World Health Organization. Global status report on alcohol and health 2014. Geneva: WHO Press; 2014.
Rehm J. The risks associated with alcohol use and alcoholism. Alcohol Res Health. 2011;34:135–43.
PubMed
PubMed Central
Google Scholar
Rehm J, Shield KD. Global alcohol-attributable deaths from cancer, liver cirrhosis, and injury in 2010. Alcohol Res. 2013;35:174–83.
PubMed
Google Scholar
Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, Amann M, Anderson HR, Andrews KG, Aryee M, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2224–60.
Article
PubMed
PubMed Central
Google Scholar
Gilmore W, Chikritzhs T, Stockwell T, Jernigan D, Naimi T, Gilmore I. Alcohol: taking a population perspective. Nat Rev Gastroenterol Hepatol. 2016;13:426–34.
Article
CAS
PubMed
Google Scholar
Hsu WL. The economic costs attributable to alcohol consumption in Taiwan. Taipei: National Yang-Ming University; 2012. 204.
Google Scholar
Kanda H, Okamura T. The economic and medical costs of alcohol consumption in Japan. West Indian Med J. 2013;62:785–6.
CAS
PubMed
Google Scholar
Bagnardi V, Rota M, Botteri E, Tramacere I, Islami F, Fedirko V, Scotti L, Jenab M, Turati F, Pasquali E, et al. Alcohol consumption and site-specific cancer risk: a comprehensive dose-response meta-analysis. Br J Cancer. 2015;112:580–93.
Article
CAS
PubMed
Google Scholar
Hashibe M, Brennan P, Chuang SC, Boccia S, Castellsague X, Chen C, Curado MP, Dal Maso L, Daudt AW, Fabianova E, et al. Interaction between tobacco and alcohol use and the risk of head and neck cancer: pooled analysis in the International Head and Neck Cancer Epidemiology Consortium. Cancer Epidemiol Biomarkers Prev. 2009;18:541–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jarl J, Gerdtham UG. Time pattern of reduction in risk of oesophageal cancer following alcohol cessation--a meta-analysis. Addiction. 2012;107:1234–43.
Article
PubMed
Google Scholar
Chuang SC, Lee YC, Wu GJ, Straif K, Hashibe M. Alcohol consumption and liver cancer risk: a meta-analysis. Cancer Causes Control. 2015;26:1205–31.
Article
PubMed
Google Scholar
Jayasekara H, MacInnis RJ, Room R, English DR. Long-Term Alcohol Consumption and Breast, Upper Aero-Digestive Tract and Colorectal Cancer Risk: A Systematic Review and Meta-Analysis. Alcohol Alcohol. 2016;51:315–30.
Article
PubMed
Google Scholar
Chen JY, Zhu HC, Guo Q, Shu Z, Bao XH, Sun F, Qin Q, Yang X, Zhang C, Cheng HY, et al. Dose-Dependent Associations between Wine Drinking and Breast Cancer Risk - Meta-Analysis Findings. Asian Pac J Cancer Prev. 2016;17:1221–33.
Article
PubMed
Google Scholar
Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, Bouvard V, Altieri A, Cogliano V. Carcinogenicity of alcoholic beverages. Lancet Oncol. 2007;8:292–3.
Article
PubMed
Google Scholar
IARC. Alcohol consumption and ethyl carbamate. IARC Monogr Eval Carcinog Risks Hum. 96;3-1383.
Klyosov AA, Rashkovetsky LG, Tahir MK, Keung WM. Possible role of liver cytosolic and mitochondrial aldehyde dehydrogenases in acetaldehyde metabolism. Biochemistry. 1996;35:4445–56.
Article
CAS
PubMed
Google Scholar
Zakhari S. Overview: how is alcohol metabolized by the body? Alcohol Res Health. 2006;29:245–54.
PubMed
Google Scholar
Yoshida A, Huang IY, Ikawa M. Molecular abnormality of an inactive aldehyde dehydrogenase variant commonly found in Orientals. Proc Natl Acad Sci U S A. 1984;81:258–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lai CL, Yao CT, Chau GY, Yang LF, Kuo TY, Chiang CP, Yin SJ. Dominance of the inactive Asian variant over activity and protein contents of mitochondrial aldehyde dehydrogenase 2 in human liver. Alcohol Clin Exp Res. 2014;38:44–50.
Article
CAS
PubMed
Google Scholar
Chen YC, Peng GS, Tsao TP, Wang MF, Lu RB, Yin SJ. Pharmacokinetic and pharmacodynamic basis for overcoming acetaldehyde-induced adverse reaction in Asian alcoholics, heterozygous for the variant ALDH2*2 gene allele. Pharmacogenet Genomics. 2009;19:588–99.
Article
CAS
PubMed
Google Scholar
Harada S, Agarwal DP, Goedde HW. Aldehyde dehydrogenase deficiency as cause of facial flushing reaction to alcohol in Japanese. Lancet. 1981;2:982.
Article
CAS
PubMed
Google Scholar
Li H, Borinskaya S, Yoshimura K, Kal’ina N, Marusin A, Stepanov VA, Qin Z, Khaliq S, Lee MY, Yang Y, et al. Refined geographic distribution of the oriental ALDH2*504Lys (nee 487Lys) variant. Ann Hum Genet. 2009;73:335–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo HR, Wu GS, Pakstis AJ, Tong L, Oota H, Kidd KK, Zhang YP. Origin and dispersal of atypical aldehyde dehydrogenase ALDH2487Lys. Gene. 2009;435:96–103.
Article
CAS
PubMed
Google Scholar
Tan EC, Lim L, Leong JY, Lim JY, Lee A, Yang J, Tan CH, Winslow M. Alcohol and aldehyde dehydrogenase polymorphisms in Chinese and Indian populations. Subst Use Misuse. 2010;45:1–14.
Article
PubMed
Google Scholar
Brooks PJ, Enoch MA, Goldman D, Li TK, Yokoyama A. The alcohol flushing response: an unrecognized risk factor for esophageal cancer from alcohol consumption. PLoS Med. 2009;6:e50.
Article
PubMed
Google Scholar
Boccia S, Hashibe M, Galli P, De Feo E, Asakage T, Hashimoto T, Hiraki A, Katoh T, Nomura T, Yokoyama A, et al. Aldehyde dehydrogenase 2 and head and neck cancer: a meta-analysis implementing a Mendelian randomization approach. Cancer Epidemiol Biomarkers Prev. 2009;18:248–54.
Article
CAS
PubMed
Google Scholar
Tsai ST, Wong TY, Ou CY, Fang SY, Chen KC, Hsiao JR, Huang CC, Lee WT, Lo HI, Huang JS, et al. The interplay between alcohol consumption, oral hygiene, ALDH2 and ADH1B in the risk of head and neck cancer. Int J Cancer. 2014;135:2424–36.
Article
CAS
PubMed
Google Scholar
Chung CS, Lee YC, Liou JM, Wang CP, Ko JY, Lee JM, Wu MS, Wang HP. Tag single nucleotide polymorphisms of alcohol-metabolizing enzymes modify the risk of upper aerodigestive tract cancers: HapMap database analysis. Dis Esophagus. 2014;27:493–503.
Article
PubMed
Google Scholar
Oze I, Matsuo K, Hosono S, Ito H, Kawase T, Watanabe M, Suzuki T, Hatooka S, Yatabe Y, Hasegawa Y, et al. Comparison between self-reported facial flushing after alcohol consumption and ALDH2 Glu504Lys polymorphism for risk of upper aerodigestive tract cancer in a Japanese population. Cancer Sci. 2010;101:1875–80.
Article
CAS
PubMed
Google Scholar
Ji YB, Tae K, Ahn TH, Lee SH, Kim KR, Park CW, Park BL, Shin HD. ADH1B and ALDH2 polymorphisms and their associations with increased risk of squamous cell carcinoma of the head and neck in the Korean population. Oral Oncol. 2011;47:583–7.
Article
CAS
PubMed
Google Scholar
Zhao T, Wang C, Shen L, Gu D, Xu Z, Zhang X, Xu Y, Chen J. Clinical significance of ALDH2 rs671 polymorphism in esophageal cancer: evidence from 31 case-control studies. Onco Targets Ther. 2015;8:649–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yokoyama A, Muramatsu T, Ohmori T, Yokoyama T, Okuyama K, Takahashi H, Hasegawa Y, Higuchi S, Maruyama K, Shirakura K, et al. Alcohol-related cancers and aldehyde dehydrogenase-2 in Japanese alcoholics. Carcinogenesis. 1998;19:1383–7.
Article
CAS
PubMed
Google Scholar
Koide T, Ohno T, Huang XE, Iijima Y, Sugihara K, Mizokami M, Xiang J, Tokudome S. HBV/HCV Infection, Alcohol, Tobacco and Genetic Polymorphisms for Hepatocellular Carcinoma in Nagoya, Japan. Asian Pac J Cancer Prev. 2000;1:237–43.
PubMed
Google Scholar
Takeshita T, Yang X, Inoue Y, Sato S, Morimoto K. Relationship between alcohol drinking, ADH2 and ALDH2 genotypes, and risk for hepatocellular carcinoma in Japanese. Cancer Lett. 2000;149:69–76.
Article
CAS
PubMed
Google Scholar
Yu SZ, Huang XE, Koide T, Cheng G, Chen GC, Harada K, Ueno Y, Sueoka E, Oda H, Tashiro F, et al. Hepatitis B and C viruses infection, lifestyle and genetic polymorphisms as risk factors for hepatocellular carcinoma in Haimen, China. Jpn J Cancer Res. 2002;93:1287–92.
Article
CAS
PubMed
Google Scholar
Sakamoto T, Hara M, Higaki Y, Ichiba M, Horita M, Mizuta T, Eguchi Y, Yasutake T, Ozaki I, Yamamoto K, et al. Influence of alcohol consumption and gene polymorphisms of ADH2 and ALDH2 on hepatocellular carcinoma in a Japanese population. Int J Cancer. 2006;118:1501–7.
Article
CAS
PubMed
Google Scholar
Ding J, Li S, Wu J, Gao C, Zhou J, Cao H, Su PS, Liu Y, Zhou X, Chang J. Alcohol dehydrogenase-2 and aldehyde dehydrogenase-2 genotypes, alcohol drinking and the risk of primary hepatocellular carcinoma in a Chinese population. Asian Pac J Cancer Prev. 2008;9:31–5.
CAS
PubMed
Google Scholar
Chang SC, Chang PY, Butler B, Goldstein BY, Mu L, Cai L, You NC, Baecker A, Yu SZ, Heber D, et al. Single nucleotide polymorphisms of one-carbon metabolism and cancers of the esophagus, stomach, and liver in a Chinese population. PLoS One. 2014;9:e109235.
Article
PubMed
PubMed Central
Google Scholar
Liu J, Yang HI, Lee MH, Jen CL, Hu HH, Lu SN, Wang LY, You SL, Huang YT, Chen CJ. Alcohol Drinking Mediates the Association between Polymorphisms of ADH1B and ALDH2 and Hepatitis B-Related Hepatocellular Carcinoma. Cancer Epidemiol Biomarkers Prev. 2016;25:693–9.
Article
CAS
PubMed
Google Scholar
Munaka M, Kohshi K, Kawamoto T, Takasawa S, Nagata N, Itoh H, Oda S, Katoh T. Genetic polymorphisms of tobacco- and alcohol-related metabolizing enzymes and the risk of hepatocellular carcinoma. J Cancer Res Clin Oncol. 2003;129:355–60.
Article
CAS
PubMed
Google Scholar
Tomoda T, Nouso K, Sakai A, Ouchida M, Kobayashi S, Miyahara K, Onishi H, Nakamura S, Yamamoto K, Shimizu K. Genetic risk of hepatocellular carcinoma in patients with hepatitis C virus: a case control study. J Gastroenterol Hepatol. 2011;27:797–804.
Article
Google Scholar
Sangrajrang S, Sato Y, Sakamoto H, Ohnami S, Khuhaprema T, Yoshida T. Genetic polymorphisms in folate and alcohol metabolism and breast cancer risk: a case-control study in Thai women. Breast Cancer Res Treat. 2010;123:885–93.
Article
CAS
PubMed
Google Scholar
Kawase T, Matsuo K, Hiraki A, Suzuki T, Watanabe M, Iwata H, Tanaka H, Tajima K. Interaction of the effects of alcohol drinking and polymorphisms in alcohol-metabolizing enzymes on the risk of female breast cancer in Japan. J Epidemiol. 2009;19:244–50.
Article
PubMed
PubMed Central
Google Scholar
Choi JY, Abel J, Neuhaus T, Ko Y, Harth V, Hamajima N, Tajima K, Yoo KY, Park SK, Noh DY, et al. Role of alcohol and genetic polymorphisms of CYP2E1 and ALDH2 in breast cancer development. Pharmacogenetics. 2003;13:67–72.
Article
CAS
PubMed
Google Scholar
Murata M, Tagawa M, Watanabe S, Kimura H, Takeshita T, Morimoto K. Genotype difference of aldehyde dehydrogenase 2 gene in alcohol drinkers influences the incidence of Japanese colorectal cancer patients. Jpn J Cancer Res. 1999;90:711–9.
Article
CAS
PubMed
Google Scholar
Matsuo K, Hamajima N, Hirai T, Kato T, Koike K, Inoue M, Takezaki T, Tajima K. Aldehyde dehydrogenase 2 (ALDH2) genotype affects rectal cancer susceptibility due to alcohol consumption. J Epidemiol. 2002;12:70–6.
Article
PubMed
Google Scholar
Miyasaka K, Hosoya H, Tanaka Y, Uegaki S, Kino K, Shimokata H, Kawanami T, Funakoshi A. Association of aldehyde dehydrogenase 2 gene polymorphism with pancreatic cancer but not colon cancer. Geriatr Gerontol Int. 2010;10 Suppl 1:S120–6.
Article
PubMed
Google Scholar
Higuchi S, Matsushita S, Murayama M, Takagi S, Hayashida M. Alcohol and aldehyde dehydrogenase polymorphisms and the risk for alcoholism. Am J Psychiatry. 1995;152:1219–21.
Article
CAS
PubMed
Google Scholar
Harada S, Agarwal DP, Goedde HW, Tagaki S, Ishikawa B. Possible protective role against alcoholism for aldehyde dehydrogenase isozyme deficiency in Japan. Lancet. 1982;2:827.
Article
CAS
PubMed
Google Scholar
Higuchi S, Matsushita S, Imazeki H, Kinoshita T, Takagi S, Kono H. Aldehyde dehydrogenase genotypes in Japanese alcoholics. Lancet. 1994;343:741–2.
Article
CAS
PubMed
Google Scholar
Yokoyama A, Yokoyama T, Matsui T, Mizukami T, Kimura M, Matsushita S, Higuchi S, Maruyama K. Trends in gastrectomy and ADH1B and ALDH2 genotypes in Japanese alcoholic men and their gene-gastrectomy, gene-gene and gene-age interactions for risk of alcoholism. Alcohol Alcohol. 2013;48:146–52.
Article
CAS
PubMed
Google Scholar
Yokoyama A, Kato H, Yokoyama T, Tsujinaka T, Muto M, Omori T, Haneda T, Kumagai Y, Igaki H, Yokoyama M, et al. Genetic polymorphisms of alcohol and aldehyde dehydrogenases and glutathione S-transferase M1 and drinking, smoking, and diet in Japanese men with esophageal squamous cell carcinoma. Carcinogenesis. 2002;23:1851–9.
Article
CAS
PubMed
Google Scholar
Chen CC, Lu RB, Chen YC, Wang MF, Chang YC, Li TK, Yin SJ. Interaction between the functional polymorphisms of the alcohol-metabolism genes in protection against alcoholism. Am J Hum Genet. 1999;65:795–807.
Article
CAS
PubMed
PubMed Central
Google Scholar
International Agency for Research on Cancer. Globocan 2012. http://globocan.iarc.fr/. Accessed on 18 Aug 2016.
Yokoyama T, Yokoyama A, Kumagai Y, Omori T, Kato H, Igaki H, Tsujinaka T, Muto M, Yokoyama M, Watanabe H. Health risk appraisal models for mass screening of esophageal cancer in Japanese men. Cancer Epidemiol Biomarkers Prev. 2008;17:2846–54.
Article
CAS
PubMed
Google Scholar
Yokoyama A, Oda J, Iriguchi Y, Kumagai Y, Okamura Y, Matsuoka M, Mizukami T, Yokoyama T. A health-risk appraisal model and endoscopic mass screening for esophageal cancer in Japanese men. Dis Esophagus. 2013;26:148–53.
Article
CAS
PubMed
Google Scholar
Koyanagi YN, Ito H, Oze I, Hosono S, Tanaka H, Abe T, Shimizu Y, Hasegawa Y, Matsuo K. Development of a prediction model and estimation of cumulative risk for upper aerodigestive tract cancer on the basis of the aldehyde dehydrogenase 2 genotype and alcohol consumption in a Japanese population. Eur J Cancer Prev. 2017;26:38–47.
Article
PubMed
Google Scholar
Hendershot CS, Otto JM, Collins SE, Liang T, Wall TL. Evaluation of a brief web-based genetic feedback intervention for reducing alcohol-related health risks associated with ALDH2. Ann Behav Med. 2010;40:77–88.
Article
PubMed
PubMed Central
Google Scholar
Austin J. The effect of genetic test-based risk information on behavioral outcomes: A critical examination of failed trials and a call to action. Am J Med Genet A. 2015;167A:2913–5.
Article
PubMed
Google Scholar
Smerecnik C, Grispen JE, Quaak M. Effectiveness of testing for genetic susceptibility to smoking-related diseases on smoking cessation outcomes: a systematic review and meta-analysis. Tob Control. 2012;21:347–54.
Article
PubMed
Google Scholar
Kawakita D, Oze I, Hosono S, Ito H, Watanabe M, Yatabe Y, Hasegawa Y, Murakami S, Tanaka H, Matsuo K. Prognostic Value of Drinking Status and Aldehyde Dehydrogenase 2 Polymorphism in Patients With Head and Neck Squamous Cell Carcinoma. J Epidemiol. 2016;26:292–9.
Article
PubMed
Google Scholar
Yokoyama A, Omori T, Yokoyama T, Sato Y, Kawakubo H, Maruyama K. Risk of metachronous squamous cell carcinoma in the upper aerodigestive tract of Japanese alcoholic men with esophageal squamous cell carcinoma: a long-term endoscopic follow-up study. Cancer Sci. 2008;99:1164–71.
Article
CAS
PubMed
Google Scholar
U.S. Department of Health and Human Services and U.S. Department of Agriculture. 2015–2020 Dietary Guidelines for Americans. 8th Edition. December 2015. Available at http://health.gov/dietaryguidelines/2015/guidelines/.
Kalinowski A, Humphreys K. Governmental standard drink definitions and low-risk alcohol consumption guidelines in 37 countries. Addiction. 2016;111:1293–8.
Article
PubMed
Google Scholar
Lee CH, Lee JM, Wu DC, Goan YG, Chou SH, Wu IC, Kao EL, Chan TF, Huang MC, Chen PS, et al. Carcinogenetic impact of ADH1B and ALDH2 genes on squamous cell carcinoma risk of the esophagus with regard to the consumption of alcohol, tobacco and betel quid. Int J Cancer. 2008;122:1347–56.
Article
CAS
PubMed
Google Scholar
Saad I, Wallach JM. Ethanal assay, using an enzymo-conductimetric method. Anal Lett. 1992;25:37–48.
Article
CAS
Google Scholar
Uebelacker M, Lachenmeier DW. Quantitative determination of acetaldehyde in foods using automated digestion with simulated gastric fluid followed by headspace gas chromatography. J Autom Methods Manag Chem. 2011;2011:907317.
Article
PubMed
PubMed Central
Google Scholar
Rodrigues MC, Guarieiro LL, Cardoso MP, Carvalho LS, da Rocha GO, de Andrade JB. Acetaldehyde and formaldehyde concentrations from sites impacted by heavy-duty diesel vehicles and their correlation with the fuel composition: Diesel and diesel/biodiesel blends. Fuel. 2012;92:258–63.
Article
CAS
Google Scholar
Chen CH, Budas GR, Churchill EN, Disatnik MH, Hurley TD, Mochly-Rosen D. Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart. Science. 2008;321:1493–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen CH, Sun L, Mochly-Rosen D. Mitochondrial aldehyde dehydrogenase and cardiac diseases. Cardiovasc Res. 2010;88:51–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen CH, Ferreira JC, Gross ER, Mochly-Rosen D. Targeting aldehyde dehydrogenase 2: new therapeutic opportunities. Physiol Rev. 2014;94:1–34.
Article
PubMed
PubMed Central
Google Scholar
Zhang R, Wang J, Xue M, Xu F, Chen Y. ALDH2---the genetic polymorphism and enzymatic activity regulation: their epidemiologic and clinical implications. Curr Drug Targets. 2015. [Epub ahead of print].
Perez-Miller S, Younus H, Vanam R, Chen CH, Mochly-Rosen D, Hurley TD. Alda-1 is an agonist and chemical chaperone for the common human aldehyde dehydrogenase 2 variant. Nat Struct Mol Biol. 2010;17:159–64.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gross ER, Zambelli VO, Small BA, Ferreira JC, Chen CH, Mochly-Rosen D. A personalized medicine approach for Asian Americans with the aldehyde dehydrogenase 2*2 variant. Annu Rev Pharmacol Toxicol. 2015;55:107–27.
Article
CAS
PubMed
Google Scholar
Banh A, Xiao N, Cao H, Chen CH, Kuo P, Krakow T, Bavan B, Khong B, Yao M, Ha C, et al. A novel aldehyde dehydrogenase-3 activator leads to adult salivary stem cell enrichment in vivo. Clin Cancer Res. 2011;17:7265–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen CH, Cruz LA, Mochly-Rosen D. Pharmacological recruitment of aldehyde dehydrogenase 3A1 (ALDH3A1) to assist ALDH2 in acetaldehyde and ethanol metabolism in vivo. Proc Natl Acad Sci USA. 2015;112:3074–9.