escarpe PA, Mendel DB, Laver WG, Stevens RC. Structure-activity relationship studies of novel carbocyclic influenza neuraminidase inhibitors. J Med Chem. 1998;41(12):2451–60.
Article
PubMed
CAS
Google Scholar
McClellan K, Perry CM. Oseltamivir, a review of its use in influenza. Drugs. 2001;61(2):263–83.
Article
PubMed
CAS
Google Scholar
Kubo S, Tomozawa T, Kakuta M, Tokumitsu A, Yamashita M. Laninamivir prodrug CS-8958, a long-acting neuraminidase inhibitor, shows superior anti-influenza virus activity after a single administration. Antimicrob Agents Chemother. 2010;54(3):1256–64.
Article
PubMed
PubMed Central
CAS
Google Scholar
Smee DF, Sidwell RW. Peramivir (BCX-1812, RWJ-270201): potential new therapy for influenza. Expert Opin Investig Drugs. 2002;11(6):859–69.
Article
PubMed
Google Scholar
Jain S, Fry AM. Peramivir: another tool for influenza treatment? Clin Infect Dis. 2011;52(6):707–9.
Article
PubMed
Google Scholar
Cass LMR, Efthymiopoulos C, Bye A. Pharmacokinetics of zanamivir after intravenous, oral, inhaled or intranasal administration to healthy volunteers. Clin Pharmacokinet. 1999;36(Suppl 1):1–11.
Article
PubMed
CAS
Google Scholar
Burch J, Corbett M, Stock C, Nicholson K, Elliot AJ, Duffy S, Westwood M, Palmer S, Stewart L. Prescription of anti-influenza drugs for healthy adults: a systematic review and meta-analysis. Lancet Infect Dis. 2009;9(9):537–45.
Article
PubMed
CAS
Google Scholar
Ikematsu H, Kawai N. Laninamivir octanoate: a new long-acting neuraminidase inhibitor for the treatment of influenza. Expert Rev Anti-Infect Ther. 2011;9(10):851–7.
Article
PubMed
CAS
Google Scholar
Birnkrant D, Cox E. The emergency use authorization of peramivir for treatment of 2009 H1N1 influenza. N Engl J Med. 2009;361(23):2204–7.
Article
PubMed
CAS
Google Scholar
Deyde VM, Xu X, Bright RA, Shaw M, Smith CB, Zhang Y, Shu Y, Gubareva LV, Cox NJ, Klimov AI. Surveillance of resistance to adamantanes among influenza a(H3N2) and a(H1N1) viruses isolated worldwide. J Infect Dis. 2007;196(2):249–57.
Article
PubMed
CAS
Google Scholar
Hayden F. Developing new antiviral agents for influenza treatment: what does the future hold? Clin Infect Dis. 2009;48(Suppl 1):S3–S13.
Article
PubMed
CAS
Google Scholar
Meijer A, Lackenby A, Hungnes O, Lina B, van-der Werf S, Schweiger B, Opp M, Paget J, van-de Kassteele J, Hay A, Zambon M. Oseltamivir-resistant influenza virus A (H1N1), Europe, 2007–2008 season. Emerg Infect Dis. 2009;15(4):552–60.
Article
PubMed
PubMed Central
Google Scholar
Bloom JD, Gong LI, Baltimore D. Permissive secondary mutations enable the evolution of influenza oseltamivir resistance. Science. 2010;328(5983):1272–5.
Article
PubMed
PubMed Central
CAS
Google Scholar
Abed Y, Pizzorno A, Bouhy X, Boivin G. Role of permissive neuraminidase mutations in influenza a/Brisbane/59/2007-like (H1N1) viruses. PLoS Pathog. 2011;7(12):e1002431.
Article
PubMed
PubMed Central
CAS
Google Scholar
Burmeister WP, Henrissat B, Bosso C, Cusack S, Ruigrok RWH. Influenza-B virus neuraminidase can synthetize its own inhibitor. Structure. 1993;1(1):19–26.
Article
PubMed
CAS
Google Scholar
von Itzstein M, Wu WY, Kok GB, Pegg MS, Dyason JC, Jin B, et al. Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature. 1993;363(6428):418–23.
Article
Google Scholar
Russell RJ, Haire LF, Stevens DJ, Collins PJ, Lin YP, Blackburn GM, Hay AJ, Gamblin SJ, Skehel JJ. The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature. 2006;443(7107):45–9.
Article
PubMed
CAS
Google Scholar
Taylor NR, von Itzstein M. Molecular modeling studies on ligand binding to sialidase from influenza virus and the mechanism of catalysis. J Med Chem. 1994;37(5):616–24.
Article
PubMed
CAS
Google Scholar
Janakiraman MN, White CL, Laver WG, Air GM, Luo M. Structure of influenza virus neuraminidase B/Lee/40 complexed with sialic acid and a dehydro analog at 1.8-Å resolution: implications for the catalytic mechanism. Biochemistry. 1994;33(27):8172–9.
Article
PubMed
CAS
Google Scholar
Wang MZ, Tai CY, Mendel DB. Mechanism by which mutations at His274 alter sensitivity of influenza a virus N1 neuraminidase to oseltamivir carboxylate and zanamivir. Antimicrob Agents Chemother. 2002;46(12):3809–16.
Article
PubMed
PubMed Central
CAS
Google Scholar
Collins PJ, Haire LF, Lin YP, Liu J, Russell RJ, Walker PA, Skehel JJ, Martin SR, Hay AJ, Gamblin SJ. Crystal structures of oseltamivir-resistant influenza virus neuraminidase mutants. Nature. 2008;453(7199):1258–62.
Article
PubMed
CAS
Google Scholar
McKimm-Breschkin JL. Resistance of influenza viruses to neuraminidase inhibitors – a review. Antivir Res. 2000;47(1):1–17.
Article
PubMed
CAS
Google Scholar
Proudfoot JR. The evolution of synthetic oral drug properties. Bioorg Med Chem Lett. 2005;15(4):1087–90.
Article
PubMed
CAS
Google Scholar
Widmer N, Meylan P, Ivanyuk A, Aouri M, Decosterd LA, Buclin T. Oseltamivir in seasonal, avian H5N1 and pandemic 2009 a/H1N1 influenza. Clin Pharmacokinet. 2010;49(11):741–65.
Article
PubMed
CAS
Google Scholar
Liu ZY, Wang B, Zhao LX, Li YH, Shao HY, Yi H, You XF, Li ZR. Synthesis and anti-influenza activities of carboxyl alkoxyalkyl esters of 4-guanidino-Neu5Ac2en (zanamivir). Bioorg Med Chem Lett. 2007;17(17):4851–4.
Article
PubMed
CAS
Google Scholar
Gupta SV, Gupta D, Sun J, Dahan A, Tsume Y, Hilfinger J, Lee KD, Amidon GL. Enhancing the intestinal membrane permeability of zanamivir: a carrier mediated prodrug approach. Mol Pharm. 2011;8(6):2358–67.
Article
PubMed
PubMed Central
CAS
Google Scholar
Miller JM, Dahan A, Gupta D, Varghese S, Amidon GL. Enabling the intestinal absorption of highly polar antiviral agents: ion-pair facilitated membrane permeation of zanamivir heptyl ester and guanidino oseltamivir. Mol Pharm. 2010;7(4):1223–34.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gould PL. Salt selection for basic drugs. Int J Pharm. 1986;33(1–3):201–17.
Article
CAS
Google Scholar
Cazzola M, Testi R, Matera MG. Clinical pharmacokinetics of salmeterol. Clin Pharmacokinet. 2002;41(1):19–30.
Article
PubMed
CAS
Google Scholar
Liu KC, Lee PS, Wang SY, Cheng YSE, Fang JM, Wong CH. Intramolecular ion-pair prodrugs of zanamivir and guanidino-oseltamivir. Bioorg Med Chem. 2011;19(16):4796–802.
Article
PubMed
CAS
Google Scholar
Hsu PH, Chiu DC, Wu KL, Lee PS, Jan JT, Cheng YSE, Tsai KC, Cheng TJ, Fang JM. Acylguanidine derivatives of Zanamivir and Oseltamivir: potential orally available Prodrugs against influenza viruses. Eur J Med Chem. 2018;154:314–23.
Article
PubMed
CAS
Google Scholar
Rudrawar S, Dyason JC, Rameix-Welti MA, Rose FJ, Kerry PS, Russell RJ, van der Werf S, Thomson RJ, Naffakh N, von Itzstein M. Novel sialic acid derivatives lock open the 150-loop of an influenza a virus group-1 sialidase. Nat Commun. 2010;1:113.
Article
PubMed
CAS
Google Scholar
Amaro RE, Minh DDL, Cheng LS, Lindstrom WM Jr, Olson AJ, Lin JH, Li WW, McCammon JA. Remarkable loop flexibility in avian influenza N1 and its implications for antiviral drug design. J Am Chem Soc. 2007;129(25):7764–5.
Article
PubMed
CAS
Google Scholar
Lin CH, Chang TC, Das A, Fang MY, Hung HC, Hsu KC, Yang JM, von Itzstein M, Mong KK, Hsu TA, Lin CC. Synthesis of acylguanidine zanamivir derivatives as neuraminidase inhibitors and the evaluation of their bio-activities. Org Biomol Chem. 2013;11(24):3943–8.
Article
PubMed
CAS
Google Scholar
Das A, Adak AK, Ponnapalli K, Lin CH, Hsu KC, Yang JM, Hsu TA, Lin CC. Design and synthesis of 1,2,3-triazole-containing N-acyl zanamivir analogs as potent neuraminidase inhibitors. Eur J Med Chem. 2016;123:397–406.
Article
PubMed
CAS
Google Scholar
Li Z, Meng Y, Xu S, Shen W, Meng Z, Wang Z, Ding G, Huang W, Xiao W, Xu J. Discovery of acylguanidine oseltamivir carboxylate derivatives as potent neuraminidase inhibitors. Bioorg Med Chem. 2017;25(10):2772–81.
Article
PubMed
CAS
Google Scholar
Patani GA, LaVoie EJ. Bioisosterism: a rational approach in drug design. Chem Rev. 1996;96(8):3147–76.
Article
PubMed
CAS
Google Scholar
Meanwell NA. Synopsis of some recent tactical application of bioisosteres in drug design. J Med Chem. 2011;54(8):2529–91.
Article
PubMed
CAS
Google Scholar
Walop JN, Boschman TAC, Jacobs J. Affinity of N-acetylneuraminic acid for influenza virus neuraminidase. Biochim Biophys Acta. 1960;44:185–6.
Article
PubMed
CAS
Google Scholar
Friebolin H, Supp M, Brossmer R, Keilich G, Ziegler D. 1H-NMR investigations on the mutarotation of N-acetyl-D-neuraminic acid. Angew Chem Int Ed Engl. 1980;19(3):208–9.
Article
Google Scholar
Wallimann K, Vasella A. Phosphonic-acid analogues of the N-acetyl-2-deoxyneuraminic acids: synthesis and inhibition of Vibrio cholerae sialidase. Helv Chim Acta. 1990;73(5):1359–72.
Article
CAS
Google Scholar
Chan TH, Xin YC, von Itzstein M. Synthesis of phosphonic acid analogues of sialic acids (Neu5Ac and KDN) as potential sialidase inhibitors. J Org Chem. 1997;62(11):3500–4.
Article
CAS
Google Scholar
Vavricka CJ, Muto C, Hasunuma T, Kimura Y, Araki M, Wu Y, Gao GF, Ohrui H, Izumi M, Kiyota H. Synthesis of sulfo-sialic acid analogues: potent neuraminidase inhibitors in regards to anomeric functionality. Sci Rep. 2017;7(1):8239.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hadházi Á, Pascolutti M, Bailly B, Dyason JC, Borbás A, Thomson RJ, von Itzstein M. A sialosyl sulfonate as a potent inhibitor of influenza virus replication. Org Biomol Chem. 2017;15(25):5249–53.
Article
PubMed
Google Scholar
Hadházi Á, Li L, Bailly B, Maggioni A, Martin G, Dirr L, Dyason JC, Thomson RJ, Gao GF, Borbás A, Ve T, Pascolutti M, von Itzstein M. A sulfonozanamivir analogue has potent anti-influenza virus activity. ChemMedChem. 2018;13(8):785–9.
Article
PubMed
CAS
Google Scholar
Ballatore C, Huryn DM, Smith AB 3rd. Carboxylic acid (bio) isosteres in drug design. ChemMedChem. 2013;8(3):385–95.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schug KA, Lindner W. Noncovalent binding between guanidinium and anionic groups: focus on biological- and synthetic-based arginine/guanidinium interactions with phosph[on]ate and sulf[on]ate residues. Chem Rev. 2005;105(1):67–114.
Article
PubMed
CAS
Google Scholar
Klenchin VA, Czyz A, Goryshin IY, Gradman R, Lovell S, Rayment I, Reznikoff WS. Phosphate coordination and movement of DNA in the Tn5 synaptic complex: role of the (R)YREK motif. Nucleic Acids Res. 2008;36(18):5855–62.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shie JJ, Fang JM, Lai PT, Wen WH, Wang SY, Cheng YSE, Tsai KC, Yang AS, Wong CH. A practical synthesis of zanamivir phosphonate congeners with potent anti-influenza activity. J Am Chem Soc. 2011;133(44):17959–65.
Article
PubMed
CAS
Google Scholar
Vasella A, Wyler R. Synthesis of a phosphonic acid analogue of N-acetyl-2,3-didehydro-2-deoxyneuraminic acid, an inhibitor of Vibrio cholerae sialidase. Helv Chim Acta. 1991;74(2):451–63.
Article
CAS
Google Scholar
von Itzstein M, Wu WY, Jin B. The synthesis of 2,3-dehydro-2,4-dideoxy-4-guanidinyl-N-acetylneuraminic acid: a potent influenza virus sialidase inhibitor. Carbohydr Res. 1994;259(2):301–5.
Article
Google Scholar
Lin LZ, Fang JM. Total synthesis of anti-influenza agents zanamivir and zanaphosphor via asymmetric aza-Henry reaction. Org Lett. 2016;18(17):4400–3.
Article
PubMed
CAS
Google Scholar
Shie JJ, Fang JM, Wang SY, Tsai KC, Cheng YSE, Yang AS, Hsiao SC, Su CY, Wong CH. Synthesis of tamiflu and its phosphonate congeners possessing potent anti-influenza activity. J Am Chem Soc. 2007;129(39):11892–3.
Article
PubMed
CAS
Google Scholar
Chen CA, Fang JM. Synthesis of oseltamivir and tamiphosphor from N-acetyl-D-glucosamine. Org Biomol Chem. 2013;11(44):7687–99.
Article
PubMed
CAS
Google Scholar
Lo YW, Fang JM. A short synthetic pathway via three-component coupling reaction to tamiphosphor possessing anti-influenza activity. Tetrahedron. 2015;71(2):266–70.
Article
CAS
Google Scholar
Shie JJ, Fang JM, Wong CH. A concise and flexible synthesis of the potent anti-influenza agents-tamiflu and tamiphosphor. Angew Chem Int Ed. 2008;47(31):5788–91.
Article
CAS
Google Scholar
Carbain B, Collins PJ, Callum L, Martin SR, Hay AJ, McCauley J, Streicher H. Efficient synthesis of highly active phospha-isosteres of the influenza neuraminidase inhibitor oseltamivir. ChemMedChem. 2009;4(3):335–7.
Article
PubMed
CAS
Google Scholar
Gunasekera DS. Formal synthesis of tamiflu: conversion of tamiflu into tamiphosphor. Synlett. 2012;23(4):573–6.
Article
CAS
Google Scholar
Schmidt AC. Antiviral therapy for influenza : a clinical and economic comparative review. Drugs. 2004;64(18):2031–46.
Article
PubMed
CAS
Google Scholar
Woods AS, Ferré S. Amazing stability of the arginine−phosphate electrostatic interaction. J Proteome Res. 2005;4(4):1397–402.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pantos A, Tsogas I, Paleos CM. Guanidinium group: a versatile moiety inducing transport and multicompartmentalization in complementary membranes. Biochim Biophys Acta. 2008;1778(4):811–23.
Article
PubMed
CAS
Google Scholar
Stanley M, Cattle N, McCauley J, Rashid M, Field AR, Carbain B, Streicher H. 'TamiGold': phospha-oseltamivir-stabilised gold nanoparticles as the basis for influenza therapeutics and diagnostics targeting the neuraminidase (instead of the hemagglutinin). Med Chem Commun. 2012;3(11):1373–6.
Article
CAS
Google Scholar
Cheng TJ, Weinheimer S, Tarbet EB, Jan JT, Cheng YS, Shie JJ, Chen CL, Chen CA, Hsieh WC, Huang PW, Lin WH, Wang SY, Fang JM, Hu OY, Wong CH. Development of oseltamivir phosphonate congeners as anti-influenza agents. J Med Chem. 2012;55(20):8657–70.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang PC, Fang JM, Tsai KC, Wang SY, Huang WI, Tseng YC, Cheng YSE, Cheng TJR, Wong CH. Peramivir phosphonate derivatives as influenza neuraminidase inhibitors. J Med Chem. 2016;59(11):5297–310.
Article
PubMed
CAS
Google Scholar
Udommaneethanakit T, Rungrotmongkol T, Bren U, Frecer V, Stanislav M. Dynamic behavior of avian influenza a virus neuraminidase subtype H5N1 in complex with oseltamivir, zanamivir, peramivir, and their phosphonate analogues. J Chem Inf Model. 2009;49(10):2323–32.
Article
PubMed
CAS
Google Scholar
Smith BJ, McKimm-Breshkin JL, McDonald M, Fernley RT, Varghese JN, Colman PM. Structural studies of the resistance of influenza virus neuraminidase to inhibitors. J Med Chem. 2002;45(11):2207–12.
Article
PubMed
CAS
Google Scholar
Hurt AC, Holien JK, Parker MW, Barr IG. Oseltamivir resistance and the H274Y neuraminidase mutation in seasonal, pandemic and highly pathogenic influenza viruses. Drugs. 2009;69(18):2523–31.
Article
PubMed
CAS
Google Scholar
Hong BT, Cheng YSE, Cheng TJ, Fang JM. Boronate, trifluoroborate, sulfone, sulfinate and sulfonate congeners of oseltamivir carboxylic acid: synthesis and anti-influenza activity. Eur J Med Chem. 2019;163:710–21.
Article
PubMed
CAS
Google Scholar
Sollis SL, Smith PW, Howes PD, Cherry PC, Bethell RC. Novel inhibitors of influenza sialidase related to GG167. Synthesis of 4-amino and guanidino-4H-pyran-2-carboxylic acid-6-propylamides; selective inhibitors of influenza a virus sialidase. Bioorg Med Chem Lett. 1996;6(15):1805–8.
Article
CAS
Google Scholar
Smith PW, Sollis SL, Howes PD, Cherry PC, Starkey ID, Cobley KN, et al. Dihydropyrancarboxamides related to zanamivir: a new series of inhibitors of influenza virus sialidases. 1. Discovery, synthesis, biological activity, and structure-activity relationships of 4-guanidino- and 4-amino-4H-pyran-6-carboxamides. J Med Chem. 1998;41(6):787–97.
Article
PubMed
CAS
Google Scholar
Smith PW, Sollis SL, Howes PD, Cherry PC, Bethell RC. Novel inhibitors of influenza sialidases related to GG167 structure–activity, crystallographic and molecular dynamics studies with 4H-pyran-2-carboxylic acid 6-carboxamides. Bioorg Med Chem Lett. 1996;6(24):2931–6.
Article
CAS
Google Scholar
Taylor NR, Cleasby A, Singh O, Skarzynski T, Wonacott AJ, Smith PW, Sollis SL, Howes PD, Cherry PC, Bethell R, Colman P, Varghese J. Dihydropyrancarboxamides related to zanamivir: a new series of inhibitors of influenza virus sialidases. 2. Crystallographic and molecular modeling study of complexes of 4-amino-4H-pyran-6-carboxamides and sialidase from influenza virus types a and B. J Med Chem. 1998;41(6):798–807.
Article
PubMed
CAS
Google Scholar
Varghese JN, Epa VC, Colman PM. Three-dimensional structure of the complex of 4-guanidino-NeuSAc2en and influenza virus neuraminidase. Protein Sci. 1995;4(6):1081–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yamashita M, Tomozawa T, Kakuta M, Tokumitsu A, Nau H, Kubo S. CS-8958, a prodrug of the new neuraminidase inhibitor R-125489, shows long-acting anti-influenza virus activity. Antimicrob Agents Chemother. 2009;53(1):186–92.
Article
PubMed
CAS
Google Scholar
Yamashita M. Laninamivir and its prodrug, CS-8958: long-acting neuraminidase inhibitors for the treatment of influenza. Antivir Chem Chemother. 2010;21(2):71–84.
Article
PubMed
CAS
Google Scholar
Ishizuka H, Yoshiba S, Okabe H, Yoshihara K. Clinical pharmacokinetics of laninamivir, a novel long-acting neuraminidase inhibitor, after single and multiple inhaled doses of its prodrug, CS-8958, in healthy male volunteers. J Clin Pharmacol. 2010;50(11):1319–29.
Article
PubMed
CAS
Google Scholar
Andrews DM, Cherry PC, Humber DC, Jones PS, Keeling SP, Martin PF, Shaw CD, Swanson S. Synthesis and influenza virus sialidase inhibitory activity of analogues of 4-guanidino-Neu5Ac2en (zanamivir) modified in the glycerol side-chain. Eur J Med Chem. 1999;34(3–4):563–74.
PubMed
CAS
Google Scholar
Frantz S. The trouble with making combination drugs. Nat Rev Drug Discov. 2006;5(11):881–2.
Article
PubMed
CAS
Google Scholar
Morphy R, Rankovic Z. Designed multiple ligands. An emerging drug discovery paradigm. J Med Chem. 2005;48(21):6523–43.
Article
PubMed
CAS
Google Scholar
Medina-Franco JL, Giulianotti MA, Welmaker GS, Houghten RA. Shifting from the single to the multitarget paradigm in drug discovery. Drug Discov Today. 2013;18(9–10):495–501.
Article
PubMed
PubMed Central
Google Scholar
Bonnett R. Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chem Rev Soc. 1995;24(1):19–33.
Article
CAS
Google Scholar
Macdonal IJ, Dougherty TJ. Basic principles of photodynamic therapy. J Porphyrins Phthalocyanines. 2001;5(2):105–29.
Article
Google Scholar
Castano AP, Demidova TN, Hambline MR. Mechanism in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization. Photodiagn Photodyn Ther. 2004;1(4):279–93.
Article
CAS
Google Scholar
Berthiaume F, Reiken SR, Toner M, Tompkins RG, Yarmush ML. Antibody-targeted photolysis of bacteria in vivo. Nat Biotechnology. 1994;12(7):703–6.
Article
CAS
Google Scholar
Wainwright M. Photoinactivation of viruses. Photochem Photobiol Sci. 2004;3(5):406–11.
Article
PubMed
CAS
Google Scholar
Hamblin MR, Hasan T. Photodynamic therapy a new antimicrobial approach to infectious disease? Photochem Photobiol Sci. 2004;3(5):436–50.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wen WH, Lin M, Su CY, Wang SY, Cheng YS, Fang JM, Wong CH. Synergistic effect of zanamivir–porphyrin conjugates on inhibition of neuraminidase and inactivation of influenza virus. J Med Chem. 2009;52(15):4903–10.
Article
PubMed
CAS
Google Scholar
Lee YC, Lee RT. Carbohydrate–protein interactions: basis of glycobiology. Acc Chem Res. 1995;28(8):321–7.
Article
CAS
Google Scholar
Mammen M, Dahmann G, Whitesides GM. Effective inhibitors of hemagglutination by influenza virus synthesized from polymers having active ester groups. Insight into mechanism of inhibition. J Med Chem. 1995;38(21):4179–90.
Article
PubMed
CAS
Google Scholar
Mammen M, Choi SK, Whitesides GM. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed Engl. 1998;37(20):2754–94.
Article
PubMed
Google Scholar
Lundquist JJ, Toone EJ. The cluster glycoside effect. Chem Rev. 2002;102(2):555–78.
Article
PubMed
CAS
Google Scholar
Macdonald SJ, Watson KG, Cameron R, Chalmers DK, Demaine DA, Fenton RJ, et al. Potent and long-acting dimeric inhibitors of influenza virus neuraminidase are effective at a once-weekly dosing regimen. Antimicrob Agents Chemother. 2004;48(12):4542–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Watson KG, Cameron R, Fenton RJ, Gower D, Hamilton S, Jin B, et al. Highly potent and long-acting trimeric and tetrameric inhibitors of influenza virus neuraminidase. Bioorg Med Chem Lett. 2004;14(6):1589–92.
Article
PubMed
CAS
Google Scholar
Macdonald SJ, Cameron R, Demaine DA, Fenton RJ, Foster G, Gower D, et al. Dimeric zanamivir conjugates with various linking groups are potent, long-lasting inhibitors of influenza neuraminidase including H5N1 avian influenza. J Med Chem. 2005;48(8):2964–71.
Article
PubMed
CAS
Google Scholar
Fraser BH, Hamilton S, Krause-Heuer AM, Wright PJ, Greguric I, Tucke SP, et al. Synthesis of 1,4-triazole linked zanamivir dimers as highly potent inhibitors of influenza a and B. Med Chem Commun. 2013;4:383–6.
Article
CAS
Google Scholar
Honda T, Masuda T, Yoshida S, Arai M, Kobayashi Y, Yamashita M. Synthesis and anti-influenza virus activity of 4-guanidino-7-substituted Neu5Ac2en derivatives. Bioorg Med Chem Lett. 2002;12(15):1921–4.
Article
PubMed
CAS
Google Scholar
Weight AK, Haldar J, Álvarez de Cienfuegos L, Gubareva LV, Tumpey TM, Chen J, Klibanov AM. Attaching zanamivir to a polymer markedly enhances its activity against drug-resistant strains of influenza a virus. J Pharm Sci. 2011;100(3):831–5.
Article
PubMed
CAS
Google Scholar
Lee CM, Weight AK, Haldar J, Wang L, Klibanov AM, Chen J. Polymer-attached zanamivir inhibits synergistically both early and late stages of influenza virus infection. Proc Natl Acad Sci U S A. 2012;109(50):20385–90.
Article
PubMed
PubMed Central
Google Scholar
Haldar J. Álvarez de Cienfuegos L, Tumpey TM, Gubareva LV, Chen J, Klibanov AM. Bifunctional polymeric inhibitors of human influenza a viruses. Pharm Res. 2010;27(2):259–63.
Article
PubMed
CAS
Google Scholar
Liu KC, Fang JM, Jan JT, Cheng TJ, Wang SY, Yang ST, Cheng YSE, Wong CH. Enhanced anti-influenza agents conjugated with anti-inflammatory activity. J Med Chem. 2012;55(19):8493–501.
Article
PubMed
CAS
Google Scholar
Salomon R, Hoffmann E, Webster RG. Inhibition of the cytokine response does not protect against lethal H5N1 influenza infection. Proc Natl Acad Sci U S A. 2007;104(30):12479–81.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fedson DS. Confronting the next influenza pandemic with anti-inflammatory and immunomodulatory agents: why they are needed and how they might work. Influenza Other Respir Viruses. 2009;3(4):129–42.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ottolini M, Blanco J, Porter D, Peterson L, Curtis S, Prince G. Combination anti-inflammatory and antiviral therapy of influenza in a cotton rat model. Pediatr Pulmonol. 2003;36(4):290–4.
Article
PubMed
Google Scholar
Zheng BJ, Chan KW, Lin YP, Zhao GY, Chan C, Zhang HJ, Chen HL, Wong SS, Lau SK, Woo PC, Chan KH, Jin DY, Yuen KY. Delayed antiviral plus immunomodulator treatment still reduces mortality in mice infected by high inoculum of influenza a/H5N1 virus. Proc Natl Acad Sci U S A. 2008;105(23):8091–6.
Article
PubMed
PubMed Central
Google Scholar
Babu YS, Chand P, Bantia S, Kotian P, Dehghani A, El-Kattan Y, Lin TH, Hutchison TL, Elliott AJ, Parker CD, Ananth SL, Horn LL, Laver GW, Montgomery JA. BCX-1812 (RWJ-270201): discovery of a novel, highly potent, orally active, and selective influenza neuraminidase inhibitor through structure-based drug design. J Med Chem. 2000;43(19):3482–6.
Article
PubMed
CAS
Google Scholar
Alame MM, Massaad E, Zaraket H. Peramivir: a novel intravenous neuraminidase inhibitor for treatment of acute influenza infections. Front Microbiol. 2016;7:450.
Article
PubMed
PubMed Central
Google Scholar
Wang PC, Chiu DC, Jan JT, Huang WI, Tseng YC, Li TT, Cheng TJ, Tsai KC, Fang JM. Peramivir conjugates as orally available agents against influenza H275Y mutant. Eur J Med Chem. 2018;145:224–34.
Article
PubMed
CAS
Google Scholar