Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.
Article
CAS
PubMed
Google Scholar
Chou CH, Chang NW, Shrestha S, Hsu SD, Lin YL, Lee WH, et al. miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res. 2016;44(D1):D239–D47.
Article
CAS
PubMed
Google Scholar
Catalanotto C, Cogoni C, Zardo G. MicroRNA in control of gene expression: an overview of nuclear functions. Int J Mol Sci. 2016;17(10):1712.
Article
PubMed Central
CAS
Google Scholar
Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19(1):92–105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science. 2005;309(5740):1577.
Article
CAS
PubMed
Google Scholar
Trobaugh DW, Gardner CL, Sun C, Haddow AD, Wang E, Chapnik E, et al. RNA viruses can hijack vertebrate microRNAs to suppress innate immunity. Nature. 2014;506(7487):245–8.
Article
CAS
PubMed
Google Scholar
Lecellier CH, Dunoyer P, Arar K, Lehmann-Che J, Eyquem S, Himber C, et al. A cellular microRNA mediates antiviral defense in human cells. Science. 2005;308(5721):557.
Article
CAS
PubMed
Google Scholar
Henke JI, Goergen D, Zheng J, Song Y, Schüttler CG, Fehr C, et al. microRNA-122 stimulates translation of hepatitis C virus RNA. EMBO J. 2008;27(24):3300–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shimakami T, Yamane D, Jangra RK, Kempf BJ, Spaniel C, Barton DJ, et al. Stabilization of hepatitis C virus RNA by an Ago2-miR-122 complex. Proc Natl Acad Sci U S A. 2012;109(3):941–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
WHO. Dengue and severe dengue. 2017. Available at: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue.
Google Scholar
Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013;496:504.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brady O, Gething P, Bhatt S, Messina J, Brownstein J, Hoen A, et al. Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl Trop Dis. 2012;6(8):e1760.
Article
PubMed
PubMed Central
Google Scholar
Perera R, Kuhn RJ. Structural proteomics of dengue virus. Curr Opin Microbiol. 2008;11(4):369–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lozach PY, Burleigh L, Staropoli I, Navarro-Sanchez E, Harriague J, Virelizier JL, et al. Dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN)-mediated enhancement of dengue virus infection is independent of DC-SIGN internalization signals. J Biol Chem. 2005;280(25):23698–708.
Article
CAS
PubMed
Google Scholar
Miller JL, de Wet BJM, Martinez-Pomares L, Radcliffe CM, Dwek RA, Rudd PM, et al. The mannose receptor mediates dengue virus infection of macrophages. PLoS Pathog. 2008;4(2):e17.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tsai YT, Chang SY, Lee CN, Kao CL. Human TLR3 recognizes dengue virus and modulates viral replication in vitro. Cell Microbiol. 2009;11(4):604–15.
Article
CAS
PubMed
Google Scholar
Loo YM, Fornek J, Crochet N, Bajwa G, Perwitasari O, Martinez-Sobrido L, et al. Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J Virol. 2008;82(1):335–45.
Article
CAS
PubMed
Google Scholar
Nasirudeen AM, Wong HH, Thien P, Xu S, Lam KP, Liu DX. RIG-I, MDA5 and TLR3 synergistically play an important role in restriction of dengue virus infection. PLoS Negl Trop Dis. 2011;5(1):e926.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liang Z, Wu S, Li Y, He L, Wu M, Jiang L, et al. Activation of toll-like receptor 3 impairs the dengue virus serotype 2 replication through induction of IFN-β in cultured hepatoma cells. PLoS One. 2011;6(8):e23346.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun P, Fernandez S, Marovich M, Palmer DR, Celluzzi C, Boonnak K, et al. Functional characterization of ex vivo blood myeloid and plasmacytoid dendritic cells after infection with dengue virus. Virology. 2009;383(2):207–15.
Article
CAS
PubMed
Google Scholar
Rodriguez-Madoz JR, Bernal-Rubio D, Kaminski D, Boyd K, Fernandez-Sesma A. Dengue virus inhibits the production of type I interferon in primary human dendritic cells. J Virol. 2010;84(9):4845–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ho LJ, Wang JJ, Shaio MF, Kao CL, Chang DM, Han SW, et al. Infection of human dendritic cells by dengue virus causes cell maturation and cytokine production. J Immunol. 2001;166(3):1499.
Article
CAS
PubMed
Google Scholar
Muñoz-Jordán JL, Laurent-Rolle M, Ashour J, Martínez-Sobrido L, Ashok M, Lipkin WI, et al. Inhibition of alpha/beta interferon signaling by the NS4B protein of flaviviruses. J Virol. 2005;79(13):8004–13.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jones M, Davidson A, Hibbert L, Gruenwald P, Schlaak J, Ball S, et al. Dengue virus inhibits alpha interferon signaling by reducing STAT2 expression. J Virol. 2005;79(9):5414–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu CY, Chang TH, Liang JJ, Chiang RL, Lee YL, Liao CL, et al. Dengue virus targets the adaptor protein MITA to subvert host innate immunity. PLoS Pathog. 2012;8(6):e1002780.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aguirre S, Maestre AM, Pagni S, Patel JR, Savage T, Gutman D, et al. DENV inhibits type I IFN production in infected cells by cleaving human STING. PLoS Pathog. 2012;8(10):e1002934.
Article
PubMed
PubMed Central
Google Scholar
He Z, Zhu X, Wen W, Yuan J, Hu Y, Chen J, et al. Dengue virus subverts host innate immunity by targeting adaptor protein MAVS. J Virol. 2016;90(16):7219–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Avirutnan P, Punyadee N, Noisakran S, Komoltri C, Thiemmeca S, Auethavornanan K, et al. Vascular leakage in severe dengue virus infections: a potential role for the nonstructural viral protein NS1 and complement. J Infect Dis. 2006;193(8):1078–88.
Article
CAS
PubMed
Google Scholar
Halstead SB, Rojanasuphot S, Sangkawibha N. Original antigenic sin in dengue. Am J Trop Med Hyg. 1983;32(1):154–6.
Article
CAS
PubMed
Google Scholar
Halstead SB. Immune enhancement of viral infection. Prog Allergy. 1982;31:301–64.
CAS
PubMed
Google Scholar
Mongkolsapaya J, Dejnirattisai W, Xu XN, Vasanawathana S, Tangthawornchaikul N, Chairunsri A, et al. Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever. Nat Med. 2003;9(7):921–7.
Article
CAS
PubMed
Google Scholar
Rothman AL. Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms. Nat Rev Immunol. 2011;11(8):532–43.
Article
CAS
PubMed
Google Scholar
Rothman AL. T lymphocyte responses to heterologous secondary dengue virus infections. Ann N Y Acad Sci. 2009;1171:E36–41.
Article
CAS
PubMed
Google Scholar
Livingston PG, Toomey S, Kurane I, Janus J, Ennis FA. Modulation of the functions of dengue virus-specific human CD8+ cytotoxic T cell clone by IL-2, IL-7 and IFNγ. Immunol Investig. 1995;24(4):619–29.
Article
CAS
Google Scholar
Gagnon SJ, Ennis FA, Rothman AL. Bystander target cell lysis and cytokine production by dengue virus-specific human CD4(+) cytotoxic T-lymphocyte clones. J Virol. 1999;73(5):3623–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15(8):509–24.
Article
CAS
PubMed
Google Scholar
Broderick JA, Zamore PD. MicroRNA therapeutics. Gene Ther. 2011;18(12):1104–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23(20):4051–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA. 2004;10(12):1957–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425:415.
Article
CAS
PubMed
Google Scholar
Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. Processing of primary microRNAs by the microprocessor complex. Nature. 2004;432:231.
Article
CAS
PubMed
Google Scholar
Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, et al. The microprocessor complex mediates the genesis of microRNAs. Nature. 2004;432:235.
Article
CAS
PubMed
Google Scholar
Murchison EP, Hannon GJ. miRNAs on the move: miRNA biogenesis and the RNAi machinery. Curr Opin Cell Biol. 2004;16(3):223–9.
Article
CAS
PubMed
Google Scholar
Lund E, Güttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science. 2004;303(5654):95.
Article
CAS
PubMed
Google Scholar
Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003;17(24):3011–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001;409:363.
Article
CAS
PubMed
Google Scholar
Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I, et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell. 2001;106(1):23–34.
Article
CAS
PubMed
Google Scholar
Hutvágner G, McLachlan J, Pasquinelli AE, Bálint É, Tuschl T, Zamore PD. A cellular function for the RNA-interference enzyme dicer in the maturation of the let-7 small temporal RNA. Science. 2001;293(5531):834.
Article
PubMed
Google Scholar
Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 2001;15(20):2654–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Knight SW, Bass BL. A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science. 2001;293(5538):2269–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell. 2009;136(4):642–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11:597.
Article
CAS
PubMed
Google Scholar
Drury RE, O'Connor D, Pollard AJ. The clinical application of microRNAs in infectious disease. Front Immunol. 2017;8:1182.
Article
PubMed
PubMed Central
CAS
Google Scholar
van Rooij E, Kauppinen S. Development of microRNA therapeutics is coming of age. EMBO Mol Med. 2014;6(7):851–64.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 2017;16:203.
Article
CAS
PubMed
Google Scholar
Smith JL, Jeng S, McWeeney SK, Hirsch AJ. A microRNA screen identifies the Wnt signaling pathway as a regulator of the interferon response during flavivirus infection. J Virol. 2017;91(8):e02388–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kakumani PK, Ponia SS, S RK, Sood V, Chinnappan M, Banerjea AC, et al. Role of RNA interference (RNAi) in dengue virus replication and identification of NS4B as an RNAi suppressor. J Virol. 2013;87(16):8870–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Otsuka M, Jing Q, Georgel P, New L, Chen J, Mols J, et al. Hypersusceptibility to vesicular stomatitis virus infection in dicer1-deficient mice is due to impaired miR24 and miR93 expression. Immunity. 2007;27(1):123–34.
Article
CAS
PubMed
Google Scholar
Matskevich A, Moelling K. Dicer is involved in protection against influenza a virus infection. J Gen Virol. 2007;88(Pt 10):2627–35.
Article
CAS
PubMed
Google Scholar
Triboulet R, Mari B, Lin YL, Chable-Bessia C, Bennasser Y, Lebrigand K, et al. Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science. 2007;315(5818):1579.
Article
CAS
PubMed
Google Scholar
Chable-Bessia C, Meziane O, Latreille D, Triboulet R, Zamborlini A, Wagschal A, et al. Suppression of HIV-1 replication by microRNA effectors. Retrovirology. 2009;6(1):26.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tambyah P, Chai S, Sepramaniam S, Ali J, Armugam A, Jeyaseelan K. microRNA expression in blood of dengue patients. Ann Clin Biochem. 2016;53(Pt 4):466.
Article
CAS
PubMed
Google Scholar
Ouyang X, Jiang X, Gu D, Zhang Y, Kong SK, Jiang C, et al. Dysregulated serum miRNA profile and promising biomarkers in dengue-infected patients. Int J Med Sci. 2016;13(3):195–205.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nayak A, Berry B, Tassetto M, Kunitomi M, Acevedo A, Deng C, et al. Cricket paralysis virus antagonizes Argonaute 2 to modulate antiviral defense in drosophila. Nat Struct Mol Biol. 2010;17(5):547–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li WX, Li H, Lu R, Li F, Dus M, Atkinson P, et al. Interferon antagonist proteins of influenza and vaccinia viruses are suppressors of RNA silencing. Proc Natl Acad Sci U S A. 2004;101(5):1350–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aqil M, Naqvi AR, Bano AS, Jameel S. The HIV-1 Nef protein binds argonaute-2 and functions as a viral suppressor of RNA interference. PLoS One. 2013;8(9):e74472.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kakumani Pavan K, Rajgokul KS, Ponia Sanket S, Kaur I, Mahanty S, Medigeshi Guruprasad R, et al. Dengue NS3, an RNAi suppressor, modulates the human miRNA pathways through its interacting partner. Biochem J. 2015;471(1):89.
Article
PubMed
CAS
Google Scholar
Hussain M, Asgari S. MicroRNA-like viral small RNA from dengue virus 2 autoregulates its replication in mosquito cells. Proc Natl Acad Sci U S A. 2014;111(7):2746–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hussain M, Torres S, Schnettler E, Funk A, Grundhoff A, Pijlman GP, et al. West Nile virus encodes a microRNA-like small RNA in the 3′ untranslated region which up-regulates GATA4 mRNA and facilitates virus replication in mosquito cells. Nucleic Acids Res. 2012;40(5):2210–23.
Article
CAS
PubMed
Google Scholar
Li X, Fu Z, Liang H, Wang Y, Qi X, Ding M, et al. H5N1 influenza virus-specific miRNA-like small RNA increases cytokine production and mouse mortality via targeting poly(rC)-binding protein 2. Cell Res. 2018;28(2):157–71.
Article
PubMed
PubMed Central
CAS
Google Scholar
Weitao W, He Z, Jing Q, Hu Y, Lin C, Zhou R, et al. Cellular microRNA-miR-548g-3p modulates the replication of dengue virus. J Inf Secur. 2015;70(6):631–40.
Google Scholar
Castillo JA, Castrillón JC, Diosa-Toro M, Betancur JG, St Laurent G 3rd, Smit JM, et al. Complex interaction between dengue virus replication and expression of miRNA-133a. BMC Infect Dis. 2016;16:29.
Article
PubMed
PubMed Central
CAS
Google Scholar
Castrillón-Betancur JC, Urcuqui-Inchima S. Overexpression of miR-484 and miR-744 in Vero cells alters dengue virus replication. Mem Inst Oswaldo Cruz. 2017;112(4):281–91.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yan H, Zhou Y, Liu Y, Deng Y, Puthiyakunnon S, Chen X. miR-252 of the Asian tiger mosquito Aedes albopictus regulates dengue virus replication by suppressing the expression of the dengue virus envelope protein. J Med Virol. 2014;86(8):1428–36.
Article
CAS
PubMed
Google Scholar
Escalera-Cueto M, Medina-Martínez I, del Angel RM, Berumen-Campos J, Gutiérrez-Escolano AL, Yocupicio-Monroy M. Let-7c overexpression inhibits dengue virus replication in human hepatoma Huh-7 cells. Virus Res. 2015;196:105–12.
Article
CAS
PubMed
Google Scholar
Zhu X, He Z, Hu Y, Wen W, Lin C, Yu J, et al. MicroRNA-30e* suppresses dengue virus replication by promoting NF-κB-dependent IFN production. PLoS Negl Trop Dis. 2014;8(8):e3088.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wu N, Gao N, Fan D, Wei J, Zhang J, An J. miR-223 inhibits dengue virus replication by negatively regulating the microtubule-destabilizing protein STMN1 in EAhy926 cells. Microbes Infect. 2014;16(11):911–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Diosa-Toro M, Echavarría-Consuegra L, Flipse J, Fernández GJ, Kluiver J, van den Berg A, et al. MicroRNA profiling of human primary macrophages exposed to dengue virus identifies miRNA-3614-5p as antiviral and regulator of ADAR1 expression. PLoS Negl Trop Dis. 2017;11(10):e0005981.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wu S, He L, Li Y, Wang T, Feng L, Jiang L, et al. miR-146a facilitates replication of dengue virus by dampening interferon induction by targeting TRAF6. J Inf Secur. 2013;67(4):329–41.
Google Scholar
Kanokudom S, Vilaivan T, Wikan N, Thepparit C, Smith DR, Assavalapsakul W. miR-21 promotes dengue virus serotype 2 replication in HepG2 cells. Antivir Res. 2017;142:169–77.
Article
CAS
PubMed
Google Scholar
Chen RF, Yang KD, Lee IK, Liu JW, Huang CH, Lin CY, et al. Augmented miR-150 expression associated with depressed SOCS1 expression involved in dengue haemorrhagic fever. J Inf Secur. 2014;69(4):366–74.
Google Scholar
Chen Y, Maguire T, Marks RM. Demonstration of binding of dengue virus envelope protein to target cells. J Virol. 1996;70(12):8765–72.
CAS
PubMed
PubMed Central
Google Scholar
Girardi E, López P, Pfeffer S. On the importance of host microRNAs during viral infection. Front Genet. 2018;9:439.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yen YT, Chen HC, Lin YD, Shieh CC, Wu-Hsieh BA. Enhancement by tumor necrosis factor alpha of dengue virus-induced endothelial cell production of reactive nitrogen and oxygen species is key to hemorrhage development. J Virol. 2008;82(24):12312–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marianneau P, Cardona A, Edelman L, Deubel V, Desprès P. Dengue virus replication in human hepatoma cells activates NF-kappaB which in turn induces apoptotic cell death. J Virol. 1997;71(4):3244–9.
CAS
PubMed
PubMed Central
Google Scholar
Jan JT, Chen BH, Ma SH, Liu CI, Tsai HP, Wu HC, et al. Potential dengue virus-triggered apoptotic pathway in human neuroblastoma cells: arachidonic acid, superoxide anion, and NF-kappaB are sequentially involved. J Virol. 2000;74(18):8680–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dalrymple NA, Mackow ER. Roles for endothelial cells in dengue virus infection. Adv Virol. 2012;2012:840654.
Article
PubMed
PubMed Central
Google Scholar
Huang YH, Lei HY, Liu HS, Lin YS, Liu CC, Yeh TM. Dengue virus infect human endothelial cells and induces IL-6 and IL-8 production. Am J Trop Med Hyg. 2000;63(1–2):71–5.
Article
CAS
PubMed
Google Scholar
Tseng CK, Lin CK, Wu YH, Chen YH, Chen WC, Young KC, et al. Human heme oxygenase 1 is a potential host cell factor against dengue virus replication. Sci Rep. 2016;6:32176.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vallabhapurapu S, Karin M. Regulation and function of NF-κB transcription factors in the immune system. Annu Rev Immunol. 2009;27(1):693–733.
Article
CAS
PubMed
Google Scholar
McCartney EM, Helbig KJ, Narayana SK, Eyre NS, Aloia AL, Beard MR. Signal transducer and activator of transcription 3 is a proviral host factor for hepatitis C virus. Hepatology. 2013;58(5):1558–68.
Article
CAS
PubMed
Google Scholar
Agis-Juárez RA, Galván I, Medina F, Daikoku T, Padmanabhan R, Ludert J, et al. Polypyrimidine tract-binding protein is relocated to the cytoplasm and is required during dengue virus infection in Vero cells. J Gen Virol. 2009;90:2893–901.
Article
PubMed
CAS
Google Scholar
De Nova-Ocampo M, Villegas-Sepúlveda N, del Angel RM. Translation elongation factor-1α, la, and PTB interact with the 3′ untranslated region of dengue 4 virus RNA. Virology. 2002;295(2):337–47.
Article
PubMed
CAS
Google Scholar
Ho BC, Yu IS, Lu LF, Rudensky A, Chen HY, Tsai CW, et al. Inhibition of miR-146a prevents enterovirus-induced death by restoring the production of type I interferon. Nat Commun. 2014;5:3344.
Article
PubMed
CAS
Google Scholar
Pu J, Wu S, Xie H, Li Y, Yang Z, Wu X, et al. miR-146a inhibits dengue-virus-induced autophagy by targeting TRAF6. Arch Virol. 2017;162(12):3645–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davidson S, Maini MK, Wack A. Disease-promoting effects of type I interferons in viral, bacterial, and coinfections. J Interf Cytokine Res. 2015;35(4):252–64.
Article
CAS
Google Scholar
Miranda KC, Huynh T, Tay Y, Ang Y-S, Tam W-L, Thomson AM, et al. A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell. 2006;126(6):1203–17.
Article
CAS
PubMed
Google Scholar
Vaughn DW, Green S, Kalayanarooj S, Innis BL, Nimmannitya S, Suntayakorn S, et al. Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infect Dis. 2000;181(1):2–9.
Article
CAS
PubMed
Google Scholar
Wang WK, Chao DY, Kao CL, Wu HC, Liu YC, Li CM, et al. High levels of plasma dengue viral load during defervescence in patients with dengue hemorrhagic fever: implications for pathogenesis. Virology. 2003;305(2):330–8.
Article
CAS
PubMed
Google Scholar
Libraty DH, Endy TP, Houng HS, Green S, Kalayanarooj S, Suntayakorn S, et al. Differing influences of virus burden and immune activation on disease severity in secondary dengue-3 virus infections. J Infect Dis. 2002;185(9):1213–21.
Article
PubMed
Google Scholar
Martina B. Dengue pathogenesis: a disease driven by the host response. Sci Prog. 2014;97:197–214.
Article
PubMed
Google Scholar
Cardier JE, Mariño E, Romano E, Taylor P, Liprandi F, Bosch N, et al. Proinflammatory factors present in sera from patients with acute dengue infection induce activation and apoptosis of human microvascular endothelial cells: possible role of TNF-α in endothelial cell damage in dengue. Cytokine. 2005;30(6):359–65.
Article
CAS
PubMed
Google Scholar
Wang P, Hou J, Lin L, Wang C, Liu X, Li D, et al. Inducible microRNA-155 feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1. J Immunol. 2010;185(10):6226.
Article
CAS
PubMed
Google Scholar
Qi Y, Li Y, Zhang L, Huang J. MicroRNA expression profiling and bioinformatic analysis of dengue virus-infected peripheral blood mononuclear cells. Mol Med Rep. 2013;7(3):791–8.
Article
CAS
PubMed
Google Scholar
Nguyen TH, Liu X, Su ZZ, Hsu AC, Foster PS, Yang M. Potential role of microRNAs in the regulation of antiviral responses to influenza infection. Front Immunol. 2018;9:1541.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fernandez-Pineiro I, Badiola I, Sanchez A. Nanocarriers for microRNA delivery in cancer medicine. Biotechnol Adv. 2017;35(3):350–60.
Article
CAS
PubMed
Google Scholar
Brown RAM, Richardson KL, Kalinowski FC, Epis MR, Horsham JL, Kabir TD, et al. Evaluation of microRNA delivery in vivo. Methods Mol Biol. 2018;1699:155–78.
Article
CAS
PubMed
Google Scholar
Wang S, Zhang X, Ju Y, Zhao B, Yan X, Hu J, et al. MicroRNA-146a feedback suppresses T cell immune function by targeting Stat1 in patients with chronic hepatitis B. J Immunol. 2013;191(1):293–301.
Article
CAS
PubMed
Google Scholar
Hou J, Wang P, Lin L, Liu X, Ma F, An H, et al. MicroRNA-146a feedback inhibits RIG-I-dependent type I IFN production in macrophages by targeting TRAF6, IRAK1, and IRAK2. J Immunol. 2009;183(3):2150–8.
Article
CAS
PubMed
Google Scholar
Li JF, Dai XP, Zhang W, Sun SH, Zeng Y, Zhao GY, et al. Upregulation of microRNA-146a by hepatitis B virus X protein contributes to hepatitis development by downregulating complement factor H. MBio. 2015;6(2):e02459–14.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sharma N, Verma R, Kumawat KL, Basu A, Singh SK. miR-146a suppresses cellular immune response during Japanese encephalitis virus JaOArS982 strain infection in human microglial cells. J Neuroinflammation. 2015;12:30.
Article
PubMed
PubMed Central
CAS
Google Scholar