Lombardino JG, Lowe JA III. A guide to drug discovery: the role of the medicinal chemist in drug discovery—then and now. Nat Rev Drug Discov. 2004;3:853.
Article
CAS
PubMed
Google Scholar
Khetani SR, Berger DR, Ballinger KR, Davidson MD, Lin C, Ware BR. Microengineered liver tissues for drug testing. J Lab Automation. 2015;20:216–50.
Article
CAS
Google Scholar
Soldatow VY, LeCluyse EL, Griffith LG, Rusyn I. In vitro models for liver toxicity testing. Toxicol Res. 2013;2:23–39.
Article
CAS
Google Scholar
Hewitt NJ, Gómez Lechón MJ, Houston JB, Hallifax D, Brown HS, Maurel P, Kenna JG, Gustavsson L, Lohmann C, Skonberg C, Guillouzo A, Tuschl G, Li AP, LeCluyse E, Groothuis GMM, Hengstler JG. Primary hepatocytes: current understanding of the regulation of metabolic enzymes and transporter proteins, and pharmaceutical practice for the use of hepatocytes in metabolism, enzyme induction, transporter, clearance, and hepatotoxicity studies. Drug Metab Rev. 2007;39:159–234.
Article
CAS
PubMed
Google Scholar
Khetani SR, Bhatia SN. Microscale culture of human liver cells for drug development. Nat Biotechnol. 2008;26:120.
Article
CAS
PubMed
Google Scholar
Bhatia SN, Balis UJ, Yarmush ML, Toner M. Microfabrication of hepatocyte/fibroblast co-cultures: role of homotypic cell interactions. Biotechnol Prog. 1998;14:378–87.
Article
CAS
PubMed
Google Scholar
Bhatia SN, Balis UJ, Yarmush ML, Toner M. Effect of cell–cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells. FASEB J. 1999;13:1883–900.
Article
CAS
PubMed
Google Scholar
Cho CH, Park J, Tilles AW, Berthiaume F, Toner M, Yarmush ML. Layered patterning of hepatocytes in co-culture systems using microfabricated stencils. Biotechniques. 2010;48:47–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Su W, Wang L, Jiang L, Liu Y, Hui L, Qin J. Paper supported long-term 3D liver co-culture model for the assessment of hepatotoxic drugs. Toxicol Res. 2018;7:13–21.
Article
CAS
Google Scholar
Ramsden D, Zhou J, Tweedie DJ. Determination of a degradation constant for CYP3A4 by direct suppression of mRNA in a novel human hepatocyte model, HepatoPac. Drug Metabol Dispos. 2015;43:1307–15.
Article
CAS
Google Scholar
March S, Ramanan V, Trehan K, Ng S, Galstian A, Gural N, Scull MA, Shlomai A, Mota MM, Fleming HE. Micropatterned coculture of primary human hepatocytes and supportive cells for the study of hepatotropic pathogens. Nat Protoc. 2015;10:2027.
Article
CAS
PubMed
PubMed Central
Google Scholar
Albrecht DR, Underhill GH, Wassermann TB, Sah RL, Bhatia SN. Probing the role of multicellular organization in three-dimensional microenvironments. Nat Methods. 2006;3:369.
Article
CAS
PubMed
Google Scholar
Ho C-T, Lin R-Z, Chen R-J, Chin C-K, Gong S-E, Chang H-Y, Peng H-L, Hsu L, Yew T-R, Chang S-F, Liu C-H. Liver-cell patterning lab chip: mimicking the morphology of liver lobule tissue. Lab Chip. 2013;13:3578–87.
Article
CAS
PubMed
Google Scholar
Puttaswamy SV, Sivashankar S, Chen R-J, Chin C-K, Chang H-Y, Liu C-H. Enhanced cell viability and cell adhesion using low conductivity medium for negative dielectrophoretic cell patterning. Biotechnol J. 2010;5:1005–15.
Article
CAS
PubMed
Google Scholar
Macdonald N, Menachery A, Reboud J, Cooper J. Creating tissue on chip constructs in microtitre plates for drug discovery. RSC Adv. 2018;8:9603–10.
Article
CAS
Google Scholar
Kim K, Utoh R, Ohashi K, Kikuchi T, Okano T. Fabrication of functional 3D hepatic tissues with polarized hepatocytes by stacking endothelial cell sheets in vitro. J Tissue Eng Regen Med. 2017;11:2071–80.
Article
CAS
PubMed
Google Scholar
Ho C-T, Lin R-Z, Chang W-Y, Chang H-Y, Liu C-H. Rapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap. Lab Chip. 2006;6:724–34.
Article
CAS
PubMed
Google Scholar
Jones TB. Electromechanics of particles; 2005.
Google Scholar
Zamanian B, Masaeli M, Nichol JW, Khabiry M, Hancock MJ, Bae H, Khademhosseini A. Interface-directed self-assembly of cell-laden microgels. Small. 2010;6:937–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Zhang L, Wei J, Yan S, Yu J, Li X. Promoting hepatocyte spheroid formation and functions by coculture with fibroblasts on micropatterned electrospun fibrous scaffolds. J Mater Chem B. 2014;2:3029–40.
Article
CAS
PubMed
Google Scholar
Ma X, Qu X, Zhu W, Li Y-S, Yuan S, Zhang H, Liu J, Wang P, Lai CSE, Zanella F. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc Natl Acad Sci. 2016;113:2206–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grix T, Ruppelt A, Thomas A, Amler A-K, Noichl B, Lauster R, Kloke L. Bioprinting perfusion-enabled liver equivalents for advanced organ-on-a-chip applications. Genes. 2018;9:176.
Article
PubMed Central
CAS
Google Scholar
Lee W, Park J. The design of a heterocellular 3D architecture and its application to monitoring the behavior of cancer cells in response to the spatial distribution of endothelial cells. Adv Mater. 2012;24:5339–44.
Article
CAS
PubMed
Google Scholar
Tamayol A, Najafabadi AH, Aliakbarian B, Arab-Tehrany E, Akbari M, Annabi N, Juncker D, Khademhosseini A. Hydrogel templates for rapid manufacturing of bioactive fibers and 3D constructs. Adv Healthc Mater. 2015;4:2146–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nguyen DG, Funk J, Robbins JB, Crogan-Grundy C, Presnell SC, Singer T, Roth AB. Bioprinted 3D primary liver tissues allow assessment of organ-level response to clinical drug induced toxicity in vitro. PLoS One. 2016;11:e0158674.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gieseck RL III, Hannan NR, Bort R, Hanley NA, Drake RA, Cameron GW, Wynn TA, Vallier L. Maturation of induced pluripotent stem cell derived hepatocytes by 3D-culture. PLoS One. 2014;9:e86372.
Article
PubMed
CAS
Google Scholar
Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubruel P. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials. 2012;33:6020–41.
Article
CAS
PubMed
Google Scholar
Bhise NS, Manoharan V, Massa S, Tamayol A, Ghaderi M, Miscuglio M, Lang Q, Zhang YS, Shin SR, Calzone G. A liver-on-a-chip platform with bioprinted hepatic spheroids. Biofabrication. 2016;8:014101.
Article
PubMed
CAS
Google Scholar
Zhang B, Montgomery M, Chamberlain MD, Ogawa S, Korolj A, Pahnke A, Wells LA, Massé S, Kim J, Reis L. Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis. Nat Mater. 2016;15:669.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stevens KR, Scull MA, Ramanan V, Fortin CL, Chaturvedi RR, Knouse KA, Xiao JW, Fung C, Mirabella T, Chen AX, McCue MG, Yang MT, Fleming HE, Chung K, Jong YP, Chen CS, Rice CM, Bhatia SN. In situ expansion of engineered human liver tissue in a mouse model of chronic liver disease. Sci Transl Med. 2017;9:eaah5505.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kerbel RS, Kamen BA. The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer. 2004;4:423.
Article
CAS
PubMed
Google Scholar
Moroni L, Burdick JA, Highley C, Lee SJ, Morimoto Y, Takeuchi S, Yoo JJ. Biofabrication strategies for 3D in vitro models and regenerative medicine. Nat Rev Mater. 2018;3:21–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32:773.
Article
CAS
PubMed
Google Scholar
Pati F, Jang J, Ha D-H, Kim SW, Rhie J-W, Shim J-H, et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014;5:3935.
Article
CAS
PubMed
Google Scholar
Lee JW, Choi Y-J, Yong W-J, Pati F, Shim J-H, Kang KS, Kang I-H, Park J, Cho D-W. Development of a 3D cell printed construct considering angiogenesis for liver tissue engineering. Biofabrication. 2016;8:015007.
Article
PubMed
CAS
Google Scholar
Lewis PL, Green RM, Shah RN. 3D-printed gelatin scaffolds of differing pore geometry modulate hepatocyte function and gene expression. Acta Biomater. 2018;69:63–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kizawa H, Nagao E, Shimamura M, Zhang G, Torii H. Scaffold-free 3D bio-printed human liver tissue stably maintains metabolic functions useful for drug discovery. Biochem Biophys Rep. 2017;10:186–91.
PubMed
PubMed Central
Google Scholar
Faulkner-Jones A, Fyfe C, Cornelissen D-J, Gardner J, King J, Courtney A, et al. Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D. Biofabrication. 2015;7:044102.
Article
PubMed
Google Scholar
Ouyang L, Highley CB, Sun W, Burdick JA. A generalizable strategy for the 3D bioprinting of hydrogels from nonviscous photo-crosslinkable inks. Adv Mater. 2017;29:1604983.
Article
CAS
Google Scholar
Mistry P, Aied A, Alexander M, Shakesheff K, Bennett A, Yang J. Bioprinting using mechanically robust core–shell cell-laden hydrogel strands. Macromol Biosci. 2017;17:1600472.
Article
CAS
Google Scholar
Ma M, Chiu A, Sahay G, Doloff JC, Dholakia N, Thakrar R, et al. Core–shell hydrogel microcapsules for improved islets encapsulation. Adv Healthc Mater. 2013;2:667–72.
Article
CAS
PubMed
Google Scholar
Kostadinova R, Boess F, Applegate D, Suter L, Weiser T, Singer T, Naughton B, Roth A. A long-term three dimensional liver co-culture system for improved prediction of clinically relevant drug-induced hepatotoxicity. Toxicol Appl Pharmacol. 2013;268:1–16.
Article
CAS
PubMed
Google Scholar
Richert L, Baze A, Parmentier C, Gerets HH, Sison-Young R, Dorau M, Lovatt C, Czich A, Goldring C, Park BK. Cytotoxicity evaluation using cryopreserved primary human hepatocytes in various culture formats. Toxicol Lett. 2016;258:207–15.
Article
CAS
PubMed
Google Scholar
Nair K, Gandhi M, Khalil S, Yan KC, Marcolongo M, Barbee K, Sun W. Characterization of cell viability during bioprinting processes. Biotechnol J. 2009;4:1168–77.
Article
CAS
PubMed
Google Scholar
Chang R, Nam J, Sun W. Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication–based direct cell writing. Tissue Eng A. 2008;14:41–8.
Article
CAS
Google Scholar
Lee PJ, Hung PJ, Lee LP. An artificial liver sinusoid with a microfluidic endothelial-like barrier for primary hepatocyte culture. Biotechnol Bioeng. 2007;97:1340–6.
Article
CAS
PubMed
Google Scholar
Toh Y-C, Zhang C, Zhang J, Khong YM, Chang S, Samper VD, van Noort D, Hutmacher DW, Yu H. A novel 3D mammalian cell perfusion-culture system in microfluidic channels. Lab Chip. 2007;7:302–9.
Article
CAS
PubMed
Google Scholar
Toh Y-C, Lim TC, Tai D, Xiao G, van Noort D, Yu H. A microfluidic 3D hepatocyte chip for drug toxicity testing. Lab Chip. 2009;9:2026–35.
Article
CAS
PubMed
Google Scholar
Wang Y, Toh Y-C, Li Q, Nugraha B, Zheng B, Lu TB, Gao Y, Ng MML, Yu H. Mechanical compaction directly modulates the dynamics of bile canaliculi formation. Integr Biol. 2012;5:390–401.
Article
Google Scholar
Shih M-C, Tseng S-H, Weng Y-S, Chu I-M, Liu C-H. A microfluidic device mimicking acinar concentration gradients across the liver acinus. Biomed Microdevices. 2013;15:767–80.
Article
CAS
PubMed
Google Scholar
Ma C, Tian C, Zhao L, Wang J. Pneumatic-aided micro-molding for flexible fabrication of homogeneous and heterogeneous cell-laden microgels. Lab Chip. 2016;16:2609–17.
Article
CAS
PubMed
Google Scholar
Ma C, Zhao L, Zhou E-M, Xu J, Shen S, Wang J. On-chip construction of liver lobule-like microtissue and its application for adverse drug reaction assay. Anal Chem. 2016;88:1719–27.
Article
CAS
PubMed
Google Scholar
Prodanov L, Jindal R, Bale SS, Hegde M, McCarty WJ, Golberg I, Bhushan A, Yarmush ML, Usta OB. Long-term maintenance of a microfluidic 3D human liver sinusoid. Biotechnol Bioeng. 2016;113:241–6.
Article
CAS
PubMed
Google Scholar
Schepers A, Li C, Chhabra A, Seney BT, Bhatia S. Engineering a perfusable 3D human liver platform from iPS cells. Lab Chip. 2016;16:2644–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Banaeiyan AA, Theobald J, Paukštyte J, Wölfl S, Adiels CB, Goksör M. Design and fabrication of a scalable liver-lobule-on-a-chip microphysiological platform. Biofabrication. 2017;9:015014.
Article
PubMed
CAS
Google Scholar
Ong LJY, Chong LH, Jin L, Singh PK, Lee PS, Yu H, Ananthanarayanan A, Leo HL, Toh YC. A pump-free microfluidic 3D perfusion platform for the efficient differentiation of human hepatocyte-like cells. Biotechnol Bioeng. 2017;114:2360–70.
Article
CAS
PubMed
Google Scholar
Du Y, Li N, Yang H, Luo C, Gong Y, Tong C, Gao Y, Lü S, Long M. Mimicking liver sinusoidal structures and functions using a 3D-configured microfluidic chip. Lab Chip. 2017;17:782–94.
Article
CAS
PubMed
Google Scholar
Yu F, Deng R, Tong WH, Huan L, Way NC, IslamBadhan A, Iliescu C, Yu H. A perfusion incubator liver chip for 3D cell culture with application on chronic hepatotoxicity testing. Sci Rep. 2017;7:14528.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kang YBA, Eo J, Mert S, Yarmush ML, Usta OB. Metabolic patterning on a chip: towards in vitro liver zonation of primary rat and human hepatocytes. Sci Rep. 2018;8:8951.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chong LH, Li H, Wetzel I, Cho H, Toh Y-C. A liver-immune coculture array for predicting systemic drug-induced skin sensitization. Lab Chip. 2018;18:3239–50.
Article
CAS
PubMed
Google Scholar
Weng YS, Chang SF, Shih MC, Tseng SH, Lai CH. Scaffold-free liver-on-a-chip with multiscale organotypic cultures. Adv Mater. 2017;29:1701545.
Article
CAS
Google Scholar
Braet F, Wisse E. Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comp Hepatol. 2002;1:1.
Article
PubMed
PubMed Central
Google Scholar
Spatzenegger M, Horsmans Y, Verbeeck RK. Differential activities of CYP1A isozymes in hepatic and intestinal microsomes of control and 3-methylcholanthrene-induced rats. Pharmacol Toxicol. 2000;86:71–7.
Article
CAS
PubMed
Google Scholar
Bunchorntavakul C, Reddy KR. Acetaminophen-related hepatotoxicity. Clin Liver Dis. 2013;17:587–607.
Article
PubMed
Google Scholar
Lee JB, Sung JH. Organ-on-a-chip technology and microfluidic whole-body models for pharmacokinetic drug toxicity screening. Biotechnol J. 2013;8:1258–66.
Article
CAS
PubMed
Google Scholar
Abaci HE, Shuler ML. Human-on-a-chip design strategies and principles for physiologically based pharmacokinetics/pharmacodynamics modeling. Integr Biol. 2015;7:383–91.
Article
Google Scholar
Choe A, Ha SK, Choi I, Choi N, Sung JH. Microfluidic gut-liver chip for reproducing the first pass metabolism. Biomed Microdevices. 2017;19:4.
Article
PubMed
CAS
Google Scholar
Kimura H, Ikeda T, Nakayama H, Sakai Y, Fujii T. An on-chip small intestine–liver model for pharmacokinetic studies. J Lab Autom. 2015;20:265–73.
Article
CAS
PubMed
Google Scholar
Theobald J, Ghanem A, Wallisch P, Banaeiyan AA, Andrade-Navarro MA, Taškova K, et al. Liver-kidney-on-chip to study toxicity of drug metabolites. ACS Biomater Sci Eng. 2017;4:78–89.
Article
CAS
PubMed
Google Scholar
Esch MB, Mahler GJ, Stokol T, Shuler ML. Body-on-a-chip simulation with gastrointestinal tract and liver tissues suggests that ingested nanoparticles have the potential to cause liver injury. Lab Chip. 2014;14:3081–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nyblom H, Berggren U, Balldin J, Olsson R. High AST/ALT ratio may indicate advanced alcoholic liver disease rather than heavy drinking. Alcohol Alcohol. 2004;39:336–9.
Article
CAS
PubMed
Google Scholar
Nyblom H, Björnsson E, Simrén M, Aldenborg F, Almer S, Olsson R. The AST/ALT ratio as an indicator of cirrhosis in patients with PBC. Liver Int. 2006;26:840–5.
Article
CAS
PubMed
Google Scholar
Spatzenegger M, Jaeger W. Clinical importance of hepatic cytochrome P450 in drug metabolism. Drug Metab Rev. 1995;27:397–417.
Article
CAS
PubMed
Google Scholar
Zhang H-B, Xing T-L, Yin R-X, Shi Y, Yang S-M, Zhang W-J. Three-dimensional bioprinting is not only about cell-laden structures. Chin J Traumatol. 2016;19:187–92.
Article
PubMed
PubMed Central
Google Scholar
Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG, Bolleyn J, Borner C, Boettger J. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol. 2013;87:1315–530.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee K-H, Lee J, Lee S-H. 3D liver models on a microplatform: well-defined culture, engineering of liver tissue and liver-on-a-chip. Lab Chip. 2015;15:3822–37.
Article
PubMed
CAS
Google Scholar
Laskin DL. Nonparenchymal cells and hepatotoxicity. Semin Liver Dis. Thieme Medical Publishers. 1990;10:293–304.
Article
CAS
PubMed
Google Scholar
Jungermann K, Keitzmann T. Zonation of parenchymal and nonparenchymal metabolism in liver. Annu Rev Nutr. 1996;16:179–203.
Article
CAS
PubMed
Google Scholar
Pichard L, Raulet E, Fabre G, Ferrini JB, Ourlin J-C, Maurel P. Human hepatocyte culture. In: Cytochrome P450 Protocols; 2006. p. 283–93.
Google Scholar
Beckwitt CH, Clark AM, Wheeler S, Taylor DL, Stolz DB, Griffith L, Wells A. Liver ‘organ on a chip’. Exp Cell Res. 2018;363:15–25.
Article
CAS
PubMed
Google Scholar
Alison MR, Poulsom R, Jeffery R, Dhillon AP, Quaglia A, Jacob J, Novelli M, Prentice G, Williamson J, Wright NA. Cell differentiation: hepatocytes from non-hepatic adult stem cells. Nature. 2000;406:257.
Article
CAS
PubMed
Google Scholar
Takebe T, Sekine K, Enomura M, Koike H, Kimura M, Ogaeri T, Zhang R-R, Ueno Y, Zheng Y-W, Koike N. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature. 2013;499:481.
Article
CAS
PubMed
Google Scholar
Szkolnicka D, Zhou W, Lucendo-Villarin B, Hay DC. Pluripotent stem cell–derived hepatocytes: potential and challenges in pharmacology. Annu Rev Pharmacol Toxicol. 2013;53:147–59.
Article
CAS
PubMed
Google Scholar
Castell JV, Jover R, Martnez-Jimnez CP, Gmez-Lechn MJ. Hepatocyte cell lines: their use, scope and limitations in drug metabolism studies. Expert Opin Drug Metab Toxicol. 2006;2:183–212.
Article
CAS
PubMed
Google Scholar
Aninat C, Piton A, Glaise D, Le Charpentier T, Langouët S, Morel F, Guguen-Guillouzo C, Guillouzo A. Expression of cytochromes P450, conjugating enzymes and nuclear receptors in human hepatoma HepaRG cells. Drug Metab Dispos. 2006;34:75–83.
Article
CAS
PubMed
Google Scholar
Guillouzo A, Corlu A, Aninat C, Glaise D, Morel F, Guguen-Guillouzo C. The human hepatoma HepaRG cells: a highly differentiated model for studies of liver metabolism and toxicity of xenobiotics. Chem Biol Interact. 2007;168:66–73.
Article
CAS
PubMed
Google Scholar
Yanagawa F, Sugiura S, Kanamori T. Hydrogel microfabrication technology toward three dimensional tissue engineering. Regen Ther. 2016;3:45–57.
Article
PubMed
PubMed Central
Google Scholar
Yeh J, Ling Y, Karp JM, Gantz J, Chandawarkar A, Eng G, Blumling Iii J, Langer R, Khademhosseini A. Micromolding of shape-controlled, harvestable cell-laden hydrogels. Biomaterials. 2006;27:5391–8.
Article
CAS
PubMed
Google Scholar