Skip to main content

Rat models of human diseases and related phenotypes: a systematic inventory of the causative genes

Abstract

The laboratory rat has been used for a long time as the model of choice in several biomedical disciplines. Numerous inbred strains have been isolated, displaying a wide range of phenotypes and providing many models of human traits and diseases. Rat genome mapping and genomics was considerably developed in the last decades. The availability of these resources has stimulated numerous studies aimed at discovering causal disease genes by positional identification. Numerous rat genes have now been identified that underlie monogenic or complex diseases and remarkably, these results have been translated to the human in a significant proportion of cases, leading to the identification of novel human disease susceptibility genes, helping in studying the mechanisms underlying the pathological abnormalities and also suggesting new therapeutic approaches. In addition, reverse genetic tools have been developed. Several genome-editing methods were introduced to generate targeted mutations in genes the function of which could be clarified in this manner [generally these are knockout mutations]. Furthermore, even when the human gene causing a disease had been identified without resorting to a rat model, mutated rat strains (in particular KO strains) were created to analyze the gene function and the disease pathogenesis. Today, over 350 rat genes have been identified as underlying diseases or playing a key role in critical biological processes that are altered in diseases, thereby providing a rich resource of disease models. This article is an update of the progress made in this research and provides the reader with an inventory of these disease genes, a significant number of which have similar effects in rat and humans.

Background

Why map and identify genes for rat disease phenotypes or related traits? As already pointed out, the laboratory rat (Rattus norvegicus) is more than a big mouse. The mouse is a species which has been the mammalian genetic model of choice for a long time, with an initial focus on monogenic traits. Rat models of monogenic traits and diseases have also been isolated but the rat has essentially been a key model for studies of complex traits in fields such as physiology, cardiovascular and diabetes research, arthritis, pharmacology, toxicology, oncology and neurosciences [1,2,3,4,5,6]. In some situations the rat seems to be a more relevant or faithful model. For instance, the physiology of the rat is extremely well documented, in part because its larger body size affords the opportunity for serial blood draws, which are almost impossible in the mouse; in cardiovascular research [7], sophisticated surgical manipulations, and physiological measurements such as blood pressure measurements by telemetry are easier to perform and more reliable in rats compared to mice [1, 3]. The rat has also long been a common choice for pharmacology and toxicology studies because it shares a similar pathway with humans for eradicating toxins [8]. With respect to cancer research [9, 10], and more precisely mammary cancer research, it is noteworthy that rat and human carcinomas show similar development and histopathological features [11, 12]; furthermore, rat mammary tumors are strongly hormone dependent for both induction and growth, thus resembling human breast tumors and no virus appears to be involved in rat and human mammary carcinogenesis, unlike mouse mammary carcinogenesis the etiological agent of which is the mouse mammary tumor virus. As stated by Russo “The rat mammary tumor model is well suited for studying in situ and invasive lesions […]. The classification of the tumors matches well with the criteria used in the human pathology, and provides an adequate model for understanding these phases of the human disease” [11]. In addition, there is extensive overlap between human breast and rat mammary cancer susceptibility genomic regions and “the laboratory rat will continue to be an important model organism for researching genetically determined mechanisms of mammary cancer susceptibility that may translate directly to human susceptibility” [13]. In neuroscience research, rats have significant anatomical and behavioral advantages over mice, because they are more sociable and skilled and have complex cognitive abilities; this wider range of social behaviors and a richer acoustic communication system confer the rat advantages in comparison to mouse models to study neuro-developmental disorders and in particular autism [14, 15]. The rat thus provides one with particularly reliable models of human traits or diseases [3, 8, 11,12,13,14,15,16,17] (multiple details emphasizing the value of rat models can be found in these articles).

Numerous rat strains have been created by selective breeding of animals expressing a desired phenotype, generating a very large collection of genetic models of pathological complex, polygenic traits, most of which are quantitative. Interestingly, these strains also provide one with additional phenotypes, which were not selected for. Just as the traits that were selected for, most of these phenotypes are polygenic. All these phenotypes can be used as models of human traits or diseases [18], implying that the genes underlying these traits or diseases should be identified. Information on rat strains and rat disease models, can be found at the Rat Genome Database (RGD, https://rgd.mcw.edu/) [19].

In order to give the rat the status of a valuable genetic model, and in particular to identify the genes underlying complex traits by forward genetic approaches and to analyze the relevant biological mechanisms, several tools had to be developed. This has been accomplished. Genetic and chromosome maps have been developed; the genomic sequence of dozens of rat strains has been established; a number of resources have been created to provide investigators with access to genetic, genomic, phenotype and disease-relevant data as well as software tools necessary for their research [3, 20]. Thanks to these resources, positional identification of numerous rat genes underlying monogenic or complex diseases and related traits could be achieved. On the other hand, reverse genetic tools have also been developed. Efficient methods to generate mutant rats became available; sperm N-ethyl-N-nitrosourea (ENU) mutagenesis followed by gene-targeted screening methods lead to the isolation of several mutants, including knockout (KO) strains ([21] and references therein). Rat ES were successfully derived and could be used for targeted mutations by homologous recombination; more importantly, several methods not relying on the use of ES cells were introduced to generated targeted mutations (often these are KO mutations), namely gene editing by zinc finger nucleases, by transcription activator-like effector nucleases and finally by the clustered regularly interspaced short palindromic repeat (CRISPR/Cas) system [22]. Transgenic rats can also be generated, including humanized rats carrying large chromosomic fragments (“transchromosomic humanized” rats) [23]. Development of these technologies provides the researcher with all the tools required to take advantage of the unique opportunities offered by the rat as leading model for studies different areas of biomedical research [3, 17]. In this review I made an inventory of the rat genes identified as responsible for monogenic or polygenic diseases and related traits. I took into account the rat genes identified by forward genetic methods as well as those inactivated by ENU-mutagenesis and by targeted mutations, the inactivation of which generated a disease or an abnormal phenotype. This update of the progress made in the identification of rat disease genes shows that a considerable number of conserved genes have similar effects on biological traits in rats and humans, establishing the rat as a valuable model in studies of the genetic basis of human diseases and thus providing one with a useful resource of disease models.

Materials and methods

The data (causal genes of rat diseases and related traits) were collected by regular and systematic screening of the biomedical literature, PubMed searches (https://www.ncbi.nlm.nih.gov/) and regular Google Scholar alerts based on the keywords “knockout”, “mutation”, “rat” (spread over several months). In addition, relevant data were retrieved from the RGD (“Disease Portals”), with advices from Jennifer R. Smith. Genes identified by forward genetic means (or by direct molecular sequencing) were considered as suggestive, solid or confirmed, respectively, as indicated in each case in Table 1 (one, two or three asterisks), on the basis of the criterions described in the legend to the table; these criterions are based on the standards discussed by Glazier and coworkers [24]. With respect to the induced mutants, they were included provided they were convincingly shown to be specifically altered. The official gene symbols are used in this article and were obtained from the National Center for Biotechnology Information (https://www.ncbi.nlm.nih.gov/), Gene section. In several instances the original publications did not use the official gene symbol; in these cases, the non-official symbol is indicated in parenthesis in the footnote to the table, where the full name of each gene is described. The position of every gene was also obtained from the NCBI.

Results

The core of this article is a list of the diseases and related traits or phenotypes the causal gene of which was identified in the rat (Table 1). The genes identified by forward genetic methods or, in a few instances, by direct molecular characterization are labeled by asterisks (see legend to table). Also listed are the phenotypes uncovered by reverse genetics methods, either by ENU-mutagenesis followed by selection of the desired mutated gene (these genes are labeled by the symbol ENU), or by targeted gene editing (these genes are labeled by T). Table 1A shows the monogenic traits, and Table 1B the complex traits (in a few cases this distinction is somewhat arbitrary, but in general this is a useful classification). Of note, when a gene was associated with several distinct phenotypes, an entry was created for each phenotype and the gene thus appears several times in the table. When the human homolog gene is known to be causal of the relevant disease or trait, it is also indicated in the table. Furthermore, entries in bold characters indicate that the human gene was found to be causal as a direct translation of the results obtained in the rat.

Identification of rat disease genes by forward genetic methods

The identification of gene(s) underlying a given phenotype typically starts with the mapping of the trait by linkage analysis (backcrosses, intercrosses). In the case of monogenic traits, this approach is generally sufficient to identify the causative gene (positional identification, as illustrated in Table 1A). Identifying genes controlling complex traits is much more difficult [24, 25]; indeed, linkage analyses of such traits lead to the localization of quantitative trait loci (QTLs), which are too large to allow the identification of the causative gene. Complementary strategies are thus required to narrow down the list of candidate genes, such as the generation of congenic lines or/and the use of integrative genomic approaches (as discussed in [26]). Alternative approaches rely on the use of panels of lines that show a higher level of recombinant events, as a result of crossing parental strains for multiple generations, such as recombinant inbred strains or heterogeneous stocks (as discussed in [27], for a striking harvest of results derived from the study of a heterogeneous stock, see [28]). The first complex-trait gene identified is the Cd36 gene, which causes insulin resistance, hyperlipidemia and hypertension in the spontaneously hypertensive rat (SHR) [29, 30]. This identification was based on a combined gene expression micro-array and linkage approach and was definitively proven by in vivo complementation, i.e. transgenic expression of normal Cd36 in the SHR [31]. Last but not least, association was then demonstrated between human CD36 and insulin resistance [32]. Subsequently, the tools of forward genetic studies as well as gene expression and/or computational analysis (integrative genomics) led to the identification of numerous genes underlying rat polygenic traits or diseases, such as blood pressure, cardiac mass, diabetes, inflammation (in particular arthritis, encephalomyelitis), glomerulonephritis, mammary cancer, neurobehavioral traits, proteinuria. In several instances, the results were translated to the human, as illustrated in Table 1 by bold entries. Interestingly, a recently discovered complex trait gene is a long non-coding RNA, itself contained within the 5′ UTR of the Rffl gene (Rffl-lnc1); Rffl-lnc1 shows a 19 bp indel polymorphism which is the precise variation underlying regulation of blood pressure and QT-interval. This work was based on fine and systematic congenic mapping and is the first one to identify quantitative trait nucleotides in a long non-coding RNA [33]. The human homologous region, on chromosome 17, has multiple minor alleles that are associated with shorter QT-intervals and, is some cases, hypertension [34].

Identifying rat disease genes is not only useful to discover the homologous human disease genes but also helps in studying the mechanisms underlying the pathological abnormalities. After all, this is the essence of an animal model. For instance, the study of the genetic basis of stroke in the stroke-prone SHR strain (SHRSP) led to the conclusion that mitochondrial dysfunction contributes to stroke susceptibility and to hypertensive target organ damage (such as vascular damage); this better understanding of the etiology of the disease can open the door to novel therapies, as briefly discussed below [8, 35, 36].

The importance of rat models in the era of human genetic studies and genome sequencing

The rat is also a useful model to decipher the biological significance of QTLs identified in human genome-wide association studies (GWAS) aimed at understanding the etiology of common human diseases [37, 38]. These studies pint-point human genomic regions controlling a complex trait, and generally contain several genes; the current methods lack the statistical power to pinpoint the human causative gene. Animal model such as the rat provides one with the possibility to knockout or to mutate in more subtle manner each of the rat genes homolog to the human genes contained in a given GWAS locus. In this way, the possible role of each gene can be evaluated. For instance, Flister and co-corkers [39], studying a multigene GWAS locus controlling blood pressure and renal phenotypes (AGTRAP-PLOD1 locus) used gene targeting in a rat model to test each of the genes contained in this locus. In this way these authors could show that several genes impact hypertension and that multiple causative gene variants cosegregate at this locus; several linked genes thus control blood pressure (Agtrap, Clcn6, Mthfr, Nppa, Plod1). Furthermore, each of the KO rat models so generated can be used to dissect the biological effects of the gene loss of function.

The genetic basis of human diseases is also actively analyzed by whole genome sequencing; such studies have uncovered several genes underlying diseases or related phenotypes [40, 41] and one can thus questioned the importance of genetic analyses in an animal model. As argued and illustrated above, animal models and the rat in particular, remain valuable tools to analyze the biological mechanisms underlying a phenotype. In addition, transgenesis or gene substitution can also be carried out, in which a human allele can be introduced in the relevant KO rat, in order to verify the role of the human mutation. Alternatively, the rat genome can be directly modified to specifically introduce a mutation similar to the one causing the human trait [40, 42]. If the modified rats exhibit defects similar to those observed in the human patients, it can be concluded that the tested human mutation indeed plays a causal role. In addition, similarly to examples mentioned above, such specifically modified rats provide one with models suitable to study the mechanisms responsible for the abnormalities generated by the mutation and also to carry out pharmacological tests and look for possible new therapies [42].

The need of relevant animal models is also illustrated by the fact that even when the human gene causing a disease is known, mutated rat strains (in particular KO strains) were created to analyze the gene function and the disease pathogenesis (see numerous examples of such gene targetings in Table 1). In 2008, Aitman and coworkers [2] reported a list of 21 rat disease genes (that had been identified by positional cloning). Here I updated the list of rat disease genes; this inventory added numerous genes identified (or deliberately mutated) after 2008, thereby evaluating progress made in the input of rat disease models. The total rat gene number listed in Table 1 exceeds 350, illustrating the vigor of the rat biomedical research which led to enrichment of numerous disease models, with the translation to humans of disease gene discoveries in rats.

Translation of the rat genetic studies into new treatments of human diseases

The identification of a human disease gene has the potential to develop new therapeutic approaches. For instance, the human gene NCF4 was found to be associated with arthritis as a translation of studies on a rat arthritis model. The gene encodes a component of the NADPH oxidase complex and these studies catalyzed the development of a new therapy for arthritis, based on the use of oxidative-burst inducing substances [43,44,45] (see Table 1B, Arthritis, Ncf1 gene). Another interesting example is that of the gene SHANK3: mutations in this gene lead to a neurodevelopmental disorder known as Phelan-McDermid syndrome; to date, no pharmaceutical compounds targeting core symptoms of this human disease are available. A Shank3-deficient rat model was generated, which showed disabilities similar to those seen in the Phelan-McDermid syndrome and interestingly, the deficits of the mutant rat could be ameliorated by intracerebroventricular oxytocin administration, implying that exogenous oxytocin administration might have therapeutic potential in human patients [42] (see Table 1A, Phelan-McDermid syndrome model). A third example is provided by the study of rat mutated in the Pde3a gene, which recapitulates the phenotype of HTNB (Hypertension with brachydactyly) human patients: the functional data suggest that soluble guanyly cyclase activation could be suitable for the treatment of HTNB patients [46] (See Table 1B, Blood pressure section).

Table 1 Alphabetical list of diseases and related traits with their causative rat genes and the human homologs

Conclusions

This evaluation of progress in the identification of genes causing monogenic or polygenic rat diseases or related phenotypes yielded a list containing over 350 genes. In several instances the result obtained in the rat model was translated to the human, demonstrating that a considerable number of conserved genes have similar effects on biological traits in rats and humans, and thus providing one with a rich and useful resource of disease models (Table 1, bold entries). For instance, the Inppl1 gene was first identified in the rat as a causative gene of type 2 diabetes and this discovery led to the identification of mutations in the homolog gene of diabetic patients [452, 534]. Similarly, a rat paralog of the Fcgr3 gene (Fcgr3-rs) was identified as causing glomerulonephritis, and the result was promptly translated to the human: low copy number of FCGR3B, an orthologue of rat Fcgr3, was associated with glomerulonephritis in the autoimmune disease systemic lupus erythematosus [471].

Also, as mentioned above, even when the human gene causing a disease had been identified (without resorting to a rat model), mutated rat strains, in particular KO strains, were created to analyze the gene function and the disease pathogenesis, and, potentially, to develop new therapies.

This review illustrates the vigor of the rat biomedical research and its value for understanding the etiology of human diseases and for suggesting new therapies.

Availability of data and materials

Not applicable.

Abbreviations

ENU:

N-ethyl-N-nitrosourea

GWAS:

Genome wide association study

KO:

Knockout

NADPH:

Nicotinamide adenine dinucleotide phosphate

QTL:

Quantitative trait locus

RGD:

Rat Genome Database

References

  1. Jacob HJ. The rat: a model used in biomedical research. Methods Mol Biol. 2010;597:1–11.

    PubMed  Google Scholar 

  2. Aitman TJ, Critser JK, Cuppen E, Dominiczak A, Fernandez-Suarez XM, Flint J, et al. Progress and prospects in rat genetics: a community view. Nat Genet. 2008;40(5):516–22.

    CAS  PubMed  Google Scholar 

  3. Aitman T, Dhillon P, Geurts AM. A RATional choice for translational research? Dis Model Mech. 2016;9(10):1069–72.

    PubMed  PubMed Central  Google Scholar 

  4. James MR, Lindpaintner K. Why map the rat? Trends Genet. 1997;13(5):171–3.

    CAS  PubMed  Google Scholar 

  5. Suckow MA, Hankenson FC, Wilson RP, Foley PL. The laboratory rat. 3rd ed: Elsevier; 2020. p. 1180.

  6. Jacob HJ. Functional genomics and rat models. Genome Res. 1999;9(11):1013–6.

    CAS  PubMed  Google Scholar 

  7. Allen PS, Dell’Italia LJ, Esvelt M, Conte ML, Cadillac JM, Myers DD Jr. Cardiovascular research. In: Suckow MA, Hankenson FC, Wilson RP, Foley PL, editors. The laboratory rat. 3rd ed: Elsevier; 2020. p. 927–5.

  8. Hashway SA, Wilding LA. Translational potential of rats in research. In: Suckow MA, Hankenson FC, Wilson RP, Foley PL, editors. The laboratory rat. 3rd ed: Elsevier; 2020. p. 77–88.

  9. Szpirer C. Cancer research in rat models. Methods Mol Biol. 2010;597:445–58.

    CAS  PubMed  Google Scholar 

  10. Nascimento-Gonçalves E, Faustino-Rocha AI, Seixas F, Ginja M, Colaço B, Ferreira R, et al. Modelling human prostate cancer: rat models. Life Sci. 2018;203:210–24.

    PubMed  Google Scholar 

  11. Russo J. Significance of rat mammary tumors for human risk assessment. Toxicol Pathol. 2015;43(2):145–70.

    CAS  PubMed  Google Scholar 

  12. Russo J, Gusterson BA, Rogers AE, Russo IH, Wellings SR, van Zwieten MJ. Comparative study of human and rat mammary tumorigenesis. Lab Investig. 1990;62(3):244–78.

    CAS  PubMed  Google Scholar 

  13. Sanders J, Samuelson DJ. Significant overlap between human genome-wide association-study nominated breast cancer risk alleles and rat mammary cancer susceptibility loci. Breast Cancer Res. 2014;16(1):R14.

    PubMed  PubMed Central  Google Scholar 

  14. Ellenbroek B, Youn J. Rodent models in neuroscience research: is it a rat race? Dis Model Mech. 2016;9(10):1079–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Parker CC, Chen H, Flagel SB, Geurts AM, Richards JB, Robinson TE, et al. Rats are the smart choice: rationale for a renewed focus on rats in behavioral genetics. Neuropharmacology. 2014;76 Pt B:250–8.

    PubMed  Google Scholar 

  16. Carter CS, Richardson A, Huffman DM, Austad S. Bring back the rat! J Gerontol A Biol Sci Med Sci. 2020;75(3):405–15.

    PubMed  Google Scholar 

  17. Homberg JR, Wohr M, Alenina N. Comeback of the rat in biomedical research. ACS Chem Neurosci. 2017;8(5):900–3.

    CAS  PubMed  Google Scholar 

  18. Szpirer C, Levan G. Rat gene mapping and genomics. In: Denny P, Kole C, editors. Genome mapping and genomics in laboratory animals. Heidelberg, New York, Dordrecht, London: Springer; 2012. p. 217–56.

    Google Scholar 

  19. Wang SJ, SJF L, Zhao Y, Hayman GT, Smith JR, Tutaj M, et al. Integrated curation and data mining for disease and phenotype models at the Rat Genome Database. Database (Oxford). 2019;2019:baz014.

    Google Scholar 

  20. Shimoyama M, Smith JR, Bryda E, Kuramoto T, Saba L, Dwinell M. Rat genome and model resources. ILAR J. 2017;58(1):42–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mashimo T, Yanagihara K, Tokuda S, Voigt B, Takizawa A, Nakajima R, et al. An ENU-induced mutant archive for gene targeting in rats. Nat Genet. 2008;40(5):514–5.

    CAS  PubMed  Google Scholar 

  22. Meek S, Mashimo T, Burdon T. From engineering to editing the rat genome. Mamm Genome. 2017;28(7–8):302–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kazuki Y, Kobayashi K, Hirabayashi M, Abe S, Kajitani N, Kazuki K, et al. Humanized UGT2 and CYP3A transchromosomic rats for improved prediction of human drug metabolism. Proc Natl Acad Sci U S A. 2019;116(8):3072–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Glazier AM, Nadeau JH, Aitman TJ. Finding genes that underlie complex traits. Science. 2002;298(5602):2345–9.

    CAS  PubMed  Google Scholar 

  25. Aitman TJ, Petretto E, Behmoaras J. Genetic mapping and positional cloning. Methods Mol Biol. 2010;597:13–32.

    CAS  PubMed  Google Scholar 

  26. Moreno-Moral A, Petretto E. From integrative genomics to systems genetics in the rat to link genotypes to phenotypes. Dis Model Mech. 2016;9(10):1097–110.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Baud A, Flint J. Identifying genes for neurobehavioural traits in rodents: progress and pitfalls. Dis Model Mech. 2017;10(4):373–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Rat Genome Sequencing and Mapping Consortium, Baud A, Hermsen R, Guryev V, Stridh P, et al. Combined sequence-based and genetic mapping analysis of complex traits in outbred rats. Nat Genet. 2013;45(7):767–75.

    Google Scholar 

  29. Pravenec M, Churchill PC, Churchill MC, Viklicky O, Kazdova L, Aitman TJ, et al. Identification of renal Cd36 as a determinant of blood pressure and risk for hypertension. Nat Genet. 2008;40(8):952–4.

    CAS  PubMed  Google Scholar 

  30. Aitman TJ, Glazier AM, Wallace CA, Cooper LD, Norsworthy PJ, Wahid FN, et al. Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat Genet. 1999;21(1):76–83.

    CAS  PubMed  Google Scholar 

  31. Pravenec M, Landa V, Zidek V, Musilova A, Kren V, Kazdova L, et al. Transgenic rescue of defective Cd36 ameliorates insulin resistance in spontaneously hypertensive rats. Nat Genet. 2001;27(2):156–8.

    CAS  PubMed  Google Scholar 

  32. Corpeleijn E, van der Kallen CJ, Kruijshoop M, Magagnin MG, de Bruin TW, Feskens EJ, et al. Direct association of a promoter polymorphism in the CD36/FAT fatty acid transporter gene with type 2 diabetes mellitus and insulin resistance. Diabet Med. 2006;23(8):907–11.

    CAS  PubMed  Google Scholar 

  33. Cheng X, Waghulde H, Mell B, Morgan EE, Pruett-Miller SM, Joe B. Positional cloning of quantitative trait nucleotides for blood pressure and cardiac QT-interval by targeted CRISPR/Cas9 editing of a novel long non-coding RNA. PLoS Genet. 2017;13(8):e1006961.

    PubMed  PubMed Central  Google Scholar 

  34. Newton-Cheh C, Eijgelsheim M, Rice KM, de Bakker PI, Yin X, Estrada K, et al. Common variants at ten loci influence QT interval duration in the QTGEN study. Nat Genet. 2009;41(4):399–406.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Rubattu S, Stanzione R, Volpe M. Mitochondrial dysfunction contributes to hypertensive target organ damage: lessons from an animal model of human disease. Oxidative Med Cell Longev. 2016;2016:1067801.

    Google Scholar 

  36. Rubattu S, Di Castro S, Schulz H, Geurts AM, Cotugno M, Bianchi F, et al. Ndufc2 gene inhibition is associated with mitochondrial dysfunction and increased stroke susceptibility in an animal model of complex human disease. J Am Heart Assoc. 2016;5(2):e002701.

    PubMed  PubMed Central  Google Scholar 

  37. Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, et al. 10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet. 2017;101(1):5–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Auer PL, Stitziel NO. Genetic association studies in cardiovascular diseases: do we have enough power? Trends Cardiovasc Med. 2017;27(6):397–404.

    PubMed  PubMed Central  Google Scholar 

  39. Flister MJ, Tsaih SW, O’Meara CC, Endres B, Hoffman MJ, Geurts AM, et al. Identifying multiple causative genes at a single GWAS locus. Genome Res. 2013;23(12):1996–2002.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Peng W, Li M, Li H, Tang K, Zhuang J, Zhang J, et al. Dysfunction of myosin light-chain 4 (MYL4) leads to heritable atrial cardiomyopathy with electrical, contractile, and structural components: evidence from genetically-engineered rats. J Am Heart Assoc. 2017;6(11):e007030.

    PubMed  PubMed Central  Google Scholar 

  41. Smith M. DNA sequence analysis in clinical medicine, proceeding cautiously. Front Mol Biosci. 2017;4:24.

    PubMed  PubMed Central  Google Scholar 

  42. Harony-Nicolas H, Kay M, du Hoffmann J, Klein ME, Bozdagi-Gunal O, Riad M, et al. Oxytocin improves behavioral and electrophysiological deficits in a novel Shank3-deficient rat. Elife. 2017;6:e18904.

    PubMed  PubMed Central  Google Scholar 

  43. Olsson LM, Lindqvist AK, Kallberg H, Padyukov L, Burkhardt H, Alfredsson L, et al. A case-control study of rheumatoid arthritis identifies an associated single nucleotide polymorphism in the NCF4 gene, supporting a role for the NADPH-oxidase complex in autoimmunity. Arthritis Res Ther. 2007;9(5):R98.

    PubMed  PubMed Central  Google Scholar 

  44. Gelderman KA, Hultqvist M, Olsson LM, Bauer K, Pizzolla A, Olofsson P, et al. Rheumatoid arthritis: the role of reactive oxygen species in disease development and therapeutic strategies. Antioxid Redox Signal. 2007;9(10):1541–67.

    CAS  PubMed  Google Scholar 

  45. Hultqvist M, Olofsson P, Gelderman KA, Holmberg J, Holmdahl R. A new arthritis therapy with oxidative burst inducers. PLoS Med. 2006;3(9):e348.

    PubMed  PubMed Central  Google Scholar 

  46. Ercu M, Marko L, Schachterle C, Tsvetkov D, Cui Y, Maghsodi S, et al. Phosphodiesterase 3A and arterial hypertension. Circulation. 2020;142(2):133–49.

    CAS  PubMed  Google Scholar 

  47. Puissant MM, Muere C, Levchenko V, Manis AD, Martino P, Forster HV, et al. Genetic mutation of Kcnj16 identifies Kir5.1-containing channels as key regulators of acute and chronic pH homeostasis. FASEB J. 2019;33(4):5067–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. St Laurent R, Helm SR, Glenn MJ. Reduced cocaine-seeking behavior in heterozygous BDNF knockout rats. Neurosci Lett. 2013;544:94–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. King CP, Militello L, Hart A, St Pierre CL, Leung E, Versaggi CL, et al. Cdh13 and AdipoQ gene knockout alter instrumental and Pavlovian drug conditioning. Genes Brain Behav. 2017;16(7):686–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Gao JT, Jordan CJ, Bi GH, He Y, Yang HJ, Gardner EL, et al. Deletion of the type 2 metabotropic glutamate receptor increases heroin abuse vulnerability in transgenic rats. Neuropsychopharmacology. 2018;43(13):2615–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang HJ, Zhang HY, Bi GH, He Y, Gao JT, Xi ZX. Deletion of type 2 metabotropic glutamate receptor decreases sensitivity to cocaine reward in rats. Cell Rep. 2017;20(2):319–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Yamamoto T, Izumi-Yamamoto K, Iizuka Y, Shirota M, Nagase M, Fujita T, et al. A novel link between Slc22a18 and fat accumulation revealed by a mutation in the spontaneously hypertensive rat. Biochem Biophys Res Commun. 2013;440(4):521–6.

    CAS  PubMed  Google Scholar 

  53. Dang R, Sasaki N, Nishino T, Nakanishi M, Torigoe D, Agui T. Lymphopenia in Ednrb-deficient rat was strongly modified by genetic background. Biomed Res. 2012;33(4):249–53.

    CAS  PubMed  Google Scholar 

  54. Gariepy CE, Cass DT, Yanagisawa M. Null mutation of endothelin receptor type B gene in spotting lethal rats causes aganglionic megacolon and white coat color. Proc Natl Acad Sci U S A. 1996;93(2):867–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kunieda T, Kumagai T, Tsuji T, Ozaki T, Karaki H, Ikadai H. A mutation in endothelin-B receptor gene causes myenteric aganglionosis and coat color spotting in rats. DNA Res. 1996;3(2):101–5.

    CAS  PubMed  Google Scholar 

  56. Dang R, Torigoe D, Sasaki N, Agui T. QTL analysis identifies a modifier locus of aganglionosis in the rat model of Hirschsprung disease carrying Ednrb(sl) mutations. PLoS One. 2011;6(11):e27902.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Huang J, Dang R, Torigoe D, Li A, Lei C, Sasaki N, et al. Genetic variation in the GDNF promoter affects its expression and modifies the severity of Hirschsprung’s disease (HSCR) in rats carrying Ednrb(sl) mutations. Gene. 2016;575(1):144–8.

    CAS  PubMed  Google Scholar 

  58. Wang J, Dang R, Miyasaka Y, Hattori K, Torigoe D, Okamura T, et al. Null mutation of the endothelin receptor type B gene causes embryonic death in the GK rat. PLoS One. 2019;14(6):e0217132.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ceccherini I, Zhang AL, Matera I, Yang G, Devoto M, Romeo G, et al. Interstitial deletion of the endothelin-B receptor gene in the spotting lethal (sl) rat. Hum Mol Genet. 1995;4(11):2089–96.

    CAS  PubMed  Google Scholar 

  60. Pridans C, Raper A, Davis GM, Alves J, Sauter KA, Lefevre L, et al. Pleiotropic impacts of macrophage and microglial deficiency on development in rats with targeted mutation of the Csf1r locus. J Immunol. 2018;201(9):2683–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Muto T, Miyoshi K, Horiguchi T, Hagita H, Noma T. Novel genetic linkage of rat Sp6 mutation to Amelogenesis imperfecta. Orphanet J Rare Dis. 2012;7:34.

    PubMed  PubMed Central  Google Scholar 

  62. Esumi H, Takahashi Y, Sato S, Nagase S, Sugimura T. A seven-base-pair deletion in an intron of the albumin gene of analbuminemic rats. Proc Natl Acad Sci U S A. 1983;80(1):95–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Tsujimura T, Hirota S, Nomura S, Niwa Y, Yamazaki M, Tono T, et al. Characterization of Ws mutant allele of rats: a 12-base deletion in tyrosine kinase domain of c-kit gene. Blood. 1991;78(8):1942–6.

    CAS  PubMed  Google Scholar 

  64. Fleming MD, Romano MA, Su MA, Garrick LM, Garrick MD, Andrews NC. Nramp2 is mutated in the anemic Belgrade (b) rat: evidence of a role for Nramp2 in endosomal iron transport. Proc Natl Acad Sci U S A. 1998;95(3):1148–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Berg EL, Pride MC, Petkova SP, Lee RD, Copping NA, Shen Y, et al. Translational outcomes in a full gene deletion of ubiquitin protein ligase E3A rat model of Angelman syndrome. Transl Psychiatry. 2020;10(1):39.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Tokuda S, Kuramoto T, Tanaka K, Kaneko S, Takeuchi IK, Sasa M, et al. The ataxic groggy rat has a missense mutation in the P/Q-type voltage-gated Ca2+ channel alpha1A subunit gene and exhibits absence seizures. Brain Res. 2007;1133(1):168–77.

    CAS  PubMed  Google Scholar 

  67. Quek H, Luff J, Cheung K, Kozlov S, Gatei M, Lee CS, et al. A rat model of ataxia-telangiectasia: evidence for a neurodegenerative phenotype. Hum Mol Genet. 2017;26(1):109–23.

    CAS  PubMed  Google Scholar 

  68. Quek H, Luff J, Cheung K, Kozlov S, Gatei M, Lee CS, et al. Rats with a missense mutation in Atm display neuroinflammation and neurodegeneration subsequent to accumulation of cytosolic DNA following unrepaired DNA damage. J Leukoc Biol. 2017;101(4):927–47.

    CAS  PubMed  Google Scholar 

  69. Scott KE, Schormans AL, Pacoli KY, De Oliveira C, Allman BL, Schmid S. Altered auditory processing, filtering, and reactivity in the Cntnap2 knock-out rat model for neurodevelopmental disorders. J Neurosci. 2018;38(40):8588–604.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Hamilton SM, Green JR, Veeraragavan S, Yuva L, McCoy A, Wu Y, et al. Fmr1 and Nlgn3 knockout rats: novel tools for investigating autism spectrum disorders. Behav Neurosci. 2014;128(2):103–9.

    CAS  PubMed  Google Scholar 

  71. Thomas AM, Schwartz MD, Saxe MD, Kilduff TS. Sleep/wake physiology and quantitative electroencephalogram analysis of the Neuroligin-3 knockout rat model of autism spectrum disorder. Sleep. 2017;40(10):zsx138.

    Google Scholar 

  72. Modi ME, Brooks JM, Guilmette ER, Beyna M, Graf R, Reim D, et al. Hyperactivity and hypermotivation associated with increased striatal mGluR1 signaling in a Shank2 Rat model of autism. Front Mol Neurosci. 2018;11:107.

    PubMed  PubMed Central  Google Scholar 

  73. Kuwamura M, Muraguchi T, Matsui T, Ueno M, Takenaka S, Yamate J, et al. Mutation at the Lmx1a locus provokes aberrant brain development in the rat. Brain Res Dev Brain Res. 2005;155(2):99–106.

    CAS  PubMed  Google Scholar 

  74. Cotroneo MS, Haag JD, Zan Y, Lopez CC, Thuwajit P, Petukhova GV, et al. Characterizing a rat Brca2 knockout model. Oncogene. 2007;26(11):1626–35.

    CAS  PubMed  Google Scholar 

  75. van Boxtel R, Toonen PW, van Roekel HS, Verheul M, Smits BM, Korving J, et al. Lack of DNA mismatch repair protein MSH6 in the rat results in hereditary non-polyposis colorectal cancer-like tumorigenesis. Carcinogenesis. 2008;29(6):1290–7.

    PubMed  Google Scholar 

  76. Yan HX, Wu HP, Ashton C, Tong C, Ying QL. Rats deficient for p53 are susceptible to spontaneous and carcinogen-induced tumorigenesis. Carcinogenesis. 2012;33(10):2001–5.

    PubMed  PubMed Central  Google Scholar 

  77. van Boxtel R, Kuiper RV, Toonen PW, van Heesch S, Hermsen R, de Bruin A, et al. Homozygous and heterozygous p53 knockout rats develop metastasizing sarcomas with high frequency. Am J Pathol. 2011;179(4):1616–22.

    PubMed  PubMed Central  Google Scholar 

  78. Hansen SA, Hart ML, Busi S, Parker T, Goerndt A, Jones K, et al. Fischer-344 Tp53-knockout rats exhibit a high rate of bone and brain neoplasia with frequent metastasis. Dis Model Mech. 2016;9(10):1139–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. McCoy A, Besch-Williford CL, Franklin CL, Weinstein EJ, Cui X. Creation and preliminary characterization of a Tp53 knockout rat. Dis Model Mech. 2013;6(1):269–78.

    CAS  PubMed  Google Scholar 

  80. Yoshimi K, Tanaka T, Takizawa A, Kato M, Hirabayashi M, Mashimo T, et al. Enhanced colitis-associated colon carcinogenesis in a novel Apc mutant rat. Cancer Sci. 2009;100(11):2022–7.

    CAS  PubMed  Google Scholar 

  81. Amos-Landgraf JM, Kwong LN, Kendziorski CM, Reichelderfer M, Torrealba J, Weichert J, et al. A target-selected Apc-mutant rat kindred enhances the modeling of familial human colon cancer. Proc Natl Acad Sci U S A. 2007;104(10):4036–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Irving AA, Yoshimi K, Hart ML, Parker T, Clipson L, Ford MR, et al. The utility of Apc-mutant rats in modeling human colon cancer. Dis Model Mech. 2014;7(11):1215–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Ding L, Shunkwiler LB, Harper NW, Zhao Y, Hinohara K, Huh SJ, et al. Deletion of Cdkn1b in ACI rats leads to increased proliferation and pregnancy-associated changes in the mammary gland due to perturbed systemic endocrine environment. PLoS Genet. 2019;15(3):e1008002.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Pellegata NS, Quintanilla-Martinez L, Siggelkow H, Samson E, Bink K, Hofler H, et al. Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans. Proc Natl Acad Sci U S A. 2006;103(42):15558–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Okimoto K, Sakurai J, Kobayashi T, Mitani H, Hirayama Y, Nickerson ML, et al. A germ-line insertion in the Birt-Hogg-Dube (BHD) gene gives rise to the Nihon rat model of inherited renal cancer. Proc Natl Acad Sci U S A. 2004;101(7):2023–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Yeung RS, Xiao GH, Jin F, Lee WC, Testa JR, Knudson AG. Predisposition to renal carcinoma in the Eker rat is determined by germ-line mutation of the tuberous sclerosis 2 (TSC2) gene. Proc Natl Acad Sci U S A. 1994;91(24):11413–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Flister MJ, Hoffman MJ, Lemke A, Prisco SZ, Rudemiller N, O’Meara CC, et al. SH2B3 is a genetic determinant of cardiac inflammation and fibrosis. Circ Cardiovasc Genet. 2015;8(2):294–304.

    CAS  PubMed  Google Scholar 

  88. Luo C, Xie X, Feng X, Lei B, Fang C, Li Y, et al. Deficiency of Interleukin-36 receptor protected cardiomyocytes from ischemia-reperfusion injury in cardiopulmonary bypass. Med Sci Monit. 2020;26:e918933.

    PubMed  PubMed Central  Google Scholar 

  89. Zhou Q, Peng X, Liu X, Chen L, Xiong Q, Shen Y, et al. FAT10 attenuates hypoxia-induced cardiomyocyte apoptosis by stabilizing caveolin-3. J Mol Cell Cardiol. 2018;116:115–24.

    CAS  PubMed  Google Scholar 

  90. Wu TT, Ma YW, Zhang X, Dong W, Gao S, Wang JZ, et al. Myocardial tissue-specific Dnmt1 knockout in rats protects against pathological injury induced by Adriamycin. Lab Invest. 2020;100(7):974–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Chen P, Li Z, Nie J, Wang H, Yu B, Wen Z, et al. MYH7B variants cause hypertrophic cardiomyopathy by activating the CaMK-signaling pathway. Sci China Life Sci. 2020; https://doi.org/10.1007/s11427-019-1627-y.

  92. Guo W, Pleitner JM, Saupe KW, Greaser ML. Pathophysiological defects and transcriptional profiling in the RBM20−/− rat model. PLoS One. 2013;8(12):e84281.

    PubMed  PubMed Central  Google Scholar 

  93. Zigler JS Jr, Zhang C, Grebe R, Sehrawat G, Hackler L Jr, Adhya S, et al. Mutation in the betaA3/A1-crystallin gene impairs phagosome degradation in the retinal pigmented epithelium of the rat. J Cell Sci. 2011;124(Pt 4):523–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Sinha D, Klise A, Sergeev Y, Hose S, Bhutto IA, Hackler L Jr, et al. betaA3/A1-crystallin in astroglial cells regulates retinal vascular remodeling during development. Mol Cell Neurosci. 2008;37(1):85–95.

    CAS  PubMed  Google Scholar 

  95. Johnson AC, Lee JW, Harmon AC, Morris Z, Wang X, Fratkin J, et al. A mutation in the start codon of gamma-crystallin D leads to nuclear cataracts in the dahl SS/Jr-Ctr strain. Mamm Genome. 2013;24(3–4):95–104.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Yoshida M, Harada Y, Kaidzu S, Ohira A, Masuda J, Nabika T. New genetic model rat for congenital cataracts due to a connexin 46 (Gja3 ) mutation. Pathol Int. 2005;55(11):732–7.

    CAS  PubMed  Google Scholar 

  97. Liska F, Chylikova B, Martinek J, Kren V. Microphthalmia and cataract in rats with a novel point mutation in connexin 50 - L7Q. Mol Vis. 2008;14:823–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Yamashita S, Furumoto K, Nobukiyo A, Kamohara M, Ushijima T, Furukawa T. Mapping of A gene responsible for cataract formation and its modifier in the UPL rat. Invest Ophthalmol Vis Sci. 2002;43(10):3153–9.

    PubMed  Google Scholar 

  99. Mori M, Li G, Abe I, Nakayama J, Guo Z, Sawashita J, et al. Lanosterol synthase mutations cause cholesterol deficiency-associated cataracts in the Shumiya cataract rat. J Clin Invest. 2006;116(2):395–404.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhao L, Chen XJ, Zhu J, Xi YB, Yang X, Hu LD, et al. Lanosterol reverses protein aggregation in cataracts. Nature. 2015;523(7562):607–11.

    CAS  PubMed  Google Scholar 

  101. Watanabe K, Wada K, Ohashi T, Okubo S, Takekuma K, Hashizume R, et al. A 5-bp insertion in Mip causes recessive congenital cataract in KFRS4/Kyo rats. PLoS One. 2012;7(11):e50737.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Mori M, Nishikawa T, Higuchi K, Nishimura M. Deletion in the beige gene of the beige rat owing to recombination between LINE1s. Mamm Genome. 1999;10(7):692–5.

    CAS  PubMed  Google Scholar 

  103. Kuramoto T, Kuwamura M, Serikawa T. Rat neurological mutations cerebellar vermis defect and hobble are caused by mutations in the netrin-1 receptor gene Unc5h3. Brain Res Mol Brain Res. 2004;122(2):103–8.

    CAS  PubMed  Google Scholar 

  104. Mashimo T, Kaneko T, Sakuma T, Kobayashi J, Kunihiro Y, Voigt B, et al. Efficient gene targeting by TAL effector nucleases coinjected with exonucleases in zygotes. Sci Rep. 2013;3:1253.

    PubMed  PubMed Central  Google Scholar 

  105. Blaszczyk WM, Arning L, Hoffmann KP, Epplen JT. A Tyrosinase missense mutation causes albinism in the Wistar rat. Pigment Cell Res. 2005;18(2):144–5.

    CAS  PubMed  Google Scholar 

  106. Kuramoto T, Yokoe M, Yagasaki K, Kawaguchi T, Kumafuji K, Serikawa T. Genetic analyses of fancy rat-derived mutations. Exp Anim. 2010;59(2):147–55.

    CAS  PubMed  Google Scholar 

  107. Yoshimi K, Kaneko T, Voigt B, Mashimo T. Allele-specific genome editing and correction of disease-associated phenotypes in rats using the CRISPR-Cas platform. Nat Commun. 2014;5:4240.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Kuramoto T, Nomoto T, Sugimura T, Ushijima T. Cloning of the rat agouti gene and identification of the rat nonagouti mutation. Mamm Genome. 2001;12(6):469–71.

    CAS  PubMed  Google Scholar 

  109. Yoshihara M, Sato T, Saito D, Ohara O, Kuramoto T, Suyama M. A deletion in the intergenic region upstream of Ednrb causes head spot in the rat strain KFRS4/Kyo. BMC Genet. 2017;18(1):29.

    PubMed  PubMed Central  Google Scholar 

  110. Kuramoto T, Nakanishi S, Ochiai M, Nakagama H, Voigt B, Serikawa T. Origins of albino and hooded rats: implications from molecular genetic analysis across modern laboratory rat strains. PLoS One. 2012;7(8):e43059.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Xu Y, Wu Z, Liu L, Liu J, Wang Y. Rat model of Cockayne syndrome neurological disease. Cell Rep. 2019;29(4):800–9.e5.

    CAS  PubMed  Google Scholar 

  112. Gu Y, Wang L, Zhou J, Guo Q, Liu N, Ding Z, et al. A naturally-occurring mutation in Cacna1f in a rat model of congenital stationary night blindness. Mol Vis. 2008;14:20–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Yokoi N, Namae M, Wang HY, Kojima K, Fuse M, Yasuda K, et al. Rat neurological disease creeping is caused by a mutation in the reelin gene. Brain Res Mol Brain Res. 2003;112(1–2):1–7.

    CAS  PubMed  Google Scholar 

  114. Tuggle KL, Birket SE, Cui X, Hong J, Warren J, Reid L, et al. Characterization of defects in ion transport and tissue development in cystic fibrosis transmembrane conductance regulator (CFTR)-knockout rats. PLoS One. 2014;9(3):e91253.

    PubMed  PubMed Central  Google Scholar 

  115. Dreano E, Bacchetta M, Simonin J, Galmiche L, Usal C, Slimani L, et al. Characterization of two rat models of cystic fibrosis-KO and F508del CFTR-generated by Crispr-Cas9. Animal Model Exp Med. 2019;2(4):297–311.

    PubMed  PubMed Central  Google Scholar 

  116. Sinkevicius KW, Morrison TR, Kulkarni P, Caffrey Cagliostro MK, Iriah S, Malmberg S, et al. RNaseT2 knockout rats exhibit hippocampal neuropathology and deficits in memory. Dis Model Mech. 2018;11(6):dmm032631.

    PubMed  PubMed Central  Google Scholar 

  117. Shimizu Y, Yanobu-Takanashi R, Nakano K, Hamase K, Shimizu T, Okamura T. A deletion in the Ctns gene causes renal tubular dysfunction and cystine accumulation in LEA/Tohm rats. Mamm Genome. 2019;30(1–2):23–33.

    CAS  PubMed  Google Scholar 

  118. Ma S, Zhang M, Zhang S, Wang J, Zhou X, Guo G, et al. Characterisation of Lamp2-deficient rats for potential new animal model of Danon disease. Sci Rep. 2018;8(1):6932.

    PubMed  PubMed Central  Google Scholar 

  119. Shimizu Y, Ishii C, Yanobu-Takanashi R, Nakano K, Imaike A, Mita M, et al. d-Amino acid oxidase deficiency is caused by a large deletion in the Dao gene in LEA rats. Biochim Biophys Acta Proteins Proteom. 1868;2020(9):140463.

    Google Scholar 

  120. Gohma H, Kuramoto T, Kuwamura M, Okajima R, Tanimoto N, Yamasaki K, et al. WTC deafness Kyoto (dfk): a rat model for extensive investigations of Kcnq1 functions. Physiol Genomics. 2006;24(3):198–206.

    CAS  PubMed  Google Scholar 

  121. Smits BM, Peters TA, Mul JD, Croes HJ, Fransen JA, Beynon AJ, et al. Identification of a rat model for usher syndrome type 1B by N-ethyl-N-nitrosourea mutagenesis-driven forward genetics. Genetics. 2005;170(4):1887–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Naoi K, Kuramoto T, Kuwamura Y, Gohma H, Kuwamura M, Serikawa T. Characterization of the Kyoto circling (KCI) rat carrying a spontaneous nonsense mutation in the protocadherin 15 (Pcdh15) gene. Exp Anim. 2009;58(1):1–10.

    CAS  PubMed  Google Scholar 

  123. Held N, Smits BM, Gockeln R, Schubert S, Nave H, Northrup E, et al. A mutation in Myo15 leads to Usher-like symptoms in LEW/Ztm-ci2 rats. PLoS One. 2011;6(3):e15669.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Nishitani A, Tanaka M, Shimizu S, Kunisawa N, Yokoe M, Yoshida Y, et al. Involvement of aspartoacylase in tremor expression in rats. Exp Anim. 2016;65(3):293–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. O'Connor LT, Goetz BD, Kwiecien JM, Delaney KH, Fletch AL, Duncan ID. Insertion of a retrotransposon in Mbp disrupts mRNA splicing and myelination in a new mutant rat. J Neurosci. 1999;19(9):3404–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Kuramoto T, Kuwamura M, Tokuda S, Izawa T, Nakane Y, Kitada K, et al. A mutation in the gene encoding mitochondrial Mg(2)+ channel MRS2 results in demyelination in the rat. PLoS Genet. 2011;7(1):e1001262.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Boison D, Stoffel W. Myelin-deficient rat: a point mutation in exon III (A----C, Thr75----Pro) of the myelin proteolipid protein causes dysmyelination and oligodendrocyte death. EMBO J. 1989;8(11):3295–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Duncan ID, Bugiani M, Radcliff AB, Moran JJ, Lopez-Anido C, Duong P, et al. A mutation in the Tubb4a gene leads to microtubule accumulation with hypomyelination and demyelination. Ann Neurol. 2017;81(5):690–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Geddes BJ, Harding TC, Lightman SL, Uney JB. Long-term gene therapy in the CNS: reversal of hypothalamic diabetes insipidus in the Brattleboro rat by using an adenovirus expressing arginine vasopressin. Nat Med. 1997;3(12):1402–4.

    CAS  PubMed  Google Scholar 

  130. Schmale H, Richter D. Single base deletion in the vasopressin gene is the cause of diabetes insipidus in Brattleboro rats. Nature. 1984;308:705–9.

    CAS  PubMed  Google Scholar 

  131. Mamenko M, Dhande I, Tomilin V, Zaika O, Boukelmoune N, Zhu Y, et al. Defective store-operated calcium entry causes partial nephrogenic diabetes insipidus. J Am Soc Nephrol. 2016;27(7):2035–48.

    CAS  PubMed  Google Scholar 

  132. Takagishi Y, Murata Y. Myosin Va mutation in rats is an animal model for the human hereditary neurological disease, Griscelli syndrome type 1. Ann N Y Acad Sci. 2006;1086:66–80.

    CAS  PubMed  Google Scholar 

  133. Landrock KK, Sullivan P, Martini-Stoica H, Goldstein DS, Graham BH, Yamamoto S, et al. Pleiotropic neuropathological and biochemical alterations associated with Myo5a mutation in a rat model. Brain Res. 1679;2018:155–70.

    Google Scholar 

  134. Larcher T, Lafoux A, Tesson L, Remy S, Thepenier V, Francois V, et al. Characterization of dystrophin deficient rats: a new model for Duchenne muscular dystrophy. PLoS One. 2014;9(10):e110371.

    PubMed  PubMed Central  Google Scholar 

  135. Nakamura K, Fujii W, Tsuboi M, Tanihata J, Teramoto N, Takeuchi S, et al. Generation of muscular dystrophy model rats with a CRISPR/Cas system. Sci Rep. 2014;4:5635.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Clifford PS, Rodriguez J, Schul D, Hughes S, Kniffin T, Hart N, et al. Attenuation of cocaine-induced locomotor sensitization in rats sustaining genetic or pharmacologic antagonism of ghrelin receptors. Addict Biol. 2012;17(6):956–63.

    CAS  PubMed  Google Scholar 

  137. Chu X, Zhang Z, Yabut J, Horwitz S, Levorse J, Li XQ, et al. Characterization of multidrug resistance 1a/P-glycoprotein knockout rats generated by zinc finger nucleases. Mol Pharmacol. 2012;81(2):220–7.

    CAS  PubMed  Google Scholar 

  138. Zamek-Gliszczynski MJ, Bedwell DW, Bao JQ, Higgins JW. Characterization of SAGE Mdr1a (P-gp), Bcrp, and Mrp2 knockout rats using loperamide, paclitaxel, sulfasalazine, and carboxydichlorofluorescein pharmacokinetics. Drug Metab Dispos. 2012;40(9):1825–33.

    CAS  PubMed  Google Scholar 

  139. Fuchs H, Kishimoto W, Gansser D, Tanswell P, Ishiguro N. Brain penetration of WEB 2086 (Apafant) and dantrolene in Mdr1a (P-glycoprotein) and Bcrp knockout rats. Drug Metab Dispos. 2014;42(10):1761–5.

    PubMed  Google Scholar 

  140. Liu X, Cheong J, Ding X, Deshmukh G. Use of cassette dosing approach to examine the effects of P-glycoprotein on the brain and cerebrospinal fluid concentrations in wild-type and P-glycoprotein knockout rats. Drug Metab Dispos. 2014;42(4):482–91.

    PubMed  Google Scholar 

  141. Wei Y, Yang L, Zhang X, Sui D, Wang C, Wang K, et al. Generation and characterization of a CYP2C11-null rat model by using the CRISPR/Cas9 method. Drug Metab Dispos. 2018;46(5):525–31.

    CAS  PubMed  Google Scholar 

  142. Wang RL, Xia QQ, Baerson SR, Ren Y, Wang J, Su YJ, et al. A novel cytochrome P450 CYP6AB14 gene in Spodoptera litura (Lepidoptera: Noctuidae) and its potential role in plant allelochemical detoxification. J Insect Physiol. 2015;75:54–62.

    CAS  PubMed  Google Scholar 

  143. Lu J, Shao Y, Qin X, Liu D, Chen A, Li D, et al. CRISPR knockout rat cytochrome P450 3A1/2 model for advancing drug metabolism and pharmacokinetics research. Sci Rep. 2017;7:42922.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Takeuchi T, Suzuki H, Sakurai S, Nogami H, Okuma S, Ishikawa H. Molecular mechanism of growth hormone (GH) deficiency in the spontaneous dwarf rat: detection of abnormal splicing of GH messenger ribonucleic acid by the polymerase chain reaction. Endocrinology. 1990;126(1):31–8.

    CAS  PubMed  Google Scholar 

  145. Chikuda H, Kugimiya F, Hoshi K, Ikeda T, Ogasawara T, Shimoaka T, et al. Cyclic GMP-dependent protein kinase II is a molecular switch from proliferation to hypertrophic differentiation of chondrocytes. Genes Dev. 2004;18(19):2418–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Bonnet C, Andrieux J, Beri-Dexheimer M, Leheup B, Boute O, Manouvrier S, et al. Microdeletion at chromosome 4q21 defines a new emerging syndrome with marked growth restriction, mental retardation and absent or severely delayed speech. J Med Genet. 2010;47(6):377–84.

    CAS  PubMed  Google Scholar 

  147. Tsuchida A, Yokoi N, Namae M, Fuse M, Masuyama T, Sasaki M, et al. Phenotypic characterization of the Komeda miniature rat Ishikawa, an animal model of dwarfism caused by a mutation in Prkg2. Comp Med. 2008;58(6):560–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Hishinuma A, Furudate S, Oh-Ishi M, Nagakubo N, Namatame T, Ieiri T. A novel missense mutation (G2320R) in thyroglobulin causes hypothyroidism in rdw rats. Endocrinology. 2000;141(11):4050–5.

    CAS  PubMed  Google Scholar 

  149. Furudate S, Ono M, Shibayama K, Ohyama Y, Kuwada M, Kimura T, et al. Rescue from dwarfism by thyroid function compensation in rdw rats. Exp Anim. 2005;54(5):455–60.

    CAS  PubMed  Google Scholar 

  150. Yu-Taeger L, Ott T, Bonsi P, Tomczak C, Wassouf Z, Martella G, et al. Impaired dopamine- and adenosine-mediated signaling and plasticity in a novel rodent model for DYT25 dystonia. Neurobiol Dis. 2020;134:104634.

    PubMed  Google Scholar 

  151. Quina LA, Kuramoto T, Luquetti DV, Cox TC, Serikawa T, Turner EE. Deletion of a conserved regulatory element required for Hmx1 expression in craniofacial mesenchyme in the dumbo rat: a newly identified cause of congenital ear malformation. Dis Model Mech. 2012;5(6):812–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Mori M, Li G, Hashimoto M, Nishio A, Tomozawa H, Suzuki N, et al. Pivotal advance: eosinophilia in the MES rat strain is caused by a loss-of-function mutation in the gene for cytochrome b(−245), alpha polypeptide (Cyba). J Leukoc Biol. 2009;86(3):473–8.

    CAS  PubMed  Google Scholar 

  153. Sarkisian MR, Li W, Di Cunto F, D’Mello SR, LoTurco JJ. Citron-kinase, a protein essential to cytokinesis in neuronal progenitors, is deleted in the flathead mutant rat. J Neurosci. 2002;22(8):RC217.

    PubMed  PubMed Central  Google Scholar 

  154. Sarkisian MR, Rattan S, D’Mello SR, LoTurco JJ. Characterization of seizures in the flathead rat: a new genetic model of epilepsy in early postnatal development. Epilepsia. 1999;40(4):394–400.

    CAS  PubMed  Google Scholar 

  155. Thomas AM, Schwartz MD, Saxe MD, Kilduff TS. Cntnap2 knockout rats and mice exhibit epileptiform activity and abnormal sleep-wake physiology. Sleep. 2017;40(1):zsw026.

    Google Scholar 

  156. Ishida S, Sakamoto Y, Nishio T, Baulac S, Kuwamura M, Ohno Y, et al. Kcna1-mutant rats dominantly display myokymia, neuromyotonia and spontaneous epileptic seizures. Brain Res. 2012;1435:154–66.

    CAS  PubMed  Google Scholar 

  157. Baulac S, Ishida S, Mashimo T, Boillot M, Fumoto N, Kuwamura M, et al. A rat model for LGI1-related epilepsies. Hum Mol Genet. 2012;21(16):3546–57.

    CAS  PubMed  Google Scholar 

  158. Kinboshi M, Shimizu S, Mashimo T, Serikawa T, Ito H, Ikeda A, et al. Down-regulation of astrocytic Kir4.1 channels during the audiogenic epileptogenesis in Leucine-Rich Glioma-Inactivated 1 (Lgi1) mutant rats. Int J Mol Sci. 2019;20(5):1013.

    CAS  PubMed Central  Google Scholar 

  159. Mashimo T, Ohmori I, Ouchida M, Ohno Y, Tsurumi T, Miki T, et al. A missense mutation of the gene encoding voltage-dependent sodium channel (Nav1.1) confers susceptibility to febrile seizures in rats. J Neurosci. 2010;30(16):5744–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Tokudome K, Okumura T, Shimizu S, Mashimo T, Takizawa A, Serikawa T, et al. Synaptic vesicle glycoprotein 2A (SV2A) regulates kindling epileptogenesis via GABAergic neurotransmission. Sci Rep. 2016;6:27420.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Suzuki H, Katayama K, Takenaka M, Amakasu K, Saito K, Suzuki K. A spontaneous mutation of the Wwox gene and audiogenic seizures in rats with lethal dwarfism and epilepsy. Genes Brain Behav. 2009;8(7):650–60.

    CAS  PubMed  Google Scholar 

  162. Miller JJ, Aoki K, Moehring F, Murphy CA, O’Hara CL, Tiemeyer M, et al. Neuropathic pain in a Fabry disease rat model. JCI Insight. 2018;3(6):e99171.

    PubMed Central  Google Scholar 

  163. Bulbul M, Babygirija R, Zheng J, Ludwig K, Xu H, Lazar J, et al. Food intake and interdigestive gastrointestinal motility in ghrelin receptor mutant rats. J Gastroenterol. 2011;46(4):469–78.

    CAS  PubMed  Google Scholar 

  164. MacKay H, Charbonneau VR, St-Onge V, Murray E, Watts A, Wellman MK, et al. Rats with a truncated ghrelin receptor (GHSR) do not respond to ghrelin, and show reduced intake of palatable, high-calorie food. Physiol Behav. 2016;163:88–96.

    CAS  PubMed  Google Scholar 

  165. Zallar LJ, Tunstall BJ, Richie CT, Zhang YJ, You ZB, Gardner EL, et al. Development and initial characterization of a novel ghrelin receptor CRISPR/Cas9 knockout wistar rat model. Int J Obes. 2019;43(2):344–54.

    CAS  Google Scholar 

  166. Tian Y, Yang C, Shang S, Cai Y, Deng X, Zhang J, et al. Loss of FMRP impaired hippocampal long-term plasticity and spatial learning in rats. Front Mol Neurosci. 2017;10:269.

    PubMed  PubMed Central  Google Scholar 

  167. Berzhanskaya J, Phillips MA, Shen J, Colonnese MT. Sensory hypo-excitability in a rat model of fetal development in Fragile X Syndrome. Sci Rep. 2016;6:30769.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Golden CEM, Breen MS, Koro L, Sonar S, Niblo K, Browne A, et al. Deletion of the KH1 domain of Fmr1 leads to transcriptional alterations and attentional deficits in rats. Cereb Cortex. 2019;29(5):2228–44.

    PubMed  PubMed Central  Google Scholar 

  169. Kiyozumi D, Nakano I, Takahashi KL, Hojo H, Aoyama H, Sekiguchi K. Fused pulmonary lobes is a rat model of human Fraser syndrome. Biochem Biophys Res Commun. 2011;411(2):440–4.

    CAS  PubMed  Google Scholar 

  170. Maichele AJ, Burwinkel B, Maire I, Sovik O, Kilimann MW. Mutations in the testis/liver isoform of the phosphorylase kinase gamma subunit (PHKG2) cause autosomal liver glycogenosis in the gsd rat and in humans. Nat Genet. 1996;14(3):337–40.

    CAS  PubMed  Google Scholar 

  171. Kuramoto T, Kuwamura M, Tagami F, Mashimo T, Nose M, Serikawa T. Kyoto rhino rats derived by ENU mutagenesis undergo congenital hair loss and exhibit focal glomerulosclerosis. Exp Anim. 2011;60(1):57–63.

    CAS  PubMed  Google Scholar 

  172. Nanashima N, Akita M, Yamada T, Shimizu T, Nakano H, Fan Y, et al. The hairless phenotype of the Hirosaki hairless rat is due to the deletion of an 80-kb genomic DNA containing five basic keratin genes. J Biol Chem. 2008;283(24):16868–75.

    CAS  PubMed  Google Scholar 

  173. Kuramoto T, Hirano R, Kuwamura M, Serikawa T. Identification of the rat rex mutation as a 7-bp deletion at splicing acceptor site of the Krt71 gene. J Vet Med Sci. 2010;72(7):909–12.

    CAS  PubMed  Google Scholar 

  174. Ahearn K, Akkouris G, Berry PR, Chrissluis RR, Crooks IM, Dull AK, et al. The Charles River “hairless” rat mutation maps to chromosome 1: allelic with fuzzy and a likely orthologue of mouse frizzy. J Hered. 2002;93(3):210–3.

    CAS  PubMed  Google Scholar 

  175. Spacek DV, Perez AF, Ferranti KM, Wu LK, Moy DM, Magnan DR, et al. The mouse frizzy (fr) and rat ‘hairless’ (frCR) mutations are natural variants of protease serine S1 family member 8 (Prss8). Exp Dermatol. 2010;19(6):527–32.

    CAS  PubMed  Google Scholar 

  176. Asakawa M, Yoshioka T, Matsutani T, Hikita I, Suzuki M, Oshima I, et al. Association of a mutation in TRPV3 with defective hair growth in rodents. J Invest Dermatol. 2006;126(12):2664–72.

    CAS  PubMed  Google Scholar 

  177. Bartnikas TB, Wildt SJ, Wineinger AE, Schmitz-Abe K, Markianos K, Cooper DM, et al. A novel rat model of hereditary hemochromatosis due to a mutation in transferrin receptor 2. Comp Med. 2013;63(2):143–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Booth CJ, Brooks MB, Rockwell S, Murphy JW, Rinder HM, Zelterman D, et al. WAG-F8(m1Ycb) rats harboring a factor VIII gene mutation provide a new animal model for hemophilia A. J Thromb Haemost. 2010;8(11):2472–7.

    CAS  PubMed  Google Scholar 

  179. Nielsen LN, Wiinberg B, Hager M, Holmberg HL, Hansen JJ, Roepstorff K, et al. A novel F8 −/− rat as a translational model of human hemophilia A. J Thromb Haemost. 2014;12(8):1274–82.

    CAS  PubMed  Google Scholar 

  180. Sorensen KR, Roepstorff K, Wiinberg B, Hansen AK, Tranholm M, Nielsen LN, et al. The F8(−/−) rat as a model of hemophilic arthropathy. J Thromb Haemost. 2016;14(6):1216–25.

    CAS  PubMed  Google Scholar 

  181. Shi Q, Mattson JG, Fahs SA, Geurts AM, Weiler H, Montgomery RR. The severe spontaneous bleeding phenotype in a novel hemophilia a rat model is rescued by platelet FVIII expression. Blood Adv. 2020;4(1):55–65.

    PubMed  PubMed Central  Google Scholar 

  182. Zhang L, Shao Y, Li L, Tian F, Cen J, Chen X, et al. Efficient liver repopulation of transplanted hepatocyte prevents cirrhosis in a rat model of hereditary tyrosinemia type I. Sci Rep. 2016;6:31460.

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Shao Y, Wang L, Guo N, Wang S, Yang L, Li Y, et al. Cas9-nickase-mediated genome editing corrects hereditary tyrosinemia in rats. J Biol Chem. 2018;293(18):6883–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Oiso N, Riddle SR, Serikawa T, Kuramoto T, Spritz RA. The rat Ruby ( R) locus is Rab38: identical mutations in Fawn-hooded and Tester-Moriyama rats derived from an ancestral Long Evans rat sub-strain. Mamm Genome. 2004;15(4):307–14.

    CAS  PubMed  Google Scholar 

  185. Osanai K, Higuchi J, Oikawa R, Kobayashi M, Tsuchihara K, Iguchi M, et al. Altered lung surfactant system in a Rab38-deficient rat model of Hermansky-Pudlak syndrome. Am J Physiol Lung Cell Mol Physiol. 2010;298(2):L243–51.

    CAS  PubMed  Google Scholar 

  186. Emmert AS, Iwasawa E, Shula C, Schultz P, Lindquist D, Dunn RS, et al. Impaired neural differentiation and glymphatic CSF flow in the Ccdc39 rat model of neonatal hydrocephalus: genetic interaction with L1cam. Dis Model Mech. 2019;12(11):dmm040972 https://doi.org/10.1242/dmm.040972.

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Konishi S, Tanaka N, Mashimo T, Yamamoto T, Sakuma T, Kaneko T, et al. Pathological characteristics of Ccdc85c knockout rats: a rat model of genetic hydrocephalus. Exp Anim. 2020;69(1):26–33.

    CAS  PubMed  Google Scholar 

  188. Emmert AS, Vuong SM, Shula C, Lindquist D, Yuan W, Hu YC, et al. Characterization of a novel rat model of X-linked hydrocephalus by CRISPR-mediated mutation in L1cam. J Neurosurg. 2019:1–14.

  189. Wada M, Toh S, Taniguchi K, Nakamura T, Uchiumi T, Kohno K, et al. Mutations in the canilicular multispecific organic anion transporter (cMOAT) gene, a novel ABC transporter, in patients with hyperbilirubinemia II/Dubin-Johnson syndrome. Hum Mol Genet. 1998;7(2):203–7.

    CAS  PubMed  Google Scholar 

  190. Paulusma CC, Bosma PJ, Zaman GJ, Bakker CT, Otter M, Scheffer GL, et al. Congenital jaundice in rats with a mutation in a multidrug resistance-associated protein gene. Science. 1996;271(5252):1126–8.

    CAS  PubMed  Google Scholar 

  191. Ito K, Suzuki H, Hirohashi T, Kume K, Shimizu T, Sugiyama Y. Molecular cloning of canalicular multispecific organic anion transporter defective in EHBR. Am J Phys. 1997;272(1 Pt 1):G16–22.

    CAS  Google Scholar 

  192. Ma X, Shang X, Qin X, Lu J, Liu M, Wang X. Characterization of organic anion transporting polypeptide 1b2 knockout rats generated by CRISPR/Cas9: a novel model for drug transport and hyperbilirubinemia disease. Acta Pharm Sin B. 2020;10(5):850–60.

    PubMed  Google Scholar 

  193. Iyanagi T. Molecular basis of multiple UDP-glucuronosyltransferase isoenzyme deficiencies in the hyperbilirubinemic rat (Gunn rat). J Biol Chem. 1991;266(35):24048–52.

    CAS  PubMed  Google Scholar 

  194. Takahashi M, Ilan Y, Chowdhury NR, Guida J, Horwitz M, Chowdhury JR. Long term correction of bilirubin-UDP-glucuronosyltransferase deficiency in Gunn rats by administration of a recombinant adenovirus during the neonatal period. J Biol Chem. 1996;271(43):26536–42.

    CAS  PubMed  Google Scholar 

  195. Zhao Y, Yang Y, Xing R, Cui X, Xiao Y, Xie L, et al. Hyperlipidemia induces typical atherosclerosis development in Ldlr and Apoe deficient rats. Atherosclerosis. 2018;271:26–35.

    CAS  PubMed  Google Scholar 

  196. Phillips EH, Chang MS, Gorman S, Qureshi HJ, Ejendal KFK, Kinzer-Ursem TL, et al. Angiotensin infusion does not cause abdominal aortic aneurysms in apolipoprotein E-deficient rats. J Vasc Res. 2018;55:1–12.

    CAS  PubMed  Google Scholar 

  197. Lee JG, Ha CH, Yoon B, Cheong SA, Kim G, Lee DJ, et al. Knockout rat models mimicking human atherosclerosis created by Cpf1-mediated gene targeting. Sci Rep. 2019;9(1):2628.

    PubMed  PubMed Central  Google Scholar 

  198. Asahina M, Mashimo T, Takeyama M, Tozawa R, Hashimoto T, Takizawa A, et al. Hypercholesterolemia and atherosclerosis in low density lipoprotein receptor mutant rats. Biochem Biophys Res Commun. 2012;418(3):553–8.

    CAS  PubMed  Google Scholar 

  199. Wang HY, Quan C, Hu C, Xie B, Du Y, Chen L, et al. A lipidomics study reveals hepatic lipid signatures associating with deficiency of the LDL receptor in a rat model. Biol Open. 2016;5(7):979–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Asahina M, Haruyama W, Ichida Y, Sakamoto M, Sato M, Imaizumi K. Identification of SMEK2 as a candidate gene for regulation of responsiveness to dietary cholesterol in rats. J Lipid Res. 2009;50(1):41–6.

    CAS  PubMed  Google Scholar 

  201. Yu Y, Zhang N, Dong X, Fan N, Wang L, Xu Y, Chen H, Duan W. Uricase-deficient rat is generated with CRISPR/Cas9 technique. Peer J. 2020;8:e8971.

    PubMed  Google Scholar 

  202. Liska F, Gosele C, Rivkin E, Tres L, Cardoso MC, Domaing P, et al. Rat hd mutation reveals an essential role of centrobin in spermatid head shaping and assembly of the head-tail coupling apparatus. Biol Reprod. 2009;81(6):1196–205.

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Kuramoto T, Yokoe M, Hashimoto R, Hiai H, Serikawa T. A rat model of hypohidrotic ectodermal dysplasia carries a missense mutation in the Edaradd gene. BMC Genet. 2011;12:91.

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Weber M, Wu T, Meilandt WJ, Dominguez SL, Solanoy HO, Maloney JA, et al. BACE1 across species: a comparison of the in vivo consequences of BACE1 deletion in mice and rats. Sci Rep. 2017;7:44249.

    PubMed  PubMed Central  Google Scholar 

  205. Yang J, Yi N, Zhang J, He W, He D, Wu W, et al. Generation and characterization of a hypothyroidism rat model with truncated thyroid stimulating hormone receptor. Sci Rep. 2018;8(1):4004.

    PubMed  PubMed Central  Google Scholar 

  206. Jahoda CA, Kljuic A, O'Shaughnessy R, Crossley N, Whitehouse CJ, Robinson M, et al. The lanceolate hair rat phenotype results from a missense mutation in a calcium coordinating site of the desmoglein 4 gene. Genomics. 2004;83(5):747–56.

    CAS  PubMed  Google Scholar 

  207. Bazzi H, Kljuic A, Christiano AM, Christiano AM, Panteleyev AA. Intragenic deletion in the Desmoglein 4 gene underlies the skin phenotype in the Iffa Credo “hairless” rat. Differentiation. 2004;72(8):450–64.

    CAS  PubMed  Google Scholar 

  208. Meyer B, Bazzi H, Zidek V, Musilova A, Pravenec M, Kurtz TW, et al. A spontaneous mutation in the desmoglein 4 gene underlies hypotrichosis in a new lanceolate hair rat model. Differentiation. 2004;72(9–10):541–7.

    CAS  PubMed  Google Scholar 

  209. Menoret S, Iscache AL, Tesson L, Remy S, Usal C, Osborn MJ, et al. Characterization of immunoglobulin heavy chain knockout rats. Eur J Immunol. 2010;40(10):2932–41.

    CAS  PubMed  Google Scholar 

  210. Osborn MJ, Ma B, Avis S, Binnie A, Dilley J, Yang X, et al. High-affinity IgG antibodies develop naturally in Ig-knockout rats carrying germline human IgH/Igkappa/Iglambda loci bearing the rat CH region. J Immunol. 2013;190(4):1481–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Nehls M, Pfeifer D, Schorpp M, Hedrich H, Boehm T. New member of the winged-helix protein family disrupted in mouse and rat nude mutations. Nature. 1994;372(6501):103–7.

    CAS  PubMed  Google Scholar 

  212. Segre JA, Nemhauser JL, Taylor BA, Nadeau JH, Lander ES. Positional cloning of the nude locus: genetic, physical, and transcription maps of the region and mutations in the mouse and rat. Genomics. 1995;28(3):549–59.

    CAS  PubMed  Google Scholar 

  213. Goto T, Hara H, Nakauchi H, Hochi S, Hirabayashi M. Hypomorphic phenotype of Foxn1 gene-modified rats by CRISPR/Cas9 system. Transgenic Res. 2016;25(4):533–44.

    CAS  PubMed  Google Scholar 

  214. Mashimo T, Takizawa A, Kobayashi J, Kunihiro Y, Yoshimi K, Ishida S, et al. Generation and characterization of severe combined immunodeficiency rats. Cell Rep. 2012;2(3):685–94.

    CAS  PubMed  Google Scholar 

  215. Beldick SR, Hong J, Altamentova S, Khazaei M, Hundal A, Zavvarian MM, et al. Severe-combined immunodeficient rats can be used to generate a model of perinatal hypoxic-ischemic brain injury to facilitate studies of engrafted human neural stem cells. PLoS One. 2018;13(11):e0208105.

    PubMed  PubMed Central  Google Scholar 

  216. Zschemisch NH, Glage S, Wedekind D, Weinstein EJ, Cui X, Dorsch M, et al. Zinc-finger nuclease mediated disruption of Rag1 in the LEW/Ztm rat. BMC Immunol. 2012;13:60.

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Noto FK, Adjan-Steffey V, Tong M, Ravichandran K, Zhang W, Arey A, et al. Sprague Dawley Rag2-null rats created from engineered spermatogonial stem cells are immunodeficient and permissive to human xenografts. Mol Cancer Ther. 2018;17(11):2481–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  218. He D, Zhang J, Wu W, Yi N, He W, Lu P, et al. A novel immunodeficient rat model supports human lung cancer xenografts. FASEB J. 2019;33(1):140–50.

    CAS  PubMed  Google Scholar 

  219. Mashimo T, Takizawa A, Voigt B, Yoshimi K, Hiai H, Kuramoto T, et al. Generation of knockout rats with X-linked severe combined immunodeficiency (X-SCID) using zinc-finger nucleases. PLoS One. 2010;5(1):e8870.

    PubMed  PubMed Central  Google Scholar 

  220. Menoret S, Ouisse LH, Tesson L, Delbos F, Garnier D, Remy S, et al. Generation of Immunodeficient rats with Rag1 and Il2rg gene deletions and human tissue grafting models. Transplantation. 2018;102(8):1271–8.

    CAS  PubMed  Google Scholar 

  221. Abdul-Majeed S, Mell B, Nauli SM, Joe B. Cryptorchidism and infertility in rats with targeted disruption of the Adamts16 locus. PLoS One. 2014;9(7):e100967.

    PubMed  PubMed Central  Google Scholar 

  222. Yarbrough WG, Quarmby VE, Simental JA, Joseph DR, Sar M, Lubahn DB, et al. A single base mutation in the androgen receptor gene causes androgen insensitivity in the testicular feminized rat. J Biol Chem. 1990;265(15):8893–900.

    CAS  PubMed  Google Scholar 

  223. Ebihara C, Ebihara K, Aizawa-Abe M, Mashimo T, Tomita T, Zhao M, et al. Seipin is necessary for normal brain development and spermatogenesis in addition to adipogenesis. Hum Mol Genet. 2015;24(15):4238–49.

    CAS  PubMed  Google Scholar 

  224. Zhang C, Zhou Y, Xie S, Yin Q, Tang C, Ni Z, et al. CRISPR/Cas9-mediated genome editing reveals the synergistic effects of beta-defensin family members on sperm maturation in rat epididymis. FASEB J. 2018;32(3):1354–63.

    CAS  PubMed  Google Scholar 

  225. Kawai Y, Noguchi J, Akiyama K, Takeno Y, Fujiwara Y, Kajita S, et al. A missense mutation of the Dhh gene is associated with male pseudohermaphroditic rats showing impaired Leydig cell development. Reproduction. 2011;141(2):217–25.

    CAS  PubMed  Google Scholar 

  226. Rumi MA, Dhakal P, Kubota K, Chakraborty D, Lei T, Larson MA, et al. Generation of Esr1-knockout rats using zinc finger nuclease-mediated genome editing. Endocrinology. 2014;155(5):1991–9.

    PubMed  PubMed Central  Google Scholar 

  227. MAK R, Singh P, Roby KF, Zhao X, Iqbal K, Ratri A, et al. Defining the role of estrogen receptor beta in the regulation of female fertility. Endocrinology. 2017;158(7):2330–43.

    Google Scholar 

  228. Khristi V, Chakravarthi VP, Singh P, Ghosh S, Pramanik A, Ratri A, et al. ESR2 regulates granulosa cell genes essential for follicle maturation and ovulation. Mol Cell Endocrinol. 2018;474:214–26.

    CAS  PubMed  Google Scholar 

  229. Khristi V, Ghosh S, Chakravarthi VP, Wolfe MW, Rumi MAK. Transcriptome data analyses of prostatic hyperplasia in Esr2 knockout rats. Data Brief. 2019;24:103826.

    PubMed  PubMed Central  Google Scholar 

  230. Uenoyama Y, Nakamura S, Hayakawa Y, Ikegami K, Watanabe Y, Deura C, et al. Lack of pulse and surge modes and glutamatergic stimulation of luteinising hormone release in Kiss1 knockout rats. J Neuroendocrinol. 2015;27(3):187–97.

    CAS  PubMed  Google Scholar 

  231. Kobayashi T, Kobayashi H, Goto T, Takashima T, Oikawa M, Ikeda H, et al. Germline development in rat revealed by visualization and deletion of Prdm14. Development. 2020;147(4):dev183798.

    CAS  PubMed  Google Scholar 

  232. Liska F, Chylikova B, Janku M, Seda O, Vernerova Z, Pravenec M, et al. Splicing mutation in Sbf1 causes nonsyndromic male infertility in the rat. Reproduction. 2016;152(3):215–23.

    CAS  PubMed  Google Scholar 

  233. Ishishita S, Inui T, Matsuda Y, Serikawa T, Kitada K. Infertility associated with meiotic failure in the tremor rat (tm/tm) is caused by the deletion of spermatogenesis associated 22. Exp Anim. 2013;62(3):219–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Hayashi I, Hoshiko S, Makabe O, Oh-ishi S. A point mutation of alanine 163 to threonine is responsible for the defective secretion of high molecular weight kininogen by the liver of brown Norway Katholiek rats. J Biol Chem. 1993;268(23):17219–24.

    CAS  PubMed  Google Scholar 

  235. Kaschina E, Stoll M, Sommerfeld M, Steckelings UM, Kreutz R, Unger T. Genetic kininogen deficiency contributes to aortic aneurysm formation but not to atherosclerosis. Physiol Genomics. 2004;19(1):41–9.

    CAS  PubMed  Google Scholar 

  236. Mul JD, Nadra K, Jagalur NB, Nijman IJ, Toonen PW, Medard JJ, et al. A hypomorphic mutation in Lpin1 induces progressively improving neuropathy and lipodystrophy in the rat. J Biol Chem. 2011;286(30):26781–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Chabod M, Pedros C, Lamouroux L, Colacios C, Bernard I, Lagrange D, et al. A spontaneous mutation of the rat Themis gene leads to impaired function of regulatory T cells linked to inflammatory bowel disease. PLoS Genet. 2012;8(1):e1002461.

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Shaheen R, Hashem A, Abdel-Salam GM, Al-Fadhli F, Ewida N, Alkuraya FS. Mutations in CIT, encoding citron rho-interacting serine/threonine kinase, cause severe primary microcephaly in humans. Hum Genet. 2016;135(10):1191–7.

    CAS  PubMed  Google Scholar 

  239. van Boxtel R, Vroling B, Toonen P, Nijman IJ, van Roekel H, Verheul M, et al. Systematic generation of in vivo G protein-coupled receptor mutants in the rat. Pharmacogenomics J. 2011;11(5):326–36.

    PubMed  Google Scholar 

  240. Marsan E, Ishida S, Schramm A, Weckhuysen S, Muraca G, Lecas S, et al. Depdc5 knockout rat: a novel model of mTORopathy. Neurobiol Dis. 2016;89:180–9.

    CAS  PubMed  Google Scholar 

  241. Kunieda T, Simonaro CM, Yoshida M, Ikadai H, Levan G, Desnick RJ, et al. Mucopolysaccharidosis type VI in rats: isolation of cDNAs encoding arylsulfatase B, chromosomal localization of the gene, and identification of the mutation. Genomics. 1995;29(3):582–7.

    CAS  PubMed  Google Scholar 

  242. Eliyahu E, Wolfson T, Ge Y, Jepsen KJ, Schuchman EH, Simonaro CM. Anti-TNF-alpha therapy enhances the effects of enzyme replacement therapy in rats with mucopolysaccharidosis type VI. PLoS One. 2011;6(8):e22447.

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Yang X, Lu D, Zhang X, Chen W, Gao S, Dong W, et al. Knockout of ISCA1 causes early embryonic death in rats. Animal Model Exp Med. 2019;2(1):18–24.

    PubMed  PubMed Central  Google Scholar 

  244. Fan F, Geurts AM, Pabbidi MR, Smith SV, Harder DR, Jacob H, et al. Zinc-finger nuclease knockout of dual-specificity protein phosphatase-5 enhances the myogenic response and autoregulation of cerebral blood flow in FHH.1BN rats. PLoS One. 2014;9(11):e112878.

    PubMed  PubMed Central  Google Scholar 

  245. Zigler JS Jr, Hodgkinson CA, Wright M, Klise A, Sundin O, Broman KW, et al. A spontaneous missense mutation in branched chain Keto acid dehydrogenase kinase in the rat affects both the central and peripheral nervous systems. PLoS One. 2016;11(7):e0160447.

    PubMed  PubMed Central  Google Scholar 

  246. Xu J, Zhang L, Xie M, Li Y, Huang P, Saunders TL, et al. Role of complement in a rat model of paclitaxel-induced peripheral neuropathy. J Immunol. 2018;200(12):4094–101.

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Asahina M, Fujinawa R, Nakamura S, Yokoyama K, Tozawa R, Suzuki T. Ngly1−/− rats develop neurodegenerative phenotypes and pathological abnormalities in their peripheral and central nervous systems. Hum Mol Genet. 2020.

  248. Wiedemann T, Bielohuby M, Muller TD, Bidlingmaier M, Pellegata NS. Obesity in MENX rats is accompanied by high circulating levels of ghrelin and improved insulin sensitivity. Diabetes. 2016;65(2):406–20.

    CAS  PubMed  Google Scholar 

  249. Aizawa-Abe M, Ebihara K, Ebihara C, Mashimo T, Takizawa A, Tomita T, et al. Generation of leptin-deficient Lepmkyo/Lepmkyo rats and identification of leptin-responsive genes in the liver. Physiol Genomics. 2013;45(17):786–93.

    CAS  PubMed  Google Scholar 

  250. Vaira S, Yang C, McCoy A, Keys K, Xue S, Weinstein EJ, et al. Creation and preliminary characterization of a leptin knockout rat. Endocrinology. 2012;153(11):5622–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Wu-Peng XS, Chua SC Jr, Okada N, Liu SM, Nicolson M, Leibel RL. Phenotype of the obese Koletsky (f) rat due to Tyr763Stop mutation in the extracellular domain of the leptin receptor (Lepr): evidence for deficient plasma-to-CSF transport of leptin in both the Zucker and Koletsky obese rat. Diabetes. 1997;46(3):513–8.

    CAS  PubMed  Google Scholar 

  252. Chua SC Jr, White DW, Wu-Peng XS, Liu SM, Okada N, Kershaw EE, et al. Phenotype of fatty due to Gln269Pro mutation in the leptin receptor (Lepr). Diabetes. 1996;45(8):1141–3.

    CAS  PubMed  Google Scholar 

  253. Bao D, Ma Y, Zhang X, Guan F, Chen W, Gao K, et al. Preliminary characterization of a leptin receptor knockout rat created by CRISPR/Cas9 system. Sci Rep. 2015;5:15942.

    PubMed  PubMed Central  Google Scholar 

  254. Mul JD, van Boxtel R, Bergen DJ, Brans MA, Brakkee JH, Toonen PW, et al. Melanocortin receptor 4 deficiency affects body weight regulation, grooming behavior, and substrate preference in the rat. Obesity (Silver Spring). 2012;20(3):612–21.

    CAS  Google Scholar 

  255. Katayama K, Sasaki T, Goto S, Ogasawara K, Maru H, Suzuki K, et al. Insertional mutation in the Golgb1 gene is associated with osteochondrodysplasia and systemic edema in the OCD rat. Bone. 2011;49(5):1027–36.

    CAS  PubMed  Google Scholar 

  256. Van Wesenbeeck L, Odgren PR, Coxon FP, Frattini A, Moens P, Perdu B, et al. Involvement of PLEKHM1 in osteoclastic vesicular transport and osteopetrosis in incisors absent rats and humans. J Clin Invest. 2007;117(4):919–30.

    PubMed  PubMed Central  Google Scholar 

  257. Ubels JL, Diegel CR, Foxa GE, Ethen NJ, Lensing JN, Madaj ZB, et al. Low-density lipoprotein receptor-related protein 5 (LRP5)-deficient rats have reduced bone mass and abnormal development of the retinal vasculature. bioRxiv. 2020.

  258. Baptista MA, Dave KD, Frasier MA, Sherer TB, Greeley M, Beck MJ, et al. Loss of leucine-rich repeat kinase 2 (LRRK2) in rats leads to progressive abnormal phenotypes in peripheral organs. PLoS One. 2013;8(11):e80705.

    PubMed  PubMed Central  Google Scholar 

  259. Ness D, Ren Z, Gardai S, Sharpnack D, Johnson VJ, Brennan RJ, et al. Leucine-rich repeat kinase 2 (LRRK2)-deficient rats exhibit renal tubule injury and perturbations in metabolic and immunological homeostasis. PLoS One. 2013;8(6):e66164.

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Rouillard C, Baillargeon J, Paquet B, St-Hilaire M, Maheux J, Levesque C, et al. Genetic disruption of the nuclear receptor Nur77 (Nr4a1) in rat reduces dopamine cell loss and l-Dopa-induced dyskinesia in experimental Parkinson's disease. Exp Neurol. 2018;304:143–53.

    CAS  PubMed  Google Scholar 

  261. Sun J, Kouranova E, Cui X, Mach RH, Xu J. Regulation of dopamine presynaptic markers and receptors in the striatum of DJ-1 and Pink1 knockout rats. Neurosci Lett. 2013;557 Pt B:123–8.

    PubMed  Google Scholar 

  262. Dave KD, De Silva S, Sheth NP, Ramboz S, Beck MJ, Quang C, et al. Phenotypic characterization of recessive gene knockout rat models of Parkinson’s disease. Neurobiol Dis. 2014;70:190–203.

    CAS  PubMed  Google Scholar 

  263. Villeneuve LM, Purnell PR, Boska MD, Fox HS. Early expression of Parkinson’s disease-related mitochondrial abnormalities in PINK1 knockout rats. Mol Neurobiol. 2016;53(1):171–86.

    CAS  PubMed  Google Scholar 

  264. Guatteo E, Rizzo FR, Federici M, Cordella A, Ledonne A, Latini L, et al. Functional alterations of the dopaminergic and glutamatergic systems in spontaneous alpha-synuclein overexpressing rats. Exp Neurol. 2017;287(Pt 1):21–33.

    CAS  PubMed  Google Scholar 

  265. Stoica G, Lungu G, Bjorklund NL, Taglialatela G, Zhang X, Chiu V, et al. Potential role of alpha-synuclein in neurodegeneration: studies in a rat animal model. J Neurochem. 2012;122(4):812–22.

    CAS  PubMed  Google Scholar 

  266. Kuramoto T, Gohma H, Kimura K, Wedekind D, Hedrich HJ, Serikawa T. The rat pink-eyed dilution (p) mutation: an identical intragenic deletion in pink-eye dilute-coat strains and several Wistar-derived albino strains. Mamm Genome. 2005;16(9):712–9.

    CAS  PubMed  Google Scholar 

  267. Brown JH, Bihoreau MT, Hoffmann S, Kranzlin B, Tychinskaya I, Obermuller N, et al. Missense mutation in sterile alpha motif of novel protein SamCystin is associated with polycystic kidney disease in (cy/+) rat. J Am Soc Nephrol. 2005;16(12):3517–26.

    CAS  PubMed  Google Scholar 

  268. Neudecker S, Walz R, Menon K, Maier E, Bihoreau MT, Obermuller N, et al. Transgenic overexpression of Anks6(p.R823W) causes polycystic kidney disease in rats. Am J Pathol. 2010;177(6):3000–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  269. Hoff S, Halbritter J, Epting D, Frank V, Nguyen TM, van Reeuwijk J, et al. ANKS6 is a central component of a nephronophthisis module linking NEK8 to INVS and NPHP3. Nat Genet. 2013;45(8):951–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  270. McCooke JK, Appels R, Barrero RA, Ding A, Ozimek-Kulik JE, Bellgard MI, et al. A novel mutation causing nephronophthisis in the Lewis polycystic kidney rat localises to a conserved RCC1 domain in Nek8. BMC Genomics. 2012;13:393.

    CAS  PubMed  PubMed Central  Google Scholar 

  271. Arkhipov SN, Potter DL, Geurts AM, Pavlov TS. Knockout of P2rx7 purinergic receptor attenuates cyst growth in a rat model of ARPKD. Am J Physiol Renal Physiol. 2019;317(6):F1649–F55.

    PubMed  Google Scholar 

  272. Ward CJ, Hogan MC, Rossetti S, Walker D, Sneddon T, Wang X, et al. The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein. Nat Genet. 2002;30(3):259–69.

    PubMed  Google Scholar 

  273. Smith UM, Consugar M, Tee LJ, McKee BM, Maina EN, Whelan S, et al. The transmembrane protein meckelin (MKS3) is mutated in Meckel-Gruber syndrome and the wpk rat. Nat Genet. 2006;38(2):191–6.

    CAS  PubMed  Google Scholar 

  274. Liska F, Snajdr P, Sedova L, Seda O, Chylikova B, Slamova P, et al. Deletion of a conserved noncoding sequence in Plzf intron leads to Plzf down-regulation in limb bud and polydactyly in the rat. Dev Dyn. 2009;238(3):673–84.

    CAS  PubMed  Google Scholar 

  275. Liska F, Peterkova R, Peterka M, Landa V, Zidek V, Mlejnek P, et al. Targeting of the Plzf gene in the rat by transcription activator-like effector nuclease results in caudal regression syndrome in spontaneously hypertensive rats. PLoS One. 2016;11(10):e0164206.

    PubMed  PubMed Central  Google Scholar 

  276. Li Q, Kingman J, van de Wetering K, Tannouri S, Sundberg JP, Uitto J. Abcc6 knockout Rat model highlights the role of liver in PPi homeostasis in pseudoxanthoma Elasticum. J Invest Dermatol. 2017;137(5):1025–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  277. Yu D, Zhong Y, Li X, Li Y, Li X, Cao J, et al. Generation of TALEN-mediated FH knockout rat model. Oncotarget. 2016;7(38):61656–69.

    PubMed  PubMed Central  Google Scholar 

  278. D’Cruz PM, Yasumura D, Weir J, Matthes MT, Abderrahim H, LaVail MM, et al. Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum Mol Genet. 2000;9(4):645–51.

    PubMed  Google Scholar 

  279. Ostergaard E, Duno M, Batbayli M, Vilhelmsen K, Rosenberg T. A novel MERTK deletion is a common founder mutation in the Faroe Islands and is responsible for a high proportion of retinitis pigmentosa cases. Mol Vis. 2011;17:1485–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  280. Vollrath D, Feng W, Duncan JL, Yasumura D, D’Cruz PM, Chappelow A, et al. Correction of the retinal dystrophy phenotype of the RCS rat by viral gene transfer of Mertk. Proc Natl Acad Sci U S A. 2001;98(22):12584–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  281. Zhao M, Andrieu-Soler C, Kowalczuk L, Paz Cortes M, Berdugo M, Dernigoghossian M, et al. A new CRB1 rat mutation links Muller glial cells to retinal telangiectasia. J Neurosci. 2015;35(15):6093–106.

    CAS  PubMed  PubMed Central  Google Scholar 

  282. Yeo JH, Jung BK, Lee H, Baek IJ, Sung YH, Shin HS, et al. Development of a Pde6b gene knockout rat model for studies of degenerative retinal diseases. Invest Ophthalmol Vis Sci. 2019;60(5):1519–26.

    CAS  PubMed  Google Scholar 

  283. Patterson KC, Hawkins VE, Arps KM, Mulkey DK, Olsen ML. MeCP2 deficiency results in robust Rett-like behavioural and motor deficits in male and female rats. Hum Mol Genet. 2016;25(24):5514–5.

    CAS  PubMed  Google Scholar 

  284. Patterson KC, Hawkins VE, Arps KM, Mulkey DK, Olsen ML. MeCP2 deficiency results in robust Rett-like behavioural and motor deficits in male and female rats. Hum Mol Genet. 2016;25(15):3303–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  285. Wu Y, Zhong W, Cui N, Johnson CM, Xing H, Zhang S, et al. Characterization of Rett syndrome-like phenotypes in Mecp2-knockout rats. J Neurodev Disord. 2016;8:23.

    PubMed  PubMed Central  Google Scholar 

  286. Nishikawa M, Yasuda K, Takamatsu M, Abe K, Okamoto K, Horibe K, et al. Generation of novel genetically modified rats to reveal the molecular mechanisms of vitamin D actions. Sci Rep. 2020;10(1):5677.

    CAS  PubMed  PubMed Central  Google Scholar 

  287. Chen J, Batta A, Zheng S, Fitzgibbon WR, Ullian ME, Yu H, et al. The missense mutation in Abcg5 gene in spontaneously hypertensive rats (SHR) segregates with phytosterolemia but not hypertension. BMC Genet. 2005;6:40.

    PubMed  PubMed Central  Google Scholar 

  288. Umeda T, Takashima N, Nakagawa R, Maekawa M, Ikegami S, Yoshikawa T, et al. Evaluation of Pax6 mutant rat as a model for autism. PLoS One. 2010;5(12):e15500.

    CAS  PubMed  PubMed Central  Google Scholar 

  289. Matsuo T, Osumi-Yamashita N, Noji S, Ohuchi H, Koyama E, Myokai F, et al. A mutation in the Pax-6 gene in rat small eye is associated with impaired migration of midbrain crest cells. Nat Genet. 1993;3(4):299–304.

    CAS  PubMed  Google Scholar 

  290. Abe K, Takamatsu N, Ishikawa K, Tsurumi T, Tanimoto S, Sakurai Y, et al. Novel ENU-induced mutation in Tbx6 causes dominant spondylocostal dysostosis-like vertebral malformations in the rat. PLoS One. 2015;10(6):e0130231.

    PubMed  PubMed Central  Google Scholar 

  291. Suzuki H, Ito Y, Shinohara M, Yamashita S, Ichinose S, Kishida A, et al. Gene targeting of the transcription factor Mohawk in rats causes heterotopic ossification of Achilles tendon via failed tenogenesis. Proc Natl Acad Sci U S A. 2016;113(28):7840–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  292. Northrup E, Zschemisch NH, Eisenblatter R, Glage S, Wedekind D, Cuppen E, et al. The ter mutation in the rat Dnd1 gene initiates gonadal teratomas and infertility in both genders. PLoS One. 2012;7(5):e38001.

    CAS  PubMed  PubMed Central  Google Scholar 

  293. Asano A, Tsubomatsu K, Jung CG, Sasaki N, Agui T. A deletion mutation of the protein tyrosine phosphatase kappa (Ptprk) gene is responsible for T-helper immunodeficiency (thid) in the LEC rat. Mamm Genome. 2007;18(11):779–86.

    CAS  PubMed  Google Scholar 

  294. Kose H, Sakai T, Tsukumo S, Wei K, Yamada T, Yasutomo K, et al. Maturational arrest of thymocyte development is caused by a deletion in the receptor-like protein tyrosine phosphatase kappa gene in LEC rats. Genomics. 2007;89(6):673–7.

    CAS  PubMed  Google Scholar 

  295. Van Wesenbeeck L, Odgren PR, MacKay CA, D’Angelo M, Safadi FF, Popoff SN, et al. The osteopetrotic mutation toothless (tl) is a loss-of-function frameshift mutation in the rat Csf1 gene: evidence of a crucial role for CSF-1 in osteoclastogenesis and endochondral ossification. Proc Natl Acad Sci U S A. 2002;99(22):14303–8.

    PubMed  PubMed Central  Google Scholar 

  296. Dobbins DE, Sood R, Hashiramoto A, Hansen CT, Wilder RL, Remmers EF. Mutation of macrophage colony stimulating factor (Csf1) causes osteopetrosis in the tl rat. Biochem Biophys Res Commun. 2002;294(5):1114–20.

    CAS  PubMed  Google Scholar 

  297. Taguchi K, Takaku M, Egner PA, Morita M, Kaneko T, Mashimo T, et al. Generation of a new model rat: Nrf2 knockout rats are sensitive to aflatoxin B1 toxicity. Toxicol Sci. 2016;152(1):40–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  298. Newman ZL, Printz MP, Liu S, Crown D, Breen L, Miller-Randolph S, et al. Susceptibility to anthrax lethal toxin-induced rat death is controlled by a single chromosome 10 locus that includes rNlrp1. PLoS Pathog. 2010;6(5):e1000906.

    PubMed  PubMed Central  Google Scholar 

  299. Cirelli KM, Gorfu G, Hassan MA, Printz M, Crown D, Leppla SH, et al. Inflammasome sensor NLRP1 controls rat macrophage susceptibility to toxoplasma gondii. PLoS Pathog. 2014;10(3):e1003927.

    PubMed  PubMed Central  Google Scholar 

  300. Kitada K, Akimitsu T, Shigematsu Y, Kondo A, Maihara T, Yokoi N, et al. Accumulation of N-acetyl-L-aspartate in the brain of the tremor rat, a mutant exhibiting absence-like seizure and spongiform degeneration in the central nervous system. J Neurochem. 2000;74(6):2512–9.

    CAS  PubMed  Google Scholar 

  301. Nishitani A, Nagayoshi H, Takenaka S, Asano M, Shimizu S, Ohno Y, et al. Involvement of NMDA receptors in tremor expression in Aspa/Hcn1 double-knockout rats. Exp Anim. 2020; https://doi.org/10.1538/expanim.20-0025.

  302. Kuramoto T, Kitada K, Inui T, Sasaki Y, Ito K, Hase T, et al. Attractin/mahogany/zitter plays a critical role in myelination of the central nervous system. Proc Natl Acad Sci U S A. 2001;98(2):559–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  303. Kuwamura M, Maeda M, Kuramoto T, Kitada K, Kanehara T, Moriyama M, et al. The myelin vacuolation (mv) rat with a null mutation in the attractin gene. Lab Investig. 2002;82(10):1279–86.

    CAS  PubMed  Google Scholar 

  304. Tanaka M, Izawa T, Yamate J, Franklin RJ, Kuramoto T, Serikawa T, et al. The VF rat with abnormal myelinogenesis has a mutation in Dopey1. Glia. 2014;62(9):1530–42.

    PubMed  Google Scholar 

  305. Kuramoto T, Yokoe M, Kunisawa N, Ohashi K, Miyake T, Higuchi Y, et al. Tremor dominant Kyoto (Trdk) rats carry a missense mutation in the gene encoding the SK2 subunit of small-conductance Ca(2+)-activated K(+) channel. Brain Res. 1676;2017:38–45.

    Google Scholar 

  306. Samanas NB, Commers TW, Dennison KL, Harenda QE, Kurz SG, Lachel CM, et al. Genetic etiology of renal agenesis: fine mapping of Renag1 and identification of kit as the candidate functional gene. PLoS One. 2015;10(2):e0118147.

    PubMed  PubMed Central  Google Scholar 

  307. Arab S, Miyazaki A, Hoang Trung H, Yokoe M, Nakagawa Y, Kaneko T, et al. Long terminal repeat insertion in Kit causes unilateral renal agenesis in rats. Transl Regul Sci. 2020;2(1):30–5.

    Google Scholar 

  308. Rost S, Fregin A, Ivaskevicius V, Conzelmann E, Hortnagel K, Pelz HJ, et al. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature. 2004;427(6974):537–41.

    CAS  PubMed  Google Scholar 

  309. Li T, Chang CY, Jin DY, Lin PJ, Khvorova A, Stafford DW. Identification of the gene for vitamin K epoxide reductase. Nature. 2004;427(6974):541–4.

    CAS  PubMed  Google Scholar 

  310. Sasaki N, Hayashizaki Y, Muramatsu M, Matsuda Y, Ando Y, Kuramoto T, et al. The gene responsible for LEC hepatitis, located on rat chromosome 16, is the homolog to the human Wilson disease gene. Biochem Biophys Res Commun. 1994;202(1):512–8.

    CAS  PubMed  Google Scholar 

  311. Wu J, Forbes JR, Chen HS, Cox DW. The LEC rat has a deletion in the copper transporting ATPase gene homologous to the Wilson disease gene. Nat Genet. 1994;7(4):541–5.

    CAS  PubMed  Google Scholar 

  312. Plaas M, Seppa K, Reimets R, Jagomae T, Toots M, Koppel T, et al. Wfs1- deficient rats develop primary symptoms of Wolfram syndrome: insulin-dependent diabetes, optic nerve atrophy and medullary degeneration. Sci Rep. 2017;7(1):10220.

    PubMed  PubMed Central  Google Scholar 

  313. Toots M, Seppa K, Jagomae T, Koppel T, Pallase M, Heinla I, et al. Preventive treatment with liraglutide protects against development of glucose intolerance in a rat model of Wolfram syndrome. Sci Rep. 2018;8(1):10183.

    PubMed  PubMed Central  Google Scholar 

  314. Nakagawa H, Matsubara S, Kuriyama M, Yoshidome H, Fujiyama J, Yoshida H, et al. Cloning of rat lysosomal acid lipase cDNA and identification of the mutation in the rat model of Wolman’s disease. J Lipid Res. 1995;36(10):2212–8.

    CAS  PubMed  Google Scholar 

  315. Spence JP, Reiter JL, Qiu B, Gu H, Garcia DK, Zhang L, et al. Estrogen-dependent upregulation of Adcyap1r1 expression in nucleus Accumbens is associated with genetic predisposition of sex-specific QTL for alcohol consumption on rat chromosome 4. Front Genet. 2018;9:513.

    CAS  PubMed  PubMed Central  Google Scholar 

  316. Zhou Z, Karlsson C, Liang T, Xiong W, Kimura M, Tapocik JD, et al. Loss of metabotropic glutamate receptor 2 escalates alcohol consumption. Proc Natl Acad Sci U S A. 2013;110(42):16963–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  317. Wood CM, Nicolas CS, Choi SL, Roman E, Nylander I, Fernandez-Teruel A, et al. Prevalence and influence of cys407* Grm2 mutation in Hannover-derived Wistar rats: mGlu2 receptor loss links to alcohol intake, risk taking and emotional behaviour. Neuropharmacology. 2017;115:128–38.

    CAS  PubMed  Google Scholar 

  318. Ding ZM, Ingraham CM, Hauser SR, Lasek AW, Bell RL, McBride WJ. Reduced levels of mGlu2 receptors within the Prelimbic cortex are not associated with elevated glutamate transmission or high alcohol drinking. Alcohol Clin Exp Res. 2017;41(11):1896–906.

    CAS  PubMed  PubMed Central  Google Scholar 

  319. Yong W, Spence JP, Eskay R, Fitz SD, Damadzic R, Lai D, et al. Alcohol-preferring rats show decreased corticotropin-releasing hormone-2 receptor expression and differences in HPA activation compared to alcohol-nonpreferring rats. Alcohol Clin Exp Res. 2014;38(5):1275–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  320. Lo CL, Lossie AC, Liang T, Liu Y, Xuei X, Lumeng L, et al. High resolution genomic scans reveal genetic architecture controlling alcohol preference in bidirectionally selected rat model. PLoS Genet. 2016;12(8):e1006178.

    PubMed  PubMed Central  Google Scholar 

  321. Qiu B, Bell RL, Cao Y, Zhang L, Stewart RB, Graves T, et al. Npy deletion in an alcohol non-preferring rat model elicits differential effects on alcohol consumption and body weight. J Genet Genomics. 2016;43(7):421–30.

    PubMed  PubMed Central  Google Scholar 

  322. Izumi R, Kusakabe T, Noguchi M, Iwakura H, Tanaka T, Miyazawa T, et al. CRISPR/Cas9-mediated Angptl8 knockout suppresses plasma triglyceride concentrations and adiposity in rats. J Lipid Res. 2018;59(9):1575–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  323. Zhou LB, Zheng YM, Liao WJ, Song LJ, Meng X, Gong X, et al. MUC1 deficiency promotes nasal epithelial barrier dysfunction in subjects with allergic rhinitis. J Allergy Clin Immunol. 2019;144(6):1716–9.e5.

    CAS  PubMed  Google Scholar 

  324. Exner EC, Geurts AM, Hoffmann BR, Casati M, Stodola T, Dsouza NR, et al. Interaction between Mas1 and AT1RA contributes to enhancement of skeletal muscle angiogenesis by angiotensin-(1-7) in Dahl salt-sensitive rats. PLoS One. 2020;15(4):e0232067.

    CAS  PubMed  PubMed Central  Google Scholar 

  325. Wang M, Sips P, Khin E, Rotival M, Sun X, Ahmed R, et al. Wars2 is a determinant of angiogenesis. Nat Commun. 2016;7:12061.

    CAS  PubMed  PubMed Central  Google Scholar 

  326. Falak S, Schafer S, Baud A, Hummel O, Schulz H, Gauguier D, et al. Protease inhibitor 15, a candidate gene for abdominal aortic internal elastic lamina ruptures in the rat. Physiol Genomics. 2014;46(12):418–28.

    PubMed  PubMed Central  Google Scholar 

  327. Swanberg M, Lidman O, Padyukov L, Eriksson P, Akesson E, Jagodic M, et al. MHC2TA is associated with differential MHC molecule expression and susceptibility to rheumatoid arthritis, multiple sclerosis and myocardial infarction. Nat Genet. 2005;37(5):486–94.

    CAS  PubMed  Google Scholar 

  328. Lorentzen JC, Flornes L, Eklow C, Backdahl L, Ribbhammar U, Guo JP, et al. Association of arthritis with a gene complex encoding C-type lectin-like receptors. Arthritis Rheum. 2007;56(8):2620–32.

    CAS  PubMed  Google Scholar 

  329. Rintisch C, Kelkka T, Norin U, Lorentzen JC, Olofsson P, Holmdahl R. Finemapping of the arthritis QTL Pia7 reveals co-localization with Oia2 and the APLEC locus. Genes Immun. 2010;11(3):239–45.

    CAS  PubMed  Google Scholar 

  330. Backdahl L, Ekman D, Jagodic M, Olsson T, Holmdahl R. Identification of candidate risk gene variations by whole-genome sequence analysis of four rat strains commonly used in inflammation research. BMC Genomics. 2014;15:391.

    PubMed  PubMed Central  Google Scholar 

  331. Backdahl L, Aoun M, Norin U, Holmdahl R. Identification of Clec4b as a novel regulator of bystander activation of auto-reactive T cells and autoimmune disease. PLoS Genet. 2020;16(6):e1008788.

    PubMed  PubMed Central  Google Scholar 

  332. Liu F, Shen X, Su S, Cui H, Fang Y, Wang T, et al. FcgammaRI-coupled signaling in peripheral nociceptors mediates joint pain in a rat model of rheumatoid arthritis. Arthritis Rheumatol. 2020; https://doi.org/10.1002/art.41386.

  333. Li H, Guan SB, Lu Y, Wang F, Liu YH, Liu QY. Genetic deletion of GIT2 prolongs functional recovery and suppresses chondrocyte differentiation in rats with rheumatoid arthritis. J Cell Biochem. 2018;119(2):1538–47.

    CAS  PubMed  Google Scholar 

  334. Li H, Jiang W, Ye S, Zhou M, Liu C, Yang X, et al. P2Y14 receptor has a critical role in acute gouty arthritis by regulating pyroptosis of macrophages. Cell Death Dis. 2020;11(5):394.

    CAS  PubMed  PubMed Central  Google Scholar 

  335. Laragione T, Brenner M, Lahiri A, Gao E, Harris C, Gulko PS. Huntingtin-interacting protein 1 (HIP1) regulates arthritis severity and synovial fibroblast invasiveness by altering PDGFR and Rac1 signalling. Ann Rheum Dis. 2018;77(11):1627–35.

    CAS  PubMed  Google Scholar 

  336. Hultqvist M, Sareila O, Vilhardt F, Norin U, Olsson LM, Olofsson P, et al. Positioning of a polymorphic quantitative trait nucleotide in the Ncf1 gene controlling oxidative burst response and arthritis severity in rats. Antioxid Redox Signal. 2011;14(12):2373–83.

    CAS  PubMed  Google Scholar 

  337. Olofsson P, Holmberg J, Tordsson J, Lu S, Akerstrom B, Holmdahl R. Positional identification of Ncf1 as a gene that regulates arthritis severity in rats. Nat Genet. 2003;33(1):25–32.

    CAS  PubMed  Google Scholar 

  338. Yau AC, Tuncel J, Haag S, Norin U, Houtman M, Padyukov L, et al. Conserved 33-kb haplotype in the MHC class III region regulates chronic arthritis. Proc Natl Acad Sci U S A. 2016;113(26):E3716–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  339. Yau ACY, Tuncel J, Holmdahl R. The major histocompatibility complex class III haplotype Ltab-Ncr3 regulates adjuvant-induced but not antigen-induced autoimmunity. Am J Pathol. 2017;187(5):987–98.

    CAS  PubMed  Google Scholar 

  340. Haag S, Tuncel J, Thordardottir S, Mason DE, Yau AC, Dobritzsch D, et al. Positional identification of RT1-B (HLA-DQ) as susceptibility locus for autoimmune arthritis. J Immunol. 2015;194(6):2539–50.

    CAS  PubMed  Google Scholar 

  341. Guerreiro-Cacais AO, Norin U, Gyllenberg A, Berglund R, Beyeen AD, Rheumatoid Arthritis Consortium I, et al. VAV1 regulates experimental autoimmune arthritis and is associated with anti-CCP negative rheumatoid arthritis. Genes Immun. 2017;18(1):48–56.

    CAS  PubMed  Google Scholar 

  342. Reese RM, Dourado M, Anderson K, Warming S, Stark KL, Balestrini A, et al. Behavioral characterization of a CRISPR-generated TRPA1 knockout rat in models of pain, itch, and asthma. Sci Rep. 2020;10(1):979.

    CAS  PubMed  PubMed Central  Google Scholar 

  343. Xu Y, Zhao XM, Liu J, Wang YY, Xiong LL, He XY, et al. Complexin I knockout rats exhibit a complex neurobehavioral phenotype including profound ataxia and marked deficits in lifespan. Pflugers Arch. 2020;472(1):117–33.

    CAS  PubMed  Google Scholar 

  344. Serikawa T, Kunisawa N, Shimizu S, Kato M, Alves Iha H, Kinboshi M, et al. Increased seizure sensitivity, emotional defects and cognitive impairment in PHD finger protein 24 (Phf24)-null rats. Behav Brain Res. 2019;369:111922.

    CAS  PubMed  Google Scholar 

  345. Regan SL, Hufgard JR, Pitzer EM, Sugimoto C, Hu YC, Williams MT, et al. Knockout of latrophilin-3 in Sprague-Dawley rats causes hyperactivity, hyper-reactivity, under-response to amphetamine, and disrupted dopamine markers. Neurobiol Dis. 2019;130:104494.

    CAS  PubMed  Google Scholar 

  346. Regan SL, Cryan MT, Williams MT, Vorhees CV, Ross AE. Enhanced transient striatal dopamine release and reuptake in Lphn3 knockout rats. ACS Chem Neurosci. 2020;11(8):1171–7.

    CAS  PubMed  Google Scholar 

  347. Peeters DGA, de Boer SF, Terneusen A, Newman-Tancredi A, Varney MA, Verkes RJ, et al. Enhanced aggressive phenotype of Tph2 knockout rats is associated with diminished 5-HT1A receptor sensitivity. Neuropharmacology. 2019;153:134–41.

    CAS  PubMed  Google Scholar 

  348. Schroeder M, Weller A. Anxiety-like behavior and locomotion in CCK1 knockout rats as a function of strain, sex and early maternal environment. Behav Brain Res. 2010;211(2):198–207.

    CAS  PubMed  Google Scholar 

  349. Nivard MG, Mbarek H, Hottenga JJ, Smit JH, Jansen R, Penninx BW, et al. Further confirmation of the association between anxiety and CTNND2: replication in humans. Genes Brain Behav. 2014;13(2):195–201.

    CAS  PubMed  Google Scholar 

  350. Baud A, Flint J, Fernadez-Teruel A, TRGSM C. Identification of genetic variants underlying anxiety and multiple sclerosis in heterogeneous stock rats. World J Neurosci. 2014;4:216–24.

    Google Scholar 

  351. Olivier JD, Van Der Hart MG, Van Swelm RP, Dederen PJ, Homberg JR, Cremers T, et al. A study in male and female 5-HT transporter knockout rats: an animal model for anxiety and depression disorders. Neuroscience. 2008;152(3):573–84.

    CAS  PubMed  Google Scholar 

  352. van der Doelen RHA, Robroch B, Arnoldussen IA, Schulpen M, Homberg JR, Kozicz T. Serotonin and urocortin 1 in the dorsal raphe and Edinger-Westphal nuclei after early life stress in serotonin transporter knockout rats. Neuroscience. 2017;340:345–58.

    PubMed  Google Scholar 

  353. Rutten K, De Vry J, Bruckmann W, Tzschentke TM. Pharmacological blockade or genetic knockout of the NOP receptor potentiates the rewarding effect of morphine in rats. Drug Alcohol Depend. 2011;114(2–3):253–6.

    CAS  PubMed  Google Scholar 

  354. Rizzi A, Molinari S, Marti M, Marzola G, Calo G. Nociceptin/orphanin FQ receptor knockout rats: in vitro and in vivo studies. Neuropharmacology. 2011;60(4):572–9.

    CAS  PubMed  Google Scholar 

  355. Esclassan F, Francois J, Phillips KG, Loomis S, Gilmour G. Phenotypic characterization of nonsocial behavioral impairment in neurexin 1alpha knockout rats. Behav Neurosci. 2015;129(1):74–85.

    CAS  PubMed  Google Scholar 

  356. Homberg JR, Olivier JD, VandenBroeke M, Youn J, Ellenbroek AK, Karel P, et al. The role of the dopamine D1 receptor in social cognition: studies using a novel genetic rat model. Dis Model Mech. 2016;9(10):1147–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  357. Leo D, Sukhanov I, Gainetdinov RR. Novel translational rat models of dopamine transporter deficiency. Neural Regen Res. 2018;13(12):2091–3.

    PubMed  PubMed Central  Google Scholar 

  358. Vengeliene V, Bespalov A, Rossmanith M, Horschitz S, Berger S, Relo AL, et al. Towards trans-diagnostic mechanisms in psychiatry: neurobehavioral profile of rats with a loss-of-function point mutation in the dopamine transporter gene. Dis Model Mech. 2017;10(4):451–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  359. Rasmus KC, O’Neill CE, Bachtell RK, Cooper DC. Cocaine self-administration in rats lacking a functional trpc4 gene. F1000Res. 2013;2:110.

    PubMed  PubMed Central  Google Scholar 

  360. Sun H, Fu S, Cui S, Yin X, Sun X, Qi X, et al. Development of a CRISPR-SaCas9 system for projection- and function-specific gene editing in the rat brain. Sci Adv. 2020;6(12):eaay6687.

    PubMed  PubMed Central  Google Scholar 

  361. Ma L, Chen X, Zhao B, Shi Y, Han F. Enhanced apoptosis and decreased AMPA receptors are involved in deficit in fear memory in Rin1 knockout rats. J Affect Disord. 2020; in press.

  362. Scheimann JR, Moloney RD, Mahbod P, Morano RL, Fitzgerald M, Hoskins O, et al. Conditional deletion of glucocorticoid receptors in rat brain results in sex-specific deficits in fear and coping behaviors. Elife. 2019;8:e44672.

    CAS  PubMed  PubMed Central  Google Scholar 

  363. Barnett BR, Torres-Velazquez M, Yi SY, Rowley PA, Sawin EA, Rubinstein CD, et al. Sex-specific deficits in neurite density and white matter integrity are associated with targeted disruption of exon 2 of the Disc1 gene in the rat. Transl Psychiatry. 2019;9(1):82.

    PubMed