Esmon CT. The roles of protein C and thrombomodulin in the regulation of blood coagulation. J Biol Chem. 1989;264(9):4743–6.
CAS
PubMed
Google Scholar
Suzuki K, Kusumoto H, Deyashiki Y, Nishioka J, Maruyama I, Zushi M, Kawahara S, Honda G, Yamamoto S, Horiguchi S. Structure and expression of human thrombomodulin, a thrombin receptor on endothelium acting as a cofactor for protein C activation. EMBO J. 1987;6(7):1891–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bajzar L, Nesheim M, Morser J, Tracy PB. Both cellular and soluble forms of thrombomodulin inhibit fibrinolysis by potentiating the activation of thrombin-activable fibrinolysis inhibitor. J Biol Chem. 1998;273(5):2792–8.
Article
CAS
PubMed
Google Scholar
Maruyama I, Salem HH, Ishii H, Majerus PW. Human Thrombomodulin is not an efficient inhibitor of the Procoagulant activity of thrombin. J Clin Investig. 1985;75(3):987–91.
Article
CAS
PubMed
Google Scholar
Ishii H, Majerus PW. Thrombomodulin is present in human-plasma and urine. J Clin Investig. 1985;76(6):2178–81.
Article
CAS
PubMed
Google Scholar
Chan SH, Chen JH, Li YH, Lin LJ, Tsai LM. Increasing post-event plasma thrombomodulin level associates with worse outcome in survival of acute coronary syndrome. Int J Cardiol. 2006;111(2):280–5.
Article
PubMed
Google Scholar
Orwoll BE, Spicer AC, Zinter MS, Alkhouli MF, Khemani RG, Flori HR, Neuhaus JM, Calfee CS, Matthay MA, Sapru A. Elevated soluble thrombomodulin is associated with organ failure and mortality in children with acute respiratory distress syndrome (ARDS): a prospective observational cohort study. Crit Care. 2015;19:435.
Article
PubMed
PubMed Central
Google Scholar
Salomaa V, Matei C, Aleksic N, Sansores-Garcia L, Folsom AR, Juneja H, Chambless LE, Wu KK. Soluble thrombomodulin as a predictor of incident coronary heart disease and symptomless carotid artery atherosclerosis in the atherosclerosis risk in communities (ARIC) study: a case-cohort study. Lancet. 1999;353(9166):1729–34.
Article
CAS
PubMed
Google Scholar
Xu XH, Huang LS, Lu XG, Zhang XH, Zhao XY. Detection and clinical significance of thrombomodulin in both plasma and tissue extracts of cancer patients. Blood. 2004;104(11):77b–8b.
Google Scholar
Conway EM. Thrombomodulin and its role in inflammation. Semin Immunopathol. 2012;34(1):107–25.
Article
CAS
PubMed
Google Scholar
Rosenberg RD. The absence of the blood clotting regulator thrombomodulin causes embryonic lethality in mice before development of a functional cardiovascular system. Thromb Haemost. 1995;74(1):52–7.
CAS
PubMed
Google Scholar
Healy AM, Rayburn HB, Rosenberg RD, Weiler H. Absence of the blood-clotting regulator thrombomodulin causes embryonic lethality in mice before development of a functional cardiovascular system. Proc Natl Acad Sci U S A. 1995;92(3):850–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Isermann B, Sood R, Pawlinski R, Zogg M, Kalloway S, Degen JL, Mackman N, Weiler H. The thrombomodulin-protein C system is essential for the maintenance of pregnancy. Nat Med. 2003;9(3):331–7.
Article
CAS
PubMed
Google Scholar
Isermann B, Hendrickson SB, Hutley K, Wing M, Weiler H. Tissue-restricted expression of thrombomodulin in the placenta rescues thrombomodulin-deficient mice from early lethality and reveals a secondary developmental block. Development. 2001;128(6):827–38.
CAS
PubMed
Google Scholar
Shi CS, Shi GY, Hsiao HM, Kao YC, Kuo KL, Ma CY, Kuo CH, Chang BI, Chang CF, Lin CH, et al. Lectin-like domain of thrombomodulin binds to its specific ligand Lewis Y antigen and neutralizes lipopolysaccharide-induced inflammatory response. Blood. 2008;112(9):3661–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma CY, Shi GY, Shi CS, Kao YC, Lin SW, Wu HL. Monocytic thrombomodulin triggers LPS- and gram-negative bacteria-induced inflammatory response. J Immunol. 2012;188(12):6328–37.
Article
CAS
PubMed
Google Scholar
Ma CY, Chang WE, Shi GY, Chang BY, Cheng SE, Shih YT, Wu HL. Recombinant thrombomodulin inhibits lipopolysaccharide-induced inflammatory response by blocking the functions of CD14. J Immunol. 2015;194(4):1905–15.
Article
CAS
PubMed
Google Scholar
Lai CH, Shi GY, Lee FT, Kuo CH, Cheng TL, Chang BI, Ma CY, Hsu FC, Yang YJ, Wu HL. Recombinant human thrombomodulin suppresses experimental abdominal aortic aneurysms induced by calcium chloride in mice. Ann Surg. 2013;258(6):1103–10.
Article
PubMed
Google Scholar
Wang KC, Li YH, Shi GY, Tsai HW, Luo CY, Cheng MH, Ma CY, Hsu YY, Cheng TL, Chang BI, et al. Membrane-bound Thrombomodulin regulates macrophage inflammation in abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol. 2015;35(11):2412–22.
Article
PubMed
Google Scholar
Shi CS, Shi GY, Chang YS, Han HS, Kuo CH, Liu C, Huang HC, Chang YJ, Chen PS, Wu HL. Evidence of human thrombomodulin domain as a novel angiogenic factor. Circulation. 2005;111(13):1627–36.
Article
CAS
PubMed
Google Scholar
Chen PK, Chang BI, Kuo CH, Chen PS, Cho CF, Chang CF, Shi GY, Wu HL. Thrombomodulin functions as a plasminogen receptor to modulate angiogenesis. FASEB J. 2013;27(11):4520–31.
Article
CAS
PubMed
Google Scholar
Hsu YY, Shi GY, Wang KC, Ma CY, Cheng TL, Wu HL. Thrombomodulin promotes focal adhesion kinase activation and contributes to angiogenesis by binding to fibronectin. Oncotarget. 2016;7(42):68122–39.
Article
PubMed
PubMed Central
Google Scholar
Hsu YY, Shi GY, Kuo CH, Liu SL, Wu CM, Ma CY, Lin FY, Yang HY, Wu HL. Thrombomodulin is an ezrin-interacting protein that controls epithelial morphology and promotes collective cell migration. FASEB J. 2012;26(8):3440–52.
Article
CAS
PubMed
Google Scholar
Cheng TL, Wu YT, Lai CH, Kao YC, Kuo CH, Liu SL, Hsu YY, Chen PK, Cho CF, Wang KC, et al. Thrombomodulin regulates keratinocyte differentiation and promotes wound healing. J Invest Dermatol. 2013;133(6):1638–45.
Article
CAS
PubMed
Google Scholar
Cheng TL, Lai CH, Chen PK, Cho CF, Hsu YY, Wang KC, Lin WL, Chang BI, Liu SK, Wu YT, et al. Thrombomodulin promotes diabetic wound healing by regulating toll-like receptor 4 expression. J Invest Dermatol. 2015;135(6):1668–75.
Article
CAS
PubMed
Google Scholar
Cheng TL, Wu YT, Lin HY, Hsu FC, Liu SK, Chang BI, Chen WS, Lai CH, Shi GY, Wu HL. Functions of rhomboid family protease RHBDL2 and thrombomodulin in wound healing. J Invest Dermatol. 2011;131(12):2486–94.
Article
CAS
PubMed
Google Scholar
Lin WL, Chen CC, Shi GY, Ma CY, Chang CF, Wu HL. Monocytic thrombomodulin promotes cell adhesion through interacting with its ligand, Lewisy. Immunol Cell Biol. 2017;95(4):372–9.
Article
PubMed
PubMed Central
Google Scholar
Kao YC, Wu LW, Shi CS, Chu CH, Huang CW, Kuo CP, Sheu HM, Shi GY, Wu HL. Downregulation of thrombomodulin, a novel target of snail, induces tumorigenesis through epithelial-mesenchymal transition. Mol Cell Biol. 2010;30(20):4767–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tu S, Chi NC. Zebrafish models in cardiac development and congenital heart birth defects. Differentiation. 2012;84(1):4–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jing L, Zon LI. Zebrafish as a model for normal and malignant hematopoiesis. Dis Model Mech. 2011;4(4):433–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gore AV, Monzo K, Cha YR, Pan W, Weinstein BM. Vascular development in the zebrafish. Cold Spring Harb Perspect Med. 2012;2(5):a006684.
Article
PubMed
PubMed Central
Google Scholar
van Rooijen E, Fazio M, Zon LI. From fish bowl to bedside: the power of zebrafish to unravel melanoma pathogenesis and discover new therapeutics. Pigment Cell Melanoma Res. 2017;30(4):402–12.
Article
PubMed
PubMed Central
Google Scholar
Traver D, Paw BH, Poss KD, Penberthy WT, Lin S, Zon LI. Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nat Immunol. 2003;4(12):1238–46.
Article
CAS
PubMed
Google Scholar
Lawson ND, Weinstein BM. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol. 2002;248(2):307–18.
Article
CAS
PubMed
Google Scholar
Mathias JR, Perrin BJ, Liu TX, Kanki J, Look AT, Huttenlocher A. Resolution of inflammation by retrograde chemotaxis of neutrophils in transgenic zebrafish. J Leukoc Biol. 2006;80(6):1281–8.
Article
CAS
PubMed
Google Scholar
Westerfield M: A guide for the laboratory use of zebrafish (Danio rerio). 2007. In.: University of Oregon Press Google Scholar.
Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. DevDyn. 1995;203(3):253–310.
CAS
Google Scholar
Huang HC, Shi GY, Jiang SJ, Shi CS, Wu CM, Yang HY, Wu HL. Thrombomodulin-mediated cell adhesion: involvement of its lectin-like domain. J Biol Chem. 2003;278(47):46750–9.
Article
CAS
PubMed
Google Scholar
Jowett T. Double in situ hybridization techniques in zebrafish. Methods (San Diego, Calif). 2001;23(4):345–58.
Article
CAS
Google Scholar
Thisse C, Thisse B, Schilling TF, Postlethwait JH. Structure of the zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant embryos. Development (Cambridge, England). 1993;119(4):1203–15.
CAS
Google Scholar
Fernandez J, Fuentes R. Fixation/permeabilization: new alternative procedure for immunofluorescence and mRNA in situ hybridization of vertebrate and invertebrate embryos. Dev Dyn. 2013;242(5):503–17.
Article
CAS
PubMed
Google Scholar
Avwioro G. Histochemical uses of haematoxylin—a review. Jpcs. 2011;1:24–34.
Google Scholar
Piccinini F, Kiss A, Horvath P. CellTracker (not only) for dummies. Bioinformatics. 2015;32(6):955–7.
Article
PubMed
Google Scholar
Detrich Hr KMW, Chan FY, Barone LM, Yee K, Rundstadler JA, Pratt S, Ransom D, Zon LI. Intraembryonic hematopoietic cell migration during vertebrate development. Proc Natl Acad Sci. 1995;92(23):10713–7.
Article
Google Scholar
D'Amico LA, Cooper MS. Morphogenetic domains in the yolk syncytial layer of axiating zebrafish embryos. Dev Dyn. 2001;222(4):611–24.
Article
CAS
PubMed
Google Scholar
Renshaw SA, Loynes CA, Trushell DM, Elworthy S, Ingham PW, Whyte MK. A transgenic zebrafish model of neutrophilic inflammation. Blood. 2006;108(13):3976–8.
Article
CAS
PubMed
Google Scholar
Metcalfe WK, Kimmel CB, Schabtach E. Anatomy of the posterior lateral line system in young larvae of the zebrafish. J Comp Neurol. 1985;233(3):377–89.
Article
CAS
PubMed
Google Scholar
Metcalfe WK. Sensory neuron growth cones comigrate with posterior lateral line primordial cells in zebrafish. J Comp Neurol. 1985;238(2):218–24.
Article
CAS
PubMed
Google Scholar
Cheng JC, Miller AL, Webb SE. Organization and function of microfilaments during late epiboly in zebrafish embryos. Dev Dyn. 2004;231(2):313–23.
Article
PubMed
Google Scholar
Solnica-Krezel L, Driever W. Microtubule arrays of the zebrafish yolk cell: organization and function during epiboly. Development. 1994;120(9):2443–55.
Papakonstanti EA, Vardaki EA, Stournaras C. Actin cytoskeleton: a signaling sensor in cell volume regulation. Cell Physiol Biochem. 2000;10(5–6):257–64.
Article
CAS
PubMed
Google Scholar
Cantiello HF, Prat AG, Bonventre JV, Cunningham CC, Hartwig JH, Ausiello DA. Actin-binding protein contributes to cell volume regulatory ion channel activation in melanoma cells. J Biol Chem. 1993;268(7):4596–9.
CAS
PubMed
Google Scholar
Chang C-CLT-IYY-DLT-ILY-TCJ-FLH-LWH-C: Study on mechanical properties of thrombomodulin-transfected cancer cells by atomic force microscopy. J Med Biol Eng 2010, 30(5):8.
Lo IC, Lin TM, Chou LH, Liu SL, Wu LW, Shi GY, Wu HL, Jiang MJ. Ets-1 mediates platelet-derived growth factor-BB-induced thrombomodulin expression in human vascular smooth muscle cells. CardiovascRes. 2009;81(4):771–9.
Article
CAS
Google Scholar
Sumanas S, Lin S. Ets1-related protein is a key regulator of vasculogenesis in zebrafish. PLoS Biol. 2006;4(1):e10.
Article
PubMed
Google Scholar
Rotsch C, Radmacher M. Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophys J. 2000;78(1):520–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Haga H, Sasaki S, Kawabata K, Ito E, Ushiki T, Sambongi T. Elasticity mapping of living fibroblasts by AFM and immunofluorescence observation of the cytoskeleton. Ultramicroscopy. 2000;82(1–4):253–8.
Article
CAS
PubMed
Google Scholar
Heisenberg CP, Bellaiche Y. Forces in tissue morphogenesis and patterning. Cell. 2013;153(5):948–62.
Article
CAS
PubMed
Google Scholar
Xu H, Ye D, Behra M, Burgess S, Chen S, Lin F. Gbeta1 controls collective cell migration by regulating the protrusive activity of leader cells in the posterior lateral line primordium. Dev Biol. 2014;385(2):316–27.
Article
CAS
PubMed
Google Scholar
Esmon CT, Esmon NL, Harris KW. Complex formation between thrombin and thrombomodulin inhibits both thrombin-catalyzed fibrin formation and factor V activation. J Biol Chem. 1982;257(14):7944–7.
CAS
PubMed
Google Scholar
Kok FO, Shin M, Ni CW, Gupta A, Grosse AS, van Impel A, Kirchmaier BC, Peterson-Maduro J, Kourkoulis G, Male I, et al. Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish. Dev Cell. 2015;32(1):97–108.
Article
CAS
PubMed
Google Scholar
Rossi A, Kontarakis Z, Gerri C, Nolte H, Holper S, Kruger M, Stainier DY. Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature. 2015;524(7564):230–3.
Article
CAS
PubMed
Google Scholar
El-Brolosy MA, Stainier DYR. Genetic compensation: a phenomenon in search of mechanisms. PLoS Genet. 2017;13(7):e1006780.
Article
PubMed
PubMed Central
Google Scholar