Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Boil. 2016;14(18):e1002533.
Article
CAS
Google Scholar
Gordon JI. Honor thy gut symbionts redux. Science. 2012;336:1251–3.
Article
CAS
PubMed
Google Scholar
Sprockett D, Fukami T, Relman DA. Role of priority effects in the early-life assembly of the gut microbiota. Nature Rev Gastroenterol Hepatol. 2018;15:197–205.
Article
Google Scholar
Backhed F, Fraser CM, Ringel Y, Sanders ME, Sartor RB, Sherman PM, Versalovic J, Yoiung V, Finlay BB. Defining a healthy human gut microbiome: current concepts, future directions, and clinical applications. Cell Host Micr. 2012;12:611–22.
Article
CAS
Google Scholar
Sartor RB, Wu GD. Roles for intestinal bacteria, viruses, and fungi in pathogenesis of inflammatory bowel diseases and therapeutic approaches. Gastroenterology. 2017;152:327–9.
Article
CAS
PubMed
Google Scholar
Sherwin E, Dinan TG, Cryan JF. Recent developments in understanding the role of the gut microbiota in brain health and disease. Ann N Y Acad Sci. 2018;1420:5–25.
Article
PubMed
Google Scholar
Sekirov I, Russell SL, Antunes CM, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010;90:859–904.
Article
CAS
PubMed
Google Scholar
Pitlik SD, Koren O. How holobionts get sick-toward a unifying scheme of disease. Microbiome. 2017;5(64):1–4.
Google Scholar
Nicholson JK, Holmes E, Kinross J, Burcellin R, Gibson G, Jia W, Pettersson S. Host-gut microbiota metabolic interactions. Science. 2012;336(6086):1262–7.
Article
CAS
PubMed
Google Scholar
Moeller AH, Caro-Quintero A, Mjungu D, Georgiev AV, Lonsdorf EV, Muller MN, Pusey AE, Peeters M, Hahn BH, Ochman H. Cospeciation of gut microbiota with hominids. Science 2016. 2018;352(6297):380–2.
Davenport ER, Sanders JG, Song SJ, Amato KR, Clark AG, Knight R. The human microbiome in evolution. BMC Biol. 2017;15:127–39.
Article
PubMed
PubMed Central
Google Scholar
Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9:313–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ. Dysbiosis of the gut microbiota in disease. Microbial Ecol Health Dis. 2015;26:26191.
Google Scholar
Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. Microbial biofilms. Annu Rev Microbiol. 1995;49:711–45.
Article
CAS
PubMed
Google Scholar
Dunne WM. Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev. 2002;15(2):155–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buret AG. Good bugs, bad bugs in the gut: the role of microbiota dysbiosis in chronic gastrointestinal consequences of infection. Am J Gastroenterol (Suppl). 2016;3:23–31.
Google Scholar
Engel P, Martinson VG, Moran NA. Functional diversity within the simple gut microbiota of the honey bee. PNAS. 2012;109:11002–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beatty JK, Akierman SV, Motta JP, et al. Giardia duodenalis-induced dysbiosis of human intestinal microbiota biofilms. Int J Parasitol. 2017;47(6):311–26.
Article
PubMed
Google Scholar
Reti K, Tymensen LD, Davis SP, Amrein MW, Buret AG. Campylobacter jejuni increases flagellar expression and adhesion of non-invasive Escherichia coli: effects on enterocytic TLR-4 and CXCL-8 expression. Infect Immun. 2015;83(12):4571–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Motta JP, Flannigan K, Agbor T, Beatty JK, Blackler RW, Workentine ML, Da Silva GJ, Wang R, Buret AG, Wallace JL. Hydrogen sulfide protects from colitis and restores intestinal microbiota biofilm and mucus production. Infl Bowel Dis. 2015;21(5):1006–17.
Article
Google Scholar
Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative review. Cell. 2012;148:1258–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hopkins MJ, Sharp R, MacFarlane GT. Variation in human intestinal microbiota with age. Dig. Liv. Dis. 2002;34(Suppl):S12–8.
Google Scholar
Von Rosenvinge EC, O’May GA, MacFarlane S, MacFarlane GT, Shirtliff ME. Microbial biofilms and gastrointestinal disease. Pathog Dis. 2013;67:25–38.
Article
CAS
Google Scholar
DeVos WM. Microbial biofilms and the human intestinal microbiome. Npj Biofilms Microbiomes. 2015;1:15005.
Article
Google Scholar
Probert HM, Gibson GR. Bacterial biofilms in the human gastrointestinal tract. Curr Issues Intest Microbiol. 2002;3:23–7.
CAS
PubMed
Google Scholar
Motta JP, Allain T, Green-Harrison LE, Groves RA, Feener TD, Ramay H, Beck PL, Lewis IA, Wallace JL, Buret AG. Iron sequestration in microbiota biofilms as a novel strategy for treating inflammatory bowel disease. Inflamm Bowel Dis. 2018;24(7):1493–502.
Article
PubMed
PubMed Central
Google Scholar
Buret AG. Enteropathogen-induced microbiota biofilm disruptions and post-infectious intestinal inflammatory disorders. Curr Trop Med Rep. 2016. https://doi.org/10.1007/s40475-016-0079-x.
Xu M, Pokrovskii M, Ding Y, Yi R, Au C, Harrison OJ, Galan C, Belkaid Y, Bonneau R, Littman DR. C-MAF -dependent regulatory T cells mediate immunological tolerance to a gut pathobiont. Nature. 2018;554(7692):373–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gomes-Neto JC, Kittana H, Mantz S, Segura Munoz RR, Schmaltz RJ, Bindels LB, Clarke J, Hostetter JM, Benson AK, Wlater J, Ramer-Tait AE. A gut pathobiont synergizes with the microbiota to instigate inflammatory disease marked by immunoreactivity against other symbionts but not itself. Sci Rep. 2017;7:17707.
Article
PubMed
PubMed Central
CAS
Google Scholar
Macfarlane S, Woodmansey EJ, Macfarlane GT. Colonization of mucin by human intestinal bacteria and establishment of biofilm communities in a two-stage continuous culture system. Appl Environ Microbiol. 2005;71:7483–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA. Diversity of the human intestinal microbial flora. Science. 2005;308:1635–8.
Article
PubMed
PubMed Central
Google Scholar
Jones RB, Zhu X, Moan E, Murff HJ, Ness RM, Seidner DL, Sun S, Yu C, Dai Q, Fodor AA, Azcarte-Peril MA, Shrubsole J. Inter-niche and inter-individual variation in gut microbial community assessment using stool, rectal swab, and mucosal samples. Sci Rep. 2018;8:4139.
Article
PubMed
PubMed Central
CAS
Google Scholar
Swidsinsky A, Weber J, Loening-Bauke V, Hale LP, Lochs H. Spatial organization and composition of the mucosal flora in patients with IBD. J Clin Microbiol. 2005;43:33803389.
Google Scholar
Lavelle A, Lennon G, O’Sullivan O, Docherty N, Balfe A, Maguire A, Mulcahy HE, Doherty G, O’Donoghue D, Hyland J, Ross RP, Coffey JC, Sheahan K, Cotter PD, Shanahan F, Winter DC, O’Connell PR. Spatial variation of the colonic microbiota in patients with ulcerative colitis and control volunteers. Gut. 2015;64:1553–61.
Article
CAS
PubMed
Google Scholar
Srivastava A, Gupta J, Kumar S, Kumar A. Gut biofilm forming bacteria in IBD. Microb Pathog. 2017;112:5–14.
Article
PubMed
Google Scholar
Amat CB, Motta JP, Fekete E, Moreau F, Chadee K, Buret AG. Cysteine protease-dependent mucus disruptions and differential mucin gene expression in Giardia duodenalis infection. Am J Pathol. 2017;187(11):2486–98.
Article
CAS
PubMed
Google Scholar
Chen Y, Peng Y. Fu X. microbial biofilms, colorectal inflammation, and cancer. Austin. J Gastroenterol. 2016;3(1):1059.
Google Scholar
Li S, Konstantinov SR, Smits R, Peppelenbosch MP. Bacterial biofilms in colorectal cancer initiation and progression. Trends Mol Med. 2017;23(1):18–30.
Article
PubMed
Google Scholar
Lane ER, Zisman TL, Suskind DL. The microbiota in inflammatory bowel disease: current and therapeutic insights. J Inflamm Res. 2017;10:63–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dejea CM, Fahti P, Craig JM, Boleij A, Taddese R, Geis AL, WU X, DeStefano Shields CE, Hechenbleikner EM, Huso DL, Anders RA, Giardello FM, Wick EC, Wang H, Wu S, Pardoll DM, Housseau F, Sears CL. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science. 2018;359:592–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dejea C, Sears CL. Do biofilms confer a pro-carcinogenic state? Gut Microbes. 2016;7(1):54–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ni J, Wu GD, Albenberg L, Tomov VT. Gut microbitoa and IBD: causation or correlation? Nat Rev Gastroenterol Hepatol. 2017. https://doi.org/10.1038/nrgastro.2017.88.
Sun M, Wei W, Liu Z, Cong Y. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel disease. J Gastroenterol. 2017;52:1–8.
Article
CAS
PubMed
Google Scholar
Ubeda C, Djukovic A, Isaac S. Roles of the intestinal microbiota in pathogen protection. Clin Transl Immunol. 2017;6(2):e128.
Article
CAS
Google Scholar
Garcia-Gutierrez E, Mayer MJ, Cotter PD, Narbad A. Gut microbiota as a source of novel antimicrobials. Gut Microbes. 2018:1–21.
Wilks J, Beilinson H, Golovkina T. Dual role of commensal bacteria in viral infections. Immunol Rev. 2013;255(1). https://doi.org/10.1111/imr.12097.
Allain T, Amat CB, Motta JP, Manko A, Buret AG. Interactions of Giardia sp with the intestinal barrier: epithelium, mucus, and microbiota. Tissue Barriers. 2017;5(1):e1274354.
Article
PubMed
PubMed Central
CAS
Google Scholar
Singer SM, Nash TE. The role of normal flora in Giardia lamblia infections in mice. J Infect Dis. 2000;181(4):1510–2.
Article
CAS
PubMed
Google Scholar
Kamada N, Chen GY, Inohara N, Nunez G. Control of pathogens and pathobionts by the gut microbiota. Nat Immunol. 2013;14(7):685–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rolhion N, Chassaing B. When pathogenic bacteria meet the intestinal microbiota. Philos Trans R Soc Lond Ser B Biol Sci. 2016;37(1707):20150504.
Article
CAS
Google Scholar
Baumler AJ, Sperandio V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature. 2016;535(7610):85–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Halliez MC, Buret AG. Extra-intestinal and long term consequences of Giardia duodenalis infections. World J Gastroenterol. 2013;19(47):8974–85.
Article
PubMed
PubMed Central
Google Scholar
Gupta S. Something in the water. Nature. 2016;533:S114–5.
Article
CAS
PubMed
Google Scholar
De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107:14691–6.
Article
PubMed
PubMed Central
Google Scholar
Das B, Ghosh TS, Kedia S, Rampal R, Saxena S, Bag S, Mitra R, Dayal M, Mehta O, Surendranath A, Travis SPL, Tripathi P, Nair GB, Ahuja V. Analysis of the gut microbiome of rural and urban healthy Indians living in sea level and high altitude areas. Sci Rep. 2018;8:10104.
Article
PubMed
PubMed Central
CAS
Google Scholar
Su C, Su L, Li Y, Chang J, Zhang W, Walker WA, Xavier R, Cherayil BJ, Shi HN. Helminth-induced alterations of the gut microbiota exacerbate bacterial colitis. Muc Immunol. 2018;11(1):144–57.
Article
CAS
Google Scholar
Kembauer E, Ding Y, Cadwell K. An enteric virus can replace the beneficial function of commensal bacteria. Nature. 2014;516(7529):94–8.
Google Scholar
Yildiz S, Mazel-Sanchez B, Kandasamy M, Manicassamy B, Schmolke M. Influenza a virus infection impacts systemic microbiota dynamics and causes quantitative enteric dysbiosis. Microbiome. 2018;6:9.
Article
PubMed
PubMed Central
Google Scholar
Hoffmann C, Hill DA, Minkah N, Kirn T, Troy A, Artis D, Bushman F. Community-wide response of the gut microbiota to enteropathogenic Citrobacter rodentium infection revealed by deep sequencing. Infect Immun. 2009;77(10):4668–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arguello H, Estelle J, Zaldivar-Lopez S, Jimenez-Marin A, Carvajal A, Lopez-Bascon MA, Cripie F, O’Sullivan O, Cotter PD, Priego-Capote F, Mmorera L, Garrido JJ. Early Salmonella typhimurium infection in pigs disrupts microbiome composition and functionality at the ileum mucosa. Sci Rep. 2018;8:7788.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lone AG, Selinger B, Uwiera RRE, Xu Y, Inglis D. Campylobacter jejuni colonization is associated with a dysbiosis in the cecal microbiota of mice in the absence of prominent inflammation. PLoS One. 2013;8(9):e75325.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lamb-Rosteski JM, Kalischuk LD, Inglis GD, Buret AG. Epidermal growth factor inhibits Campylobacter jejuni-induced claudin-4 disruption, loss of epithelial barrier function, and Escherichia coli translocation. Infect Immun. 2008;76(8):3390–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kalischuk LD, Inglis GD, Buret AG. Campylobacter jejuni induces transcellular translocation of commensal bacteria via lipid rafts. Gut Pathog. 2009;1:2.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kalischuk LD, Leggett F, Inglis GD. Campylobacter jejuni induces transcytosis of commensal bacteria across the intestinal epithelium through M-cells. Gut Pathog. 2010;2:14.
Article
PubMed
PubMed Central
Google Scholar
O’Hara JR, Feener TD, Fischer CD, Buret AG. Campylobacter jejuni disrupts protective toll-like receptor 9 signaling in colonic epithelial cells and increases the severity of dextran sulfate sodium-induced colitis in mice. Infect Immun. 2012;80(4):1563–71.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kalischuk LD, Buret AG. A role for Campylobacter jejuni-induced enteritis in inflammatory bowel disease? Am J Phys. 2010;298(1):G1–9.
Article
CAS
Google Scholar
Gradel KO, Nielsen HL, Shonheyder HC, Ejlertsen T, Kristensen B, Nielsen H. Increased short- and long-term risk of inflammatory bowel disease after salmonella or campylobacter gastroenteritis. Gastroenterology. 2009;137(2):495–501.
Article
PubMed
Google Scholar
Rodriguez LAG, Ruigomez A, Panes J. Acute gastroenteritis is followed by an increased risk of inflammatory bowel disease. Gastroenterology. 2006;130(6):1588–94.
Article
Google Scholar
Porter CK, Faix DJ, Shiau D, Espiritu J, Espinosa BJ, Riddle MS. Postinfectious gastrointestinal disorders following norovirus outbreaks. Clin Infect Dis. 2012;55(7):915–22.
Article
PubMed
Google Scholar
Delans RJ, Biuso JD, Saba SR, Ramirez G. Hemolytic uremic syndrome after campylobacter-induced diarrhea in an adult. Arch Intern Med. 1984;144(5):1074–6.
Article
CAS
PubMed
Google Scholar
Dinant S, Schurink CAM, Deckers JW, Severin JA. Aortic homograft endocarditis caused by Campylobacter jejuni. J Clin Microbiol. 2011;49(11):4016–7.
Article
PubMed
PubMed Central
Google Scholar
Gerbaba TK, Gupta P, Rioux K, Hansen D, Buret AG. Giardia-duodenalis -induced alterations of commensal bacteria kill Caenorhabditis elegans: a new model to study microbial-microbial interactions in the gut. Am J Physiol (Gastro Liv Physiol). 2015;308(6):G550–61.
CAS
Google Scholar
Roberts CL, Keita AV, Duncan SH, O’Kennedy N, Soderholm JD, Campbell BJ. Translocation of Crohn’s disease Escherichia coli across M-cells: contrasting effects of soluble plant fibers and emulsifiers. Gut. 2010;59(10):1331–9.
Article
PubMed
Google Scholar
Manko A, Motta JP, Cotton JA, Feener TD, Oyeyemi A, Vallance BA, Wallace JL, Buret AG. Giardia co-infection promotes the secretion of antimicrobial peptide Beta-defensin 2 and trefoil factor 3 and attenuates attaching and effacing Bacteria-induces intestinal disease. PLoS One. 2017;12(6):e0178647.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cotton JA, Amat CB, Buret AG. Disruptions of host immunity and inflammation by Giardia duodenalis: potential consequences for co-infections in the gastro-intestinal tract. Pathogens. 2015;4(4):764–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cotton JA, Motta JP, Schenk LP, Hirota SA, Beck PL, Buret AG. Giardia duodenalis infection reduces granulocyte infiltration in an in vivo model of bacterial toxin-induced colitis and attenuates inflammation in human intestinal tissue. PLoS One. 2014;9(10):e109087.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cotton JA, Bhargava A, Ferraz J, Yates R, Beck PL, Buret AG. Giardia duodenalis cathepsin B proteases degrade intestinal epithelial interleukin-8 and attenuate interleukin-8-induced neutrophil chemotaxis. Infect Immun. 2014;82(7):2772–87.
Article
PubMed
PubMed Central
CAS
Google Scholar
McKay DM. Not all parasites are protective. Parasite Immunol. 2015;37:324–32.
Article
PubMed
Google Scholar
Burgess SL, Gilchrist CA, Tucker CL, Petri WA. Parasitic Protozoa and interactions with host intestinal microbiota. Infect Immun. 2017;85(8):e00101–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arthur JC, Perez-Chanona E, Muhlbauer M, Tomkovich S, Uronis JM, Fan TJ, Campbell BJ, Abujamel T, Dogan B, Rogers AB, Rhodes JM, Stintzi A, Simpson KW, Hansen JJ, Keku TO, Fodor AA, Jobin C. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science. 2012;338(6103):120–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bossuet-Greif N, Vignard J, Taieb F, Mirey G, Dubois D, Petit C, Oswald E, Nougayrede J-P. The colibactin genotoxin generates DNA interstrand cross-links in infected cells. mBio. 2018;9:e02393–17.
Article
PubMed
PubMed Central
Google Scholar
Gopalakrishnan V, Helmink BA, Spencer CN, Reuben A, Wargo JA. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell. 2018;33:570–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jobin C. Human intestinal microbiota and colorectal cancer: moving beyond associative studies. Gastroenterology. 2017;153(6):1475–8.
Article
PubMed
Google Scholar
Greten FR, Eckmann L, Greten TF, Park GM, Li ZW, Egan LJ, Kagnoff MF, Karin M. IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell. 2004;118(3):285–96.
Article
CAS
PubMed
Google Scholar
Goodman B, Gardner H. The microbiome and cancer. J Pathol. 2018;244(5):667–76.
Article
PubMed
Google Scholar
Nishida A, Inoue R, Inatomi O, Bamba S, Naito Y, Andoh A. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin J Gastroenterol. 2018;11(1):1–10.
Article
PubMed
Google Scholar
Drewes JL, White JR, Dejea CM, Fathi P, Iyadorai T, Vadivelu J, Roslani AC, Wick EC, Mongodin EF, Loke MF, Thulasi K, Gan HM, Goh KL, Chong HY, Kumar S, Wanyiri JW, Sears CL. High-resolution bacterial 16S rRNA gene profile meta-analysis and biofilm status reveal common colorectal cancer consortia. Npj Biofilms and Microbiomes. 2017;3:34.
Article
PubMed
PubMed Central
Google Scholar
Pruteanu M, Hyland NP, Clarke DJ. Degradation of the extra-cellular matrix components by bacterial-derived metalloproteinases: implications for inflammatory bowel diseases. Inflamm Bow Dis. 2010;17:1189–200.
Article
Google Scholar
Dwarakanath AD, Campbell BJ, Tsai HH. Faecal mucinase activity assessed in inflammatory bowel disease using 14C threonine labelled mucin substrate. Gut. 1995;37:58–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sakai E, Morioka T, Yamada E, Ohkubo H, Higurashi T, Hosono K, Endo H, Takahashi R, Cui C, Shiozawa M, Akaike M, Samura H, Nishimaki T, Nakajima A, Yoshimi N. Identification of preneoplastic lesions as mucin-depleted foci in patients with sporadic colorectal cancer. Cancer Sci. 2012;103(1):114–49.
Article
CAS
Google Scholar
Kotlowsky R, Bernstein CN, Sepehri S. High prevalence of Escherichia coli belonging to the B2+D phylogenetic group in inflammatory bowel disease. Gut. 2007;56:669–75.
Article
CAS
Google Scholar
Prindiville TP, Sheikh RA, Cohen SH. Bacteroides fragilis enterotoxin gene sequences in patients with inflammatory bowel disease. Emerg Infect Dis. 2000;6:171–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Darfeuille-Michaud A, Boudeau J, Bulois P, Neut C, Glasser AL, Barnich N. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology. 2004;127:412–21.
Article
PubMed
Google Scholar
Butto LF, Schaubeck M, Haller D. Mechanisms of microbe-host interaction in Crohn’s disease: Dysbiosis vs. pathobiont selection. Front Immunol. 2015. https://doi.org/10.3389/fimmu.2015.00555.
Qin X, Singh KV, Weinstick GM. Effects of enterococcus faecalis fsr genes on production of gelatinase and a serine protease and virulence. Infect Immun. 2000;68:2579–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Balish E, Warner T. Enterococcus faecalis induces inflammatory bowel disease in interleukin-10 knockout mice. Am J Pathol. 2002;160:2253–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Small CL, Xing L, McPhee JB, Law TL, Coombes BK. Acute infectious gastroenteritis potentiates a Crohn’s disease pathobiont to fuel ongoing inflammation in the post-infectious period. PLoS Pathog. 2016;12(10):e1005907.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sears CL, Geis AL, Housseau F. Bacteroides fragilis subverts mucosal biology: from symbiont to colon carcinogenesis. J Clin Invest. 2014;124:4166–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schwabe RF, Jobin C. The microbiome and cancer. Nat Rev. 2013;13:800–12.
Article
CAS
Google Scholar
Wong SH, Zhao L, Zhang X. Gavage of fecal samples from patients with colorectal cancer promotes intestinal carcinogenesis in germ-free and conventional mice. Gastroenterology. 2017;153:1621–33.
Article
PubMed
Google Scholar
Chen W, Liu F, Ling Z, Tong X, Xiang C. Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PLoS One. 2012;7(6):e39743.
Article
CAS
PubMed
PubMed Central
Google Scholar
Routy B, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018;359:91–7.
Article
CAS
PubMed
Google Scholar
Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermudez-Humaran LG, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. PNAS. 2008;105(43):16731–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Routy B, Gopalakrishnan V, Daillere R, Zitvogel L, Wargo JA, Kroemer G. The gut microbiota influences anticancer immunosurveillance and general health. Nat Rev Clin Oncol. 2018;15:382–96.
Article
CAS
PubMed
Google Scholar
Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2018;359(6371):97–103.
Article
CAS
PubMed
Google Scholar
Matson V, Fessler J, Bao R, Chgonsuwat T, Zha Y, Alegre ML, Luke J, Gajewski TF. The commensal microbiome is associated with anti -PD-1 efficacy in metastatic melanoma patients. Science. 2018;359(6371):104–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frese SA, MacKenzie DA, Peterson DA, Schmaltz R, Fangman T, Zhou Y, Zhang C, Benson AK, Cody LA, Mulholland F, Juge N, Walter J. Molecular characterization of host-specific biofilm fomrmation in a vertebrate gut symbiont. PLoS Genet. 2013;9(12):e1004057.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sequeira S, Kananaugh D, MacKenzie DA, Suligoj T, Walpole S, Leclaire C, Gunning AP, Latousakis D, Willats WGT, Angulo J, Dong C, Juge N. Structural basis for the role of serne-rich repeat proteins from lactobacillus reuteri in gut microbe-host interactions. PNAS. 2018;115(12):E2706–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mukherjee S, Moustafa D, Smith CD, Goldberg JB, Bassler BL. The RhIR quorum-sensing receptor controls Pseudomonas aeruginosa pathogenesis and biofilm development independently of its canonical homoserine lactone autoinducer. PLoS Pathog. 2017;13:e1006504.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sharma IM, Petchiappan A, Chatterji D. Quorum sensing and biofilm formation in mycobacteria: role of c-di-GMP and methos to study this second messenger. IUBMB Life. 2014;66:823–34.
Article
CAS
PubMed
Google Scholar
Valentini M, Filloux A. Biofilms and cyclic di-GMP signlaing: lessons from Pseudomonas aeruginosa and other bacteria. J Biol Chem. 2016;291:12547–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zierer J, Jackson MA, KAstenmueller G, Mangino M, Long T, Telenti A, Mohney RP, Small KS, Bell JT, Steves CJ, Valdes AM, Spector TD, Menni C. The fecal metabolome as a functional readout of the gut microbiome. Nat Genet. 2018;50:790–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martens EC, Neumann M, Desai MS. Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier. Nat Rev Microbiol. 2018;16:457–70.
Article
CAS
PubMed
Google Scholar
Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. Current understanding of the human microbiome. Nature Med. 2018;24:392–400.
Article
CAS
PubMed
Google Scholar
Nutritional preferences of human gut bacteria reveal their metabolic idiosyncrasies. Nat Microbiol. 2018;3:514–22.
Article
CAS
Google Scholar
Samant S, Lee H, Ghassemi M, et al. Nucleotide biosynthesis is critical for growth of bacteria in human blood. PLoS Pathog. 2008;4:e37.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vogel-Scheel J, Alpert C, Engst W, Loh G, Blaut M. Requirement of purine and pyrimidine synthesis for colonization of the mouse intestine by Escherichia coli. Appl Environ Microbiol. 2010;76:5181–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chiang SL, Mekalanos JJ. Use of signature-tagged transposon mutagenesis to identify Vibrio cholerae genes critical for colonization. Mol Microbiol. 1998;27:797–805.
Article
CAS
PubMed
Google Scholar
Dogan B, Suzuki H, Herlekar D, et al. Inflammation-associated adherent-invasive E. coli are enriched in pathways for use of propanediol and iron and M-cell translocation. Inflamm Bowel Dis. 2014;20(11):1919–32.
Article
PubMed
Google Scholar
Ellerman M, Huh EY, Carroll IM, et al. Adherent-invasive E.coli porduction of cellulose influences iron-induced bacterial aggregation, phagocytosis, and induction of colitis. Infect Immun. 2015;83(10):4068–80.
Article
CAS
Google Scholar
Kortman GA, Dutilh BE, Maathuis AJ, et al. Microbial metabolism shifts towards an adverse profile with supplementary iron in the tim-2 in vitro model of the human colon. Front Microbiol. 2015;6:1481.
PubMed
Google Scholar
Werner T, Wagner SJ, Martinez I, et al. Depletion of luminal iron alters the gut microbiota and prevents Crohn's disease-like ileitis. Gut. 2011;60:325–33.
Article
CAS
PubMed
Google Scholar
Jaeggi T, Kortman GA, Moretti D, Chassard C, Holding P, Dostal A, Boekhorst J, Timmerman HM, Swinkels DW, Tjalsma H, Njenga J, Mwangi A, Kvalsvig J, Lacroix C, Zimmermann MB. Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants. Gut. 2015;64:731–42.
Article
CAS
PubMed
Google Scholar
Skaar EP. The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog. 2010;6:e1000949.
Article
PubMed
PubMed Central
CAS
Google Scholar
Stein J, Hartmann F, Dignass AU. Diagnosis and management of iron deficiency anemia in patients with IBD. Nat Rev Gastroenterol Hepatol. 2010;7:599–610.
Article
CAS
PubMed
Google Scholar
Lee T, Clavel K, Smirnov A, et al. Oral versus intravenous iron replacement therapy distinctly alters the gut microbiota and metabolome in patients with IBD. Gut. 2017;66:863–71.
Article
CAS
PubMed
Google Scholar
Uritski R, Barshack I, Bilkis I, et al. Dietary iron affects inflammatory status in a rat model of colitis. J Nutr. 2004;134:2251–5.
Article
CAS
PubMed
Google Scholar
Kortman GA, Raffatellu M, Swinkels DW, et al. Nutritional iron turned inside out: intestinal stress from a gut microbial perspective. FEMS Microbiol Rev. 2014;38:1202–34.
Article
CAS
PubMed
Google Scholar
Fishbach MA, Lin H, Zhou L, et al. The pathogen-associated iroA gene cluster mediates bacterial evasion of lipocalin 2. Proc Natl Acad Sci U S A. 2006;103:16502–7.
Article
Google Scholar
Goetz DH, Holmes N, Borregaard N, et al. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell. 2002;10:1033–43.
Article
CAS
PubMed
Google Scholar
Singh V, Yeoh BS, Chassaing B, et al. Microbiota-inducible innate immune siderophore binding protein lipocalin 2 is critical for intestinal homeostasis. Cell Mol Gastroenterol Hepatol. 2016;2(4):482–488.e6.
Article
PubMed
PubMed Central
Google Scholar
Toyonaga T, Matsuura M, Mori K, et al. Lipocalin 2 prevents intestinal inflammation by enhancing phagocytic bacterial clearance in macrophages. Sci Rep. 2016;6:35014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stallhofer J, Friedrich M, Konrad-Zerna A, et al. Lipocalin 2 is a disease activity marker in inflammatory bowel disease regulated by IL-17A, IL-22, and TNFalpha, and modulated by IL23R genotype status. Inflamma. Bowel Dis. 2015;21(10):2327–40.
Google Scholar
Jomova K, Valko M. Importance of iron chelation in free radical-induced oxidative stress and human disease. Curr Pharm Des. 2011;17:3460–73.
Article
CAS
PubMed
Google Scholar
Brown JM, Hazen SL. Targeting of microbe-derived metabolites to improve human health: the next frontier for drug discovery. J Biol Chem. 2017;292:8560–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thio CL, Chi PY, Lai AC, Chang YJ. Regulation of type 2 innate lymphoid cell-dependent airway hyperreactivity by butyrate. J Allergy Clin Immunol. 2018:S0091–6749.
Uchiyama K, Sakiyama T, Hasebe T, Musch MW, Miyoshi H, Nakagawa Y, He TC, Lichtenstein L, Naito Y, Itoh Y, Yoshikawa T, Jabri B, Stappenbeck T, Chang EB. Butyrate and bioactive proteolytic form of Wnt-5a regulate colonic epithelial proliferation and spatial development. Sci Rep. 2016;6:32094.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cuff MA, Shirazi-Beechey SP. The importance of butyrate transport to the regulation of gene expression in the colonic epithelium. Biochem Soc Transact. 2004;32:1100–2.
Article
CAS
Google Scholar
Comalda M. The effects of short chain fatty acids on colon epithelial proliferation and survival depend on the cellular phenotype. J Cancer Res Clin Oncol. 2006;132:487–97.
Article
CAS
Google Scholar
Brown JM, Hazen SL. Microbial modulation of cardiovascular disease. Nat Rev Microbiol. 2018;16:171–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith PM. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341:569–73.
Article
CAS
PubMed
Google Scholar
Koh A, De Vadder F, Kavatcheva-Datchary P, Backhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016;165:1332–45.
Article
CAS
PubMed
Google Scholar
Ji J, Shu D, Zheng M, Wang J, Luo C, Wang Y, Guo F, Zou X, Lv X, Li Y, Liu T, Qu H. Microbial metabolite butyrate facilitates M2 macrophage polarization and function. Sci Rep. 2016;6:24838.
Article
CAS
PubMed
PubMed Central
Google Scholar
Atarashi K. Treg induction by a rationally selected mixture of clostridia strains from the human microbiota. Nature. 2013;500:232–6.
Article
CAS
PubMed
Google Scholar
Furusawa Y. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504:446–50.
Article
CAS
PubMed
Google Scholar
Hu S, Dong TS, Delai SR, Wu F, Bissonnette M, Kwon JH, Chang EB. The microbe-derived short chain fatty acid butyrate targets miRNA -dependent p21 gene expression in human colon cancer. PLoS One. 2011;6(1):e16221.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rose S, Bennuri SC, Davis JE, Wynne R, Slattery JC, Tippett M, Delhey MS, Kahler SG, MacFabe DF, Frye RE. Butyrate enhances mitochondrial function during oxidative stress in cell lines from boys with autism. Transl Psych. 2018;8:42.
Article
CAS
Google Scholar
Xu J, Chen X, Yu S, Su Y, Zhu W. Effects of early intervention with sodium butyrate on gut microbiota and the expression of inflammatory cytokines in neonatal piglets. PLoS One. 2016;11(9):e0162461.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ramezani A. Role of the gut microbiome in uremia: a potential therapeutic target. Am J Kidney Dis. 2016;67:483–98.
Article
CAS
PubMed
Google Scholar
Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol. 2015;11:577–91.
Article
CAS
PubMed
Google Scholar
So A, Thorens B. Uric acid transport and disease. J Clin Invest. 2010;120:1791–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Machida Y, Nakanishi T. Aerobic degradation of purines by Enterobacter cloacae. Ag Biol Chem. 1982;46(8):2135–6.
CAS
Google Scholar
Shivashankar K, Subbayya IN, Balarma H. Developmnet of a bacterial screen for novel hypoxanthine-guanine phosphoribosyltransferase substrates. J Mol Microbiol Biotechnol. 2001;3(4):557–62.
CAS
PubMed
Google Scholar