Doria A, Gatto M, Punzi L. Autophagy in Human Health and Disease. N Engl J Med. 2013. https://doi.org/10.1056/NEJMc1303158.
Article
Google Scholar
Walker PJ, Siddell SG, Lefkowitz EJ, Mushegian AR, Dempsey DM, Dutilh BE, et al. Changes to virus taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2019). Arch Virol. 2019. https://doi.org/10.1007/s00705-019-04306-w.
Article
Google Scholar
Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature. 2011. https://doi.org/10.1038/nature09782.
Article
Google Scholar
Shibutani ST, Yoshimori T. A current perspective of autophagosome biogenesis. Cell Res. 2014. https://doi.org/10.1038/cr.2013.159.
Article
Google Scholar
Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell. 2009. https://doi.org/10.1091/mbc.E08-12-1249.
Article
Google Scholar
Yue Z, Zhong Y. From a global view to focused examination: understanding cellular function of lipid kinase VPS34-Beclin 1 complex in autophagy. J Mol Cell Biol. 2010. https://doi.org/10.1093/jmcb/mjq028.
Article
Google Scholar
Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A, et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol. 2008. https://doi.org/10.1083/jcb.200803137.
Article
Google Scholar
Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol. 2009. https://doi.org/10.1038/nrm2708.
Article
Google Scholar
Xie Z, Nair U, Klionsky DJ. Atg8 controls phagophore expansion during autophagosome formation. Mol Biol Cell. 2008. https://doi.org/10.1091/mbc.E07-12-1292.
Article
Google Scholar
Suzuki H, Osawa T, Fujioka Y, Noda NN. Structural biology of the core autophagy machinery. Curr Opin Struct Biol. 2017. https://doi.org/10.1016/j.sbi.2016.09.010.
Article
Google Scholar
Fader CM, Sanchez DG, Mestre MB, Colombo MI. TI-VAMP/VAMP7 and VAMP3/cellubrevin: two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways. Biochim Biophys Acta. 2009. https://doi.org/10.1016/j.bbamcr.2009.09.011.
Article
Google Scholar
Furuta N, Fujita N, Noda T, Yoshimori T, Amano A. Combinational soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins VAMP8 and Vti1b mediate fusion of antimicrobial and canonical autophagosomes with lysosomes. Mol Biol Cell. 2010. https://doi.org/10.1091/mbc.E09-08-0693.
Article
Google Scholar
Itakura E, Kishi-Itakura C, Mizushima N. The Hairpin-type Tail-Anchored SNARE Syntaxin 17 Targets to Autophagosomes for Fusion with Endosomes/Lysosomes. Cell. 2012. https://doi.org/10.1016/j.cell.2012.11.001.
Article
Google Scholar
Wang Y, Li L, Hou C, Lai Y, Long J, Liu J, et al. SNARE-mediated membrane fusion in autophagy. Semin Cell Dev Biol. 2016. https://doi.org/10.1016/j.semcdb.2016.07.009.
Article
Google Scholar
Shen QH, Shi Y, Liu JQ, Su H, Huang JT, Zhang Y, et al. Acetylation of STX17 (syntaxin 17) controls autophagosome maturation. Autophagy. 2021. https://doi.org/10.1080/15548627.2020.1752471.
Article
Google Scholar
Fader CM, Sanchez D, Furlan M, Colombo MI. Induction of autophagy promotes fusion of multivesicular bodies with autophagic vacuoles in k562 cells. Traffic. 2008. https://doi.org/10.1111/j.1600-0854.2007.00677.x.
Article
Google Scholar
Munafo DB, Colombo MI. Induction of autophagy causes dramatic changes in the subcellular distribution of GFP-Rab24. Traffic. 2002. https://doi.org/10.1034/j.1600-0854.2002.30704.x.
Article
Google Scholar
Nozawa T, Aikawa C, Goda A, Maruyama F, Hamada S, Nakagawa I. The small GTPases Rab9A and Rab23 function at distinct steps in autophagy during Group A Streptococcus infection. Cell Microbiol. 2012. https://doi.org/10.1111/j.1462-5822.2012.01792.x.
Article
Google Scholar
Ao X, Zou L, Wu Y. Regulation of autophagy by the Rab GTPase network. Cell Death Differ. 2014. https://doi.org/10.1038/cdd.2013.187.
Article
Google Scholar
Wong YC, Ysselstein D, Krainc D. Mitochondria-lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis. Nature. 2018. https://doi.org/10.1038/nature25486.
Article
Google Scholar
Diao J, Liu R, Rong Y, Zhao M, Zhang J, Lai Y, et al. ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature. 2015. https://doi.org/10.1038/nature14147.
Article
Google Scholar
Yu L, Chen Y, Tooze SA. Autophagy pathway: Cellular and molecular mechanisms. Autophagy. 2018. https://doi.org/10.1080/15548627.2017.1378838.
Article
Google Scholar
Matsui T, Jiang PD, Nakano S, Sakamaki Y, Yamamoto H, Mizushima N. Autophagosomal YKT6 is required for fusion with lysosomes independently of syntaxin 17. J Cell Biol. 2018. https://doi.org/10.1083/jcb.201712058.
Article
Google Scholar
Yu IM,Hughson FM. Tethering Factors as Organizers of Intracellular Vesicular Traffic. Annual Review of Cell and Developmental Biology, Vol 26. 2010; doi:https://doi.org/10.1146/annurev.cellbio.042308.113327
Cai HQ, Reinisch K, Ferro-Novick S. Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev Cell. 2007. https://doi.org/10.1016/j.devcel.2007.04.005.
Article
Google Scholar
Jiang P, Nishimura T, Sakamaki Y, Itakura E, Hatta T, Natsume T, et al. The HOPS complex mediates autophagosome-lysosome fusion through interaction with syntaxin 17. Mol Biol Cell. 2014. https://doi.org/10.1091/mbc.E13-08-0447.
Article
Google Scholar
Sun QM, Westphal W, Wong KN, Tan I, Zhong Q. Rubicon controls endosome maturation as a Rab7 effector. Proc Natl Acad Sci USA. 2010. https://doi.org/10.1073/pnas.1010554107.
Article
Google Scholar
Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N, et al. Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol. 2009. https://doi.org/10.1038/ncb1846.
Article
Google Scholar
Sil P, Muse G, Martinez J. A ravenous defense: canonical and non-canonical autophagy in immunity. Curr Opin Immunol. 2018. https://doi.org/10.1016/j.coi.2017.10.004.
Article
Google Scholar
McEwan DG, Popovic D, Gubas A, Terawaki S, Suzuki H, Stadel D, et al. PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins. Mol Cell. 2015. https://doi.org/10.1016/j.molcel.2014.11.006.
Article
Google Scholar
Liang C, Lee JS, Inn KS, Gack MU, Li Q, Roberts EA, et al. Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nat Cell Biol. 2008. https://doi.org/10.1038/ncb1740.
Article
Google Scholar
Takats S, Toth S, Szenci G, Juhasz G. Investigating Non-selective Autophagy in Drosophila. Methods Mol Biol. 2019. https://doi.org/10.1007/978-1-4939-8873-0_38.
Article
Google Scholar
Martens S, Behrends C. Molecular Mechanisms of Selective Autophagy. J Mol Biol. 2020. https://doi.org/10.1016/j.jmb.2019.11.010.
Article
Google Scholar
Russell RC, Yuan HX, Guan KL. Autophagy regulation by nutrient signaling. Cell Res. 2014. https://doi.org/10.1038/cr.2013.166.
Article
Google Scholar
Grumati P, Dikic I. Ubiquitin signaling and autophagy. J Biol Chem. 2018. https://doi.org/10.1074/jbc.TM117.000117.
Article
Google Scholar
Khaminets A, Behl C, Dikic I. Ubiquitin-Dependent And Independent Signals In Selective Autophagy. Trends Cell Biol. 2016. https://doi.org/10.1016/j.tcb.2015.08.010.
Article
Google Scholar
Matsumoto G, Wada K, Okuno M, Kurosawa M, Nukina N. Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins. Mol Cell. 2011. https://doi.org/10.1016/j.molcel.2011.07.039.
Article
Google Scholar
Kirkin V, Lamark T, Sou YS, Bjorkoy G, Nunn JL, Bruun JA, et al. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell. 2009. https://doi.org/10.1016/j.molcel.2009.01.020.
Article
Google Scholar
Verstrepen L, Verhelst K, Carpentier I, Beyaert R. TAX1BP1, a ubiquitin-binding adaptor protein in innate immunity and beyond. Trends Biochem Sci. 2011. https://doi.org/10.1016/j.tibs.2011.03.004.
Article
Google Scholar
Viret C, Rozieres A, Faure M. Novel Insights into NDP52 Autophagy Receptor Functioning. Trends Cell Biol. 2018. https://doi.org/10.1016/j.tcb.2018.01.003.
Article
Google Scholar
Hou P, Yang K, Jia P, Liu L, Lin Y, Li Z, et al. A novel selective autophagy receptor, CCDC50, delivers K63 polyubiquitination-activated RIG-I/MDA5 for degradation during viral infection. Cell Res. 2021. https://doi.org/10.1038/s41422-020-0362-1.
Article
Google Scholar
Zhou Z, Liu J, Fu T, Wu P, Peng C, Gong X, et al. Phosphorylation regulates the binding of autophagy receptors to FIP200 Claw domain for selective autophagy initiation. Nat Commun. 2021. https://doi.org/10.1038/s41467-021-21874-1.
Article
Google Scholar
Zhang J, Ney PA. Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ. 2009. https://doi.org/10.1038/cdd.2009.16.
Article
Google Scholar
Yan C, Gong L, Chen L, Xu M, Abou-Hamdan H, Tang M, et al. PHB2 (prohibitin 2) promotes PINK1-PRKN/Parkin-dependent mitophagy by the PARL-PGAM5-PINK1 axis. Autophagy. 2020. https://doi.org/10.1080/15548627.2019.1628520.
Article
Google Scholar
Jiang X, Wang X, Ding X, Du M, Li B, Weng X, et al. FAM134B oligomerization drives endoplasmic reticulum membrane scission for ER-phagy. EMBO J. 2020. https://doi.org/10.15252/embj.2019102608.
Article
Google Scholar
Chen M, Chen Z, Wang Y, Tan Z, Zhu C, Li Y, et al. Mitophagy receptor FUNDC1 regulates mitochondrial dynamics and mitophagy. Autophagy. 2016. https://doi.org/10.1080/15548627.2016.1151580.
Article
Google Scholar
Borg Distefano M, Hofstad Haugen L, Wang Y, Perdreau-Dahl H, Kjos I, Jia D, et al. TBC1D5 controls the GTPase cycle of Rab7b. J Cell Sci. 2018. https://doi.org/10.1242/jcs.216630.
Article
Google Scholar
Jiang S, Wells CD, Roach PJ. Starch-binding domain-containing protein 1 (Stbd1) and glycogen metabolism: Identification of the Atg8 family interacting motif (AIM) in Stbd1 required for interaction with GABARAPL1. Biochem Biophys Res Commun. 2011. https://doi.org/10.1016/j.bbrc.2011.08.106.
Article
Google Scholar
Marshall RS, Hua Z, Mali S, McLoughlin F, Vierstra RD. ATG8-Binding UIM Proteins Define a New Class of Autophagy Adaptors and Receptors. Cell. 2019. https://doi.org/10.1016/j.cell.2019.02.009.
Article
Google Scholar
Florey O, Overholtzer M. Autophagy proteins in macroendocytic engulfment. Trends Cell Biol. 2012. https://doi.org/10.1016/j.tcb.2012.04.005.
Article
Google Scholar
Martinez J, Malireddi RK, Lu Q, Cunha LD, Pelletier S, Gingras S, et al. Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat Cell Biol. 2015. https://doi.org/10.1038/ncb3192.
Article
Google Scholar
Codogno P, Mehrpour M, Proikas-Cezanne T. Canonical and non-canonical autophagy: variations on a common theme of self-eating? Nat Rev Mol Cell Biol. 2011. https://doi.org/10.1038/nrm3249.
Article
Google Scholar
Ponpuak M, Mandell MA, Kimura T, Chauhan S, Cleyrat C, Deretic V. Secretory autophagy. Curr Opin Cell Biol. 2015. https://doi.org/10.1016/j.ceb.2015.04.016.
Article
Google Scholar
Kimura T, Jia J, Claude-Taupin A, Kumar S, Choi SW, Gu Y, et al. Cellular and molecular mechanism for secretory autophagy. Autophagy. 2017. https://doi.org/10.1080/15548627.2017.1307486.
Article
Google Scholar
Joubert PE, Meiffren G, Gregoire IP, Pontini G, Richetta C, Flacher M, et al. Autophagy induction by the pathogen receptor CD46. Cell Host Microbe. 2009. https://doi.org/10.1016/j.chom.2009.09.006.
Article
Google Scholar
Denizot M, Varbanov M, Espert L, Robert-Hebmann V, Sagnier S, Garcia E, et al. HIV-1 gp41 fusogenic function triggers autophagy in uninfected cells. Autophagy. 2008. https://doi.org/10.4161/auto.6880.
Article
Google Scholar
Delpeut S, Rudd PA, Labonte P, von Messling V. Membrane fusion-mediated autophagy induction enhances morbillivirus cell-to-cell spread. J Virol. 2012. https://doi.org/10.1128/JVI.00807-12.
Article
Google Scholar
Huang H, Kang R, Wang J, Luo G, Yang W, Zhao Z. Hepatitis C virus inhibits AKT-tuberous sclerosis complex (TSC), the mechanistic target of rapamycin (MTOR) pathway, through endoplasmic reticulum stress to induce autophagy. Autophagy. 2013. https://doi.org/10.4161/auto.22791.
Article
Google Scholar
Shinohara Y, Imajo K, Yoneda M, Tomeno W, Ogawa Y, Kirikoshi H, et al. Unfolded protein response pathways regulate Hepatitis C virus replication via modulation of autophagy. Biochem Biophys Res Commun. 2013. https://doi.org/10.1016/j.bbrc.2013.01.103.
Article
Google Scholar
Medvedev R, Ploen D, Spengler C, Elgner F, Ren H, Bunten S, et al. HCV-induced oxidative stress by inhibition of Nrf2 triggers autophagy and favors release of viral particles. Free Radic Biol Med. 2017. https://doi.org/10.1016/j.freeradbiomed.2017.06.021.
Article
Google Scholar
Su WC, Chao TC, Huang YL, Weng SC, Jeng KS, Lai MM. Rab5 and class III phosphoinositide 3-kinase Vps34 are involved in hepatitis C virus NS4B-induced autophagy. J Virol. 2011. https://doi.org/10.1128/JVI.00173-11.
Article
Google Scholar
Gregoire IP, Richetta C, Meyniel-Schicklin L, Borel S, Pradezynski F, Diaz O, et al. IRGM Is a Common Target of RNA Viruses that Subvert the Autophagy Network. PLoS Pathog. 2011. https://doi.org/10.1371/journal.ppat.1002422.
Article
Google Scholar
Orvedahl A, Alexander D, Talloczy Z, Sun Q, Wei Y, Zhang W, et al. HSV-1 ICP345 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe. 2007. https://doi.org/10.1016/j.chom.2006.12.001.
Article
Google Scholar
Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell. 2005. https://doi.org/10.1016/j.cell.2005.07.002.
Article
Google Scholar
Mouna L, Hernandez E, Bonte D, Brost R, Amazit L, Delgui LR, et al. Analysis of the role of autophagy inhibition by two complementary human cytomegalovirus BECN1/Beclin 1-binding proteins. Autophagy. 2016. https://doi.org/10.1080/15548627.2015.1125071.
Article
Google Scholar
Rubio RM, Mohr I. Inhibition of ULK1 and Beclin1 by an alpha-herpesvirus Akt-like Ser/Thr kinase limits autophagy to stimulate virus replication. Proc Natl Acad Sci U S A. 2019. https://doi.org/10.1073/pnas.1915139116.
Article
Google Scholar
Bhatt AP, Damania B. AKTivation of PI3K/AKT/mTOR signaling pathway by KSHV. Front Immunol. 2012. https://doi.org/10.3389/fimmu.2012.00401.
Article
Google Scholar
Zhang T, Dong K, Liang W, Xu D, Xia H, Geng J, et al. G-protein-coupled receptors regulate autophagy by ZBTB16-mediated ubiquitination and proteasomal degradation of Atg14L. Elife. 2015. https://doi.org/10.7554/eLife.06734.
Article
Google Scholar
Ulasli M, Verheije MH, de Haan CA, Reggiori F. Qualitative and quantitative ultrastructural analysis of the membrane rearrangements induced by coronavirus. Cell Microbiol. 2010. https://doi.org/10.1111/j.1462-5822.2010.01437.x.
Article
Google Scholar
Snijder EJ, Limpens R, de Wilde AH, de Jong AWM, Zevenhoven-Dobbe JC, Maier HJ, et al. A unifying structural and functional model of the coronavirus replication organelle: Tracking down RNA synthesis. PLoS Biol. 2020. https://doi.org/10.1371/journal.pbio.3000715.
Article
Google Scholar
Knoops K, Kikkert M, van den Worm SHE, Zevenhoven-Dobbe JC, van der Meer Y, Koster AJ, et al. SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biol. 2008. https://doi.org/10.1371/journal.pbio.0060226.
Article
Google Scholar
Cortese M, Lee JY, Cerikan B, Neufeldt CJ, Oorschot VMJ, Kohrer S, et al. Integrative Imaging Reveals SARS-CoV-2-Induced Reshaping of Subcellular Morphologies. Cell Host Microbe. 2020. https://doi.org/10.1016/j.chom.2020.11.003.
Article
Google Scholar
Klein S, Cortese M, Winter SL, Wachsmuth-Melm M, Neufeldt CJ, Cerikan B, et al. SARS-CoV-2 structure and replication characterized by in situ cryo-electron tomography. Nat Commun. 2020. https://doi.org/10.1038/s41467-020-19619-7.
Article
Google Scholar
Mendonca L, Howe A, Gilchrist JB, Sheng Y, Sun D, Knight ML, et al. Correlative multi-scale cryo-imaging unveils SARS-CoV-2 assembly and egress. Nat Commun. 2021. https://doi.org/10.1038/s41467-021-24887-y.
Article
Google Scholar
Wolff G, Limpens R, Zevenhoven-Dobbe JC, Laugks U, Zheng S, de Jong AWM, et al. A molecular pore spans the double membrane of the coronavirus replication organelle. Science. 2020. https://doi.org/10.1126/science.abd3629.
Article
Google Scholar
Cottam EM, Maier HJ, Manifava M, Vaux LC, Chandra-Schoenfelder P, Gerner W, et al. Coronavirus nsp6 proteins generate autophagosomes from the endoplasmic reticulum via an omegasome intermediate. Autophagy. 2011. https://doi.org/10.4161/auto.7.11.16642.
Article
Google Scholar
Prentice E, Jerome WG, Yoshimori T, Mizushima N, Denison MR. Coronavirus replication complex formation utilizes components of cellular autophagy. J Biol Chem. 2004. https://doi.org/10.1074/jbc.M306124200.
Article
Google Scholar
de Haan CA, Reggiori F. Are nidoviruses hijacking the autophagy machinery? Autophagy. 2008. https://doi.org/10.4161/auto.5241.
Article
Google Scholar
Snijder EJ, van der Meer Y, Zevenhoven-Dobbe J, Onderwater JJ, van der Meulen J, Koerten HK, et al. Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex. J Virol. 2006. https://doi.org/10.1128/JVI.02501-05.
Article
Google Scholar
Reggiori F, Monastyrska I, Verheije MH, Cali T, Ulasli M, Bianchi S, et al. Coronaviruses Hijack the LC3-I-positive EDEMosomes, ER-derived vesicles exporting short-lived ERAD regulators, for replication. Cell Host Microbe. 2010. https://doi.org/10.1016/j.chom.2010.05.013.
Article
Google Scholar
Bernasconi R, Noack J, Molinari M. Unconventional roles of nonlipidated LC3 in ERAD tuning and coronavirus infection. Autophagy. 2012. https://doi.org/10.4161/auto.21229.
Article
Google Scholar
Ghosh S, Dellibovi-Ragheb TA, Kerviel A, Pak E, Qiu Q, Fisher M, et al. beta-coronaviruses use lysosomes for egress instead of the biosynthetic secretory pathway. Cell. 2020. https://doi.org/10.1016/j.cell.2020.10.039.
Article
Google Scholar
Schlegel A, Giddings TH, Ladinsky MS, Kirkegaard K. Cellular origin and ultrastructure of membranes induced during poliovirus infection. J Virol. 1996. https://doi.org/10.1128/Jvi.70.10.6576-6588.1996.
Article
Google Scholar
Jackson WT, Giddings TH, Taylor MP, Mulinyawe S, Rabinovitch M, Kopito RR, et al. Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biol. 2005. https://doi.org/10.1371/journal.pbio.0030156.
Article
Google Scholar
Suhy DA, Giddings TH Jr, Kirkegaard K. Remodeling the endoplasmic reticulum by poliovirus infection and by individual viral proteins: an autophagy-like origin for virus-induced vesicles. J Virol. 2000. https://doi.org/10.1128/jvi.74.19.8953-8965.2000.
Article
Google Scholar
Richards AL, Jackson WT. Intracellular vesicle acidification promotes maturation of infectious poliovirus particles. PLoS Pathog. 2012. https://doi.org/10.1371/journal.ppat.1003046.
Article
Google Scholar
Richards AL, Soares-Martins JA, Riddell GT, Jackson WT. Generation of unique poliovirus RNA replication organelles. MBio. 2014. https://doi.org/10.1128/mBio.00833-13.
Article
Google Scholar
Wong J, Zhang JC, Si XN, Gao G, Mao I, McManus BM, et al. Autophagosome supports coxsackievirus B3 replication in host cells. J Virol. 2008. https://doi.org/10.1128/Jvi.00641-08.
Article
Google Scholar
Kemball CC, Alirezaei M, Flynn CT, Wood MR, Harkins S, Kiosses WB, et al. Coxsackievirus infection induces autophagy-like vesicles and megaphagosomes in pancreatic acinar cells in vivo. J Virol. 2010. https://doi.org/10.1128/JVI.01417-10.
Article
Google Scholar
Tabor-Godwin JM, Tsueng G, Sayen MR, Gottlieb RA, Feuer R. The role of autophagy during coxsackievirus infection of neural progenitor and stem cells. Autophagy. 2012. https://doi.org/10.4161/auto.19781.
Article
Google Scholar
Alirezaei M, Flynn CT, Wood MR, Harkins S, Whitton JL. Coxsackievirus can exploit LC3 in both autophagy-dependent and -independent manners in vivo. Autophagy. 2015. https://doi.org/10.1080/15548627.2015.1063769.
Article
Google Scholar
Paul D, Madan V, Ramirez O, Bencun M, Stoeck IK, Jirasko V, et al. Glycine Zipper Motifs in Hepatitis C Virus Nonstructural Protein 4B Are Required for the Establishment of Viral Replication Organelles. J Virol. 2018. https://doi.org/10.1128/JVI.01890-17.
Article
Google Scholar
Dreux M, Gastaminza P, Wieland SF, Chisari FV. The autophagy machinery is required to initiate hepatitis C virus replication. Proc Natl Acad Sci USA. 2009. https://doi.org/10.1073/pnas.0907344106.
Article
Google Scholar
Doerflinger SY, Cortese M, Romero-Brey I, Menne Z, Tubiana T, Schenk C, et al. Membrane alterations induced by nonstructural proteins of human norovirus. PLoS Pathog. 2017. https://doi.org/10.1371/journal.ppat.1006705.
Article
Google Scholar
van der Hoeven B, Oudshoorn D, Koster AJ, Snijder EJ, Kikkert M, Barcena M. Biogenesis and architecture of arterivirus replication organelles. Virus Res. 2016. https://doi.org/10.1016/j.virusres.2016.04.001.
Article
Google Scholar
Mohamud Y, Shi JY, Qu JY, Poon T, Xue YC, Deng HY, et al. Enteroviral infection inhibits autophagic flux via disruption of the snare complex to enhance viral replication. Cell Rep. 2018. https://doi.org/10.1016/j.celrep.2018.02.090.
Article
Google Scholar
Tian L, Yang YY, Li CY, Chen J, Li ZY, Li X, et al. The cytotoxicity of coxsackievirus B3 is associated with a blockage of autophagic flux mediated by reduced syntaxin 17 expression. Cell Death Dis. 2018. https://doi.org/10.1038/s41419-018-0271-0.
Article
Google Scholar
Corona AK, Saulsbery HM, Corona Velazquez AF, Jackson WT. Enteroviruses remodel autophagic trafficking through regulation of Host SNARE proteins to promote virus replication and cell exit. Cell Rep. 2018. https://doi.org/10.1016/j.celrep.2018.03.003.
Article
Google Scholar
Mohamud Y, Tang H, Xue YC, Liu HT, Ng CS, Bahreyni A, et al. Coxsackievirus B3 targets TFEB to disrupt lysosomal function. Autophagy. 2021. https://doi.org/10.1080/15548627.2021.1896925.
Article
Google Scholar
Gagliardi TB, Goldstein ME, Song D, Gray KM, Jung JW, Ignacio MA, et al. Rhinovirus C replication is associated with the endoplasmic reticulum and triggers cytopathic effects in an in vitro model of human airway epithelium. PLoS Pathog. 2022. https://doi.org/10.1371/journal.ppat.1010159.
Article
Google Scholar
Ding BB, Zhang GY, Yang XD, Zhang SW, Chen LY, Yan Q, et al. Phosphoprotein of human parainfluenza virus type 3 blocks autophagosome-lysosome fusion to increase virus production. Cell Host Microbe. 2014. https://doi.org/10.1016/j.chom.2014.04.004.
Article
Google Scholar
Wang LY, Tian YJ, Ou JHJ. HCV induces the expression of rubicon and UVRAG to temporally regulate the maturation of autophagosomes and viral replication. PLoS Pathog. 2015. https://doi.org/10.1371/journal.ppat.1004764.
Article
Google Scholar
Sir D, Chen WL, Choi J, Wakita T, Yen TSB, Ou JHJ. Induction of incomplete autophagic response by hepatitis C virus via the unfolded protein response. Hepatology. 2008. https://doi.org/10.1002/hep.22464.
Article
Google Scholar
Sir D, Liang CY, Chen WL, Jung JU, Ou JHJ. Perturbation of autophagic pathway by hepatitis C virus. Autophagy. 2008. https://doi.org/10.4161/auto.6566.
Article
Google Scholar
Taguwa S, Kambara H, Fujita N, Noda T, Yoshimori T, Koike K, et al. Dysfunction of autophagy participates in vacuole formation and cell death in cells replicating hepatitis C Virus. J Virol. 2011. https://doi.org/10.1128/Jvi.06099-11.
Article
Google Scholar
Gannage M, Dormann D, Albrecht R, Dengjel J, Torossi T, Ramer PC, et al. Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes. Cell Host Microbe. 2009. https://doi.org/10.1016/j.chom.2009.09.005.
Article
Google Scholar
Zhong Y, Wang QJ, Li X, Yan Y, Backer JM, Chait BT, et al. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol. 2009. https://doi.org/10.1038/ncb1854.
Article
Google Scholar
White E. The role for autophagy in cancer. J Clin Invest. 2015. https://doi.org/10.1172/JCI73941.
Article
Google Scholar
Wen HJ, Yang Z, Zhou Y, Wood C. Enhancement of autophagy during lytic replication by the Kaposi’s sarcoma-associated herpesvirus replication and transcription activator. J Virol. 2010. https://doi.org/10.1128/JVI.00024-10.
Article
Google Scholar
Granato M, Santarelli R, Filardi M, Gonnella R, Farina A, Torrisi MR, et al. The activation of KSHV lytic cycle blocks autophagy in PEL cells. Autophagy. 2015. https://doi.org/10.1080/15548627.2015.1091911.
Article
Google Scholar
Granato M, Santarelli R, Farina A, Gonnella R, Lotti LV, Faggioni A, et al. Epstein-barr virus blocks the autophagic flux and appropriates the autophagic machinery to enhance viral replication. J Virol. 2014. https://doi.org/10.1128/JVI.02199-14.
Article
Google Scholar
Pringle ES, Robinson CA, McCormick C. Kaposi’s Sarcoma-associated herpesvirus lytic replication interferes with mTORC1 regulation of autophagy and viral protein synthesis. J Virol. 2019. https://doi.org/10.1128/JVI.00854-19.
Article
Google Scholar
Zhang Y, Sun H, Pei R, Mao B, Zhao Z, Li H, et al. The SARS-CoV-2 protein ORF3a inhibits fusion of autophagosomes with lysosomes. Cell Discov. 2021. https://doi.org/10.1038/s41421-021-00268-z.
Article
Google Scholar
Hayn M, Hirschenberger M, Koepke L, Nchioua R, Straub JH, Klute S, et al. Systematic functional analysis of SARS-CoV-2 proteins uncovers viral innate immune antagonists and remaining vulnerabilities. Cell Rep. 2021. https://doi.org/10.1016/j.celrep.2021.109126.
Article
Google Scholar
Hou P, Wang X, Wang H, Wang T, Yu Z, Xu C, et al. The ORF7a protein of SARS-CoV-2 initiates autophagy and limits autophagosome-lysosome fusion via degradation of SNAP29 to promote virus replication. Autophagy. 2022. https://doi.org/10.1080/15548627.2022.2084686.
Article
Google Scholar
Singh K, Chen YC, Hassanzadeh S, Han K, Judy JT, Seifuddin F, et al. Network analysis and transcriptome profiling identify autophagic and mitochondrial dysfunctions in SARS-CoV-2 infection. Front Genet. 2021. https://doi.org/10.3389/fgene.2021.599261.
Article
Google Scholar
Metz P, Chiramel A, Chatel-Chaix L, Alvisi G, Bankhead P, Mora-Rodriguez R, et al. Dengue virus inhibition of autophagic flux and dependency of viral replication on proteasomal degradation of the autophagy receptor p62. J Virol. 2015. https://doi.org/10.1128/Jvi.00787-15.
Article
Google Scholar
Liang QM, Luo ZF, Zeng JX, Chen WQ, Foo SS, Lee SA, et al. Zika Virus NS4A and NS4B proteins deregulate Akt-mTOR signaling in human fetal neural stem cells to inhibit neurogenesis and induce autophagy. Cell Stem Cell. 2016. https://doi.org/10.1016/j.stem.2016.07.019.
Article
Google Scholar
Ait-Goughoulte M, Kanda T, Meyer K, Ryerse JS, Ray RB, Ray R. Hepatitis C virus genotype 1a growth and induction of autophagy. J Virol. 2008. https://doi.org/10.1128/JVI.02093-07.
Article
Google Scholar
Lin Y, Wu CC, Wang XY, Liu S, Kemper T, Li FH, et al. Synaptosomal-associated protein 29 is required for the autophagic degradation of hepatitis B virus. FASEB J. 2019. https://doi.org/10.1096/fj.201801995RR.
Article
Google Scholar
Paul D, Bartenschlager R. Flaviviridae Replication Organelles: Oh, What a Tangled Web We Weave. Ann Rev Virol. 2015. https://doi.org/10.1146/annurev-virology-100114-055007.
Article
Google Scholar
Wu YW, Mettling C, Wu SR, Yu CY, Perng GC, Lin YS, et al. Autophagy-associated dengue vesicles promote viral transmission avoiding antibody neutralization. Sci Rep. 2016. https://doi.org/10.1038/srep32243.
Article
Google Scholar
Mateo R, Nagamine CM, Spagnolo J, Mendez E, Rahe M, Gale M Jr, et al. Inhibition of cellular autophagy deranges dengue virion maturation. J Virol. 2013. https://doi.org/10.1128/JVI.02177-12.
Article
Google Scholar
Li MY, Naik TS, Siu LYL, Acuto O, Spooner E, Wang P, et al. Lyn kinase regulates egress of flaviviruses in autophagosome-derived organelles. Nat Commun. 2020. https://doi.org/10.1038/s41467-020-19028-w.
Article
Google Scholar
Bukong TN, Momen-Heravi F, Kodys K, Bala S, Szabo G. Exosomes from hepatitis C infected patients transmit HCV infection and contain replication competent viral RNA in complex with Ago2-miR122-HSP90. PLoS Pathog. 2014. https://doi.org/10.1371/journal.ppat.1004424.
Article
Google Scholar
Shrivastava S, Devhare P, Sujijantarat N, Steele R, Kwon YC, Ray R, et al. Knockdown of Autophagy Inhibits Infectious Hepatitis C Virus Release by the Exosomal Pathway. J Virol. 2016. https://doi.org/10.1128/JVI.02383-15.
Article
Google Scholar
Zhang ZW, Li ZL, Yuan S. The Role of Secretory Autophagy in Zika Virus Transfer through the Placental Barrier. Front Cell Infect Microbiol. 2016. https://doi.org/10.3389/fcimb.2016.00206.
Article
Google Scholar
Vora A, Zhou W, Londono-Renteria B, Woodson M, Sherman MB, Colpitts TM, et al. Arthropod EVs mediate dengue virus transmission through interaction with a tetraspanin domain containing glycoprotein Tsp29Fb. Proc Natl Acad Sci U S A. 2018. https://doi.org/10.1073/pnas.1720125115.
Article
Google Scholar
Cao B, Parnell LA, Diamond MS, Mysorekar IU. Inhibition of autophagy limits vertical transmission of Zika virus in pregnant mice. J Exp Med. 2017. https://doi.org/10.1084/jem.20170957.
Article
Google Scholar
Chen YH, Du W, Hagemeijer MC, Takvorian PM, Pau C, Cali A, et al. Phosphatidylserine vesicles enable efficient en bloc transmission of enteroviruses. Cell. 2015. https://doi.org/10.1016/j.cell.2015.01.032.
Article
Google Scholar
Robinson SM, Tsueng G, Sin J, Mangale V, Rahawi S, McIntyre LL, et al. Coxsackievirus B exits the host cell in shed microvesicles displaying autophagosomal markers. PLoS Pathog. 2014. https://doi.org/10.1371/journal.ppat.1004045.
Article
Google Scholar
Bird SW, Maynard ND, Covert MW, Kirkegaard K. Nonlytic viral spread enhanced by autophagy components. Proc Natl Acad Sci U S A. 2014. https://doi.org/10.1073/pnas.1401437111.
Article
Google Scholar
Parra GI, Azure J, Fischer R, Bok K, Sandoval-Jaime C, Sosnovtsev SV, et al. Identification of a Broadly Cross-Reactive Epitope in the Inner Shell of the Norovirus Capsid. PLoS ONE. 2013. https://doi.org/10.1371/journal.pone.0067592.
Article
Google Scholar
Santiana M, Ghosh S, Ho BA, Rajasekaran V, Du WL, Mutsafi Y, et al. Vesicle-Cloaked Virus Clusters Are Optimal Units for Inter-organismal Viral Transmission. Cell Host Microbe. 2018. https://doi.org/10.1016/j.chom.2018.07.006.
Article
Google Scholar
Giansanti P, Strating J, Defourny KAY, Cesonyte I, Bottino AMS, Post H, et al. Dynamic remodelling of the human host cell proteome and phosphoproteome upon enterovirus infection. Nat Commun. 2020. https://doi.org/10.1038/s41467-020-18168-3.
Article
Google Scholar
Yan JM, Zhang WK, Yan LN, Jiao YJ, Zhou CM, Yu XJ. Bunyavirus SFTSV exploits autophagic flux for viral assembly and egress. Autophagy. 2022. https://doi.org/10.1080/15548627.2021.1994296.
Article
Google Scholar
Nowag H, Guhl B, Thriene K, Romao S, Ziegler U, Dengjel J, et al. Macroautophagy Proteins Assist Epstein Barr Virus Production and Get Incorporated Into the Virus Particles. EBioMedicine. 2014. https://doi.org/10.1016/j.ebiom.2014.11.007.
Article
Google Scholar
Hung CH, Chen LW, Wang WH, Chang PJ, Chiu YF, Hung CC, et al. Regulation of autophagic activation by Rta of Epstein-Barr virus via the extracellular signal-regulated kinase pathway. J Virol. 2014. https://doi.org/10.1128/JVI.02033-14.
Article
Google Scholar
Zimmermann C, Kramer N, Krauter S, Strand D, Sehn E, Wolfrum U, et al. Autophagy interferes with human cytomegalovirus genome replication, morphogenesis, and progeny release. Autophagy. 2021. https://doi.org/10.1080/15548627.2020.1732686.
Article
Google Scholar
Taisne C, Lussignol M, Hernandez E, Moris A, Mouna L, Esclatine A. Human cytomegalovirus hijacks the autophagic machinery and LC3 homologs in order to optimize cytoplasmic envelopment of mature infectious particles. Sci Rep. 2019. https://doi.org/10.1038/s41598-019-41029-z.
Article
Google Scholar
Konig P, Svrlanska A, Read C, Feichtinger S, Stamminger T. The autophagy-initiating protein kinase ULK1 phosphorylates human cytomegalovirus tegument protein pp28 and regulates efficient virus release. J Virol. 2021. https://doi.org/10.1128/JVI.02346-20.
Article
Google Scholar
Belzile JP, Sabalza M, Craig M, Clark AE, Morello CS, Spector DH. Trehalose, an mTOR-independent inducer of autophagy, inhibits human cytomegalovirus infection in multiple cell types. J Virol. 2016. https://doi.org/10.1128/JVI.02651-15.
Article
Google Scholar
Clark AE, Sabalza M, Gordts P, Spector DH. Human Cytomegalovirus replication is inhibited by the autophagy-inducing compounds trehalose and SMER28 through distinctively different mechanisms. J Virol. 2018. https://doi.org/10.1128/JVI.02015-17.
Article
Google Scholar
Sabin LR, Hanna SL, Cherry S. Innate antiviral immunity in Drosophila. Curr Opin Immunol. 2010. https://doi.org/10.1016/j.coi.2010.01.007.
Article
Google Scholar
Kuo CJ, Hansen M, Troemel E. Autophagy and innate immunity: Insights from invertebrate model organisms. Autophagy. 2018. https://doi.org/10.1080/15548627.2017.1389824.
Article
Google Scholar
Shelly S, Lukinova N, Bambina S, Berman A, Cherry S. Autophagy is an essential component of drosophila immunity against vesicular stomatitis virus. Immunity. 2009. https://doi.org/10.1016/j.immuni.2009.02.009.
Article
Google Scholar
Moy RH, Gold B, Molleston JM, Schad V, Yanger K, Salzano MV, et al. Antiviral autophagy restricts rift valley fever virus infection and is conserved from flies to mammals. Immunity. 2014. https://doi.org/10.1016/j.immuni.2013.10.020.
Article
Google Scholar
Bakowski MA, Desjardins CA, Smelkinson MG, Dunbar TA, Lopez-Moyado IF, Rifkin SA, et al. Ubiquitin-Mediated Response to Microsporidia and Virus Infection in C. elegans. PLoS Pathog. 2014. https://doi.org/10.1371/journal.ppat.1004200.
Article
Google Scholar
Orvedahl A, MacPherson S, Sumpter R Jr, Talloczy Z, Zou Z, Levine B. Autophagy protects against Sindbis virus infection of the central nervous system. Cell Host Microbe. 2010. https://doi.org/10.1016/j.chom.2010.01.007.
Article
Google Scholar
Miyakawa K, Nishi M, Ogawa M, Matsunaga S, Sugiyama M, Nishitsuji H, et al. Galectin-9 restricts hepatitis B virus replication via p62/SQSTM1-mediated selective autophagy of viral core proteins. Nat Commun. 2022. https://doi.org/10.1038/s41467-022-28171-5.
Article
Google Scholar
Sumpter R Jr, Sirasanagandla S, Fernandez AF, Wei Y, Dong X, Franco L, et al. Fanconi anemia proteins function in mitophagy and immunity. Cell. 2016. https://doi.org/10.1016/j.cell.2016.04.006.
Article
Google Scholar
Fletcher K, Ulferts R, Jacquin E, Veith T, Gammoh N, Arasteh JM, et al. The WD40 domain of ATG16L1 is required for its non-canonical role in lipidation of LC3 at single membranes. EMBO J. 2018. https://doi.org/10.15252/embj.201797840.
Article
Google Scholar
Wang Y, Sharma P, Jefferson M, Zhang W, Bone B, Kipar A, et al. Non-canonical autophagy functions of ATG16L1 in epithelial cells limit lethal infection by influenza A virus. EMBO J. 2021. https://doi.org/10.15252/embj.2020105543.
Article
Google Scholar
Cadwell K, Patel KK, Maloney NS, Liu TC, Ng AC, Storer CE, et al. Virus-plus-susceptibility gene interaction determines Crohn’s disease gene Atg16L1 phenotypes in intestine. Cell. 2010. https://doi.org/10.1016/j.cell.2010.05.009.
Article
Google Scholar
Moroso M, Verlhac P, Ferraris O, Rozieres A, Carbonnelle C, Mely S, et al. Crimean-Congo hemorrhagic fever virus replication imposes hyper-lipidation of MAP1LC3 in epithelial cells. Autophagy. 2020. https://doi.org/10.1080/15548627.2019.1709765.
Article
Google Scholar
Durgan J, Lystad AH, Sloan K, Carlsson SR, Wilson MI, Marcassa E, et al. Non-canonical autophagy drives alternative ATG8 conjugation to phosphatidylserine. Mol Cell. 2021. https://doi.org/10.1016/j.molcel.2021.03.020.
Article
Google Scholar
Xu Y, Shen J, Ran Z. Emerging views of mitophagy in immunity and autoimmune diseases. Autophagy. 2020. https://doi.org/10.1080/15548627.2019.1603547.
Article
Google Scholar
Ng CS, Kato H, Fujita T. Fueling Type I interferonopathies: regulation and function of type i interferon antiviral responses. J Interferon Cytokine Res. 2019. https://doi.org/10.1089/jir.2019.0037.
Article
Google Scholar
Tal MC, Sasai M, Lee HK, Yordy B, Shadel GS, Iwasaki A. Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. Proc Natl Acad Sci U S A. 2009. https://doi.org/10.1073/pnas.0807694106.
Article
Google Scholar
Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011. https://doi.org/10.1038/nature09663.
Article
Google Scholar
Rawat P, Teodorof-Diedrich C, Spector SA. Human immunodeficiency virus Type-1 single-stranded RNA activates the NLRP3 inflammasome and impairs autophagic clearance of damaged mitochondria in human microglia. Glia. 2019. https://doi.org/10.1002/glia.23568.
Article
Google Scholar
Teodorof-Diedrich C, Spector SA. Human immunodeficiency virus type 1 gp120 and tat induce mitochondrial fragmentation and incomplete mitophagy in human neurons. J Virol. 2018. https://doi.org/10.1128/JVI.00993-18.
Article
Google Scholar
Thangaraj A, Periyasamy P, Liao K, Bendi VS, Callen S, Pendyala G, et al. HIV-1 TAT-mediated microglial activation: role of mitochondrial dysfunction and defective mitophagy. Autophagy. 2018. https://doi.org/10.1080/15548627.2018.1476810.
Article
Google Scholar
Vo MT, Smith BJ, Nicholas J, Choi YB. Activation of NIX-mediated mitophagy by an interferon regulatory factor homologue of human herpesvirus. Nat Commun. 2019. https://doi.org/10.1038/s41467-019-11164-2.
Article
Google Scholar
Wang RF, Zhu YX, Ren CW, Yang SK, Tian S, Chen HC, et al. Influenza A virus protein PB1-F2 impairs innate immunity by inducing mitophagy. Autophagy. 2020. https://doi.org/10.1080/15548627.2020.1725375.
Article
Google Scholar
Sato-Kaneko F, Yao S, Lao FS, Nan J, Shpigelman J, Cheng A, et al. Mitochondria-dependent synthetic small-molecule vaccine adjuvants for influenza virus infection. Proc Natl Acad Sci U S A. 2021. https://doi.org/10.1073/pnas.2025718118.
Article
Google Scholar
Vilmen G, Glon D, Siracusano G, Lussignol M, Shao Z, Hernandez E, et al. BHRF1, a BCL2 viral homolog, disturbs mitochondrial dynamics and stimulates mitophagy to dampen type I IFN induction. Autophagy. 2021. https://doi.org/10.1080/15548627.2020.1758416.
Article
Google Scholar
Ding BB, Zhang LL, Li ZF, Zhong Y, Tang QP, Qin YL, et al. The Matrix Protein of Human Parainfluenza Virus Type 3 Induces Mitophagy that Suppresses Interferon Responses. Cell Host Microbe. 2017. https://doi.org/10.1016/j.chom.2017.03.004.
Article
Google Scholar
Sun D, Kong N, Dong S, Chen X, Qin W, Wang H, et al. 2AB protein of Senecavirus A antagonizes selective autophagy and type I interferon production by degrading LC3 and MARCHF8. Autophagy. 2022. https://doi.org/10.1080/15548627.2021.2015740.
Article
Google Scholar
Hui X, Zhang L, Cao L, Huang K, Zhao Y, Zhang Y, et al. SARS-CoV-2 promote autophagy to suppress type I interferon response. Signal Transduct Target Ther. 2021. https://doi.org/10.1038/s41392-021-00574-8.
Article
Google Scholar
Li X, Hou P, Ma W, Wang X, Wang H, Yu Z, et al. SARS-CoV-2 ORF10 suppresses the antiviral innate immune response by degrading MAVS through mitophagy. Cell Mol Immunol. 2022. https://doi.org/10.1038/s41423-021-00807-4.
Article
Google Scholar
Ramachandran K, Maity S, Muthukumar AR, Kandala S, Tomar D, Abd El-Aziz TM, et al. SARS-CoV-2 infection enhances mitochondrial PTP complex activity to perturb cardiac energetics. iScience. 2022. https://doi.org/10.1016/j.isci.2021.103722.
Article
Google Scholar
Lupfer C, Thomas PG, Anand PK, Vogel P, Milasta S, Martinez J, et al. Receptor interacting protein kinase 2-mediated mitophagy regulates inflammasome activation during virus infection. Nat Immunol. 2013. https://doi.org/10.1038/ni.2563.
Article
Google Scholar
Wang R, Zhu Y, Lin X, Ren C, Zhao J, Wang F, et al. Influenza M2 protein regulates MAVS-mediated signaling pathway through interacting with MAVS and increasing ROS production. Autophagy. 2019. https://doi.org/10.1080/15548627.2019.1580089.
Article
Google Scholar
Misawa T, Takahama M, Saitoh T. Mitochondria-endoplasmic reticulum contact sites mediate innate immune responses. Organelle Contact Sites: Mol Mechanism to Disease. 2017. https://doi.org/10.1007/978-981-10-4567-7_14.
Article
Google Scholar
Pinar A, Dowling JK, Bitto NJ, Robertson AAB, Latz E, Stewart CR, et al. PB1-F2 Peptide Derived from Avian Influenza A Virus H7N9 Induces Inflammation via Activation of the NLRP3 Inflammasome. J Biol Chem. 2017. https://doi.org/10.1074/jbc.M116.756379.
Article
Google Scholar
Subramanian N, Natarajan K, Clatworthy MR, Wang Z, Germain RN. The Adaptor MAVS Promotes NLRP3 Mitochondrial Localization and Inflammasome Activation. Cell. 2013. https://doi.org/10.1016/j.cell.2013.02.054.
Article
Google Scholar
Yoshizumi T, Ichinohe T, Sasaki O, Otera H, Kawabata SI, Mihara K, et al. Influenza A virus protein PB1-F2 translocates into mitochondria via Tom40 channels and impairs innate immunity. Nat Commun. 2014. https://doi.org/10.1038/ncomms5713.
Article
Google Scholar
Kuo SM, Chen CJ, Chang SC, Liu TJ, Chen YH, Huang SY, et al. Inhibition of Avian Influenza A Virus Replication in Human Cells by Host Restriction Factor TUFM Is Correlated with Autophagy. MBio. 2017. https://doi.org/10.1128/mBio.00481-17.
Article
Google Scholar
Zeng Y, Xu S, Wei Y, Zhang X, Wang Q, Jia Y, et al. The PB1 protein of influenza A virus inhibits the innate immune response by targeting MAVS for NBR1-mediated selective autophagic degradation. PLoS Pathog. 2021. https://doi.org/10.1371/journal.ppat.1009300.
Article
Google Scholar
Wilkinson S. ER-phagy: shaping up and destressing the endoplasmic reticulum. FEBS J. 2019. https://doi.org/10.1111/febs.14932.
Article
Google Scholar
Lennemann NJ, Coyne CB. Dengue and Zika viruses subvert reticulophagy by NS2B3-mediated cleavage of FAM134B. Autophagy. 2017. https://doi.org/10.1080/15548627.2016.1265192.
Article
Google Scholar
Chiramel AI, Dougherty JD, Nair V, Robertson SJ, Best SM. FAM134B, the Selective Autophagy Receptor for Endoplasmic Reticulum Turnover, Inhibits Replication of Ebola Virus Strains Makona and Mayinga. J Infect Dis. 2016. https://doi.org/10.1093/infdis/jiw270.
Article
Google Scholar
Evans AS, Lenneman NJ, Coyne CB. BPIFB3 Regulates Endoplasmic Reticulum Morphology To Facilitate Flavivirus Replication. J Virol. 2020. https://doi.org/10.1128/JVI.00029-20.
Article
Google Scholar
Grumati P, Morozzi G, Holper S, Mari M, Harwardt MI, Yan R, et al. Full length RTN3 regulates turnover of tubular endoplasmic reticulum via selective autophagy. Elife. 2017. https://doi.org/10.7554/eLife.25555.
Article
Google Scholar
Aktepe TE, Liebscher S, Prier JE, Simmons CP, Mackenzie JM. The Host Protein Reticulon 3.1A Is Utilized by Flaviviruses to Facilitate Membrane Remodelling. Cell Rep. 2017. https://doi.org/10.1016/j.celrep.2017.10.055.
Article
Google Scholar
Wu MJ, Ke PY, Hsu JTA, Yeh CT, Horng JT. Reticulon 3 interacts with NS4B of the hepatitis C virus and negatively regulates viral replication by disrupting NS4B self-interaction. Cell Microbiol. 2014. https://doi.org/10.1111/cmi.12318.
Article
Google Scholar
Saito T, Kuma A, Sugiura Y, Ichimura Y, Obata M, Kitamura H, et al. Autophagy regulates lipid metabolism through selective turnover of NCoR1. Nat Commun. 2019. https://doi.org/10.1038/s41467-019-08829-3.
Article
Google Scholar
Kaur J, Debnath J. Autophagy at the crossroads of catabolism and anabolism. Nat Rev Mol Cell Biol. 2015. https://doi.org/10.1038/nrm4024.
Article
Google Scholar
Martin S, Parton RG. Lipid droplets: a unified view of a dynamic organelle. Nat Rev Mol Cell Biol. 2006. https://doi.org/10.1038/nrm1912.
Article
Google Scholar
Heaton NS, Randall G. Dengue virus-induced autophagy regulates lipid metabolism. Cell Host Microbe. 2010. https://doi.org/10.1016/j.chom.2010.10.006.
Article
Google Scholar
Zhang JS, Lan Y, Li MY, Lamers MM, Fusade-Boyer M, Klemm E, et al. Flaviviruses exploit the lipid droplet protein AUP1 to trigger lipophagy and drive virus production. Cell Host Microbe. 2018. https://doi.org/10.1016/j.chom.2018.05.005.
Article
Google Scholar
Heaton NS, Perera R, Berger KL, Khadka S, LaCount DJ, Kuhn RJ, et al. Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of viral replication and increases cellular fatty acid synthesis. Proc Natl Acad Sci USA. 2010. https://doi.org/10.1073/pnas.1010811107.
Article
Google Scholar
Cloherty APM, Olmstead AD, Ribeiro CMS, Jean F. Hijacking of Lipid Droplets by Hepatitis C, Dengue and Zika Viruses-From Viral Protein Moonlighting to Extracellular Release. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21217901.
Article
Google Scholar
Yoon MJ, Choi B, Kim EJ, Ohk J, Yang C, Choi YG, et al. UXT chaperone prevents proteotoxicity by acting as an autophagy adaptor for p62-dependent aggrephagy. Nat Commun. 2021. https://doi.org/10.1038/s41467-021-22252-7.
Article
Google Scholar
Cuanalo-Contreras K, Moreno-Gonzalez I. Natural products as modulators of the proteostasis machinery: implications in neurodegenerative diseases. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20194666.
Article
Google Scholar
Muscolino E, Schmitz R, Loroch S, Caragliano E, Schneider C, Rizzato M, et al. Herpesviruses induce aggregation and selective autophagy of host signalling proteins NEMO and RIPK1 as an immune-evasion mechanism. Nat Microbiol. 2020. https://doi.org/10.1038/s41564-019-0624-1.
Article
Google Scholar
Pantopoulos K, Porwal SK, Tartakoe A, Devireddy L. Mechanisms of mammalian iron homeostasis. Biochemistry. 2012. https://doi.org/10.1021/bi300752r.
Article
Google Scholar
Mancias JD, Vaites LP, Nissim S, Biancur DE, Kim AJ, Wang XX, et al. Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2-mediated proteolysis. Elife. 2015. https://doi.org/10.7554/eLife.10308.
Article
Google Scholar
Bartolomei G, Cevik RE, Marcello A. Modulation of hepatitis C virus replication by iron and hepcidin in Huh7 hepatocytes. J Gen Virol. 2011. https://doi.org/10.1099/vir.0.032706-0.
Article
Google Scholar
Terpiowska S, Siwicki AK. Chromium(III) and iron(III) inhibits replication of DNA and RNA viruses. Biometals. 2017. https://doi.org/10.1007/s10534-017-0027-9.
Article
Google Scholar
Georgiou NA, van der Bruggen T, Oudshoorn M, Nottet HSLM, Marx JJM, van Asbeck BS. Inhibition of human immunodeficiency virus type 1 replication in human mononuclear blood cells by the iron chelators deferoxamine, deferiprone, and bleomycin. J Infect Dis. 2000. https://doi.org/10.1086/315223.
Article
Google Scholar
Duchemin JB, Paradkar PN. Iron availability affects West Nile virus infection in its mosquito vector. Virol J. 2017. https://doi.org/10.1186/s12985-017-0770-0.
Article
Google Scholar
Sun Y, Bao Q, Xuan B, Xu W, Pan D, Li Q, et al. Human Cytomegalovirus Protein pUL38 Prevents Premature Cell Death by Binding to Ubiquitin-Specific Protease 24 and Regulating Iron Metabolism. J Virol. 2018. https://doi.org/10.1128/JVI.00191-18.
Article
Google Scholar
Ohta K, Saka N, Nishio M. Human Parainfluenza Virus Type 2 V Protein Modulates Iron Homeostasis. J Virol. 2021. https://doi.org/10.1128/JVI.01861-20.
Article
Google Scholar
Sumpter R, Levine B. Autophagy and innate immunity: Triggering, targeting and tuning. Semin Cell Dev Biol. 2010. https://doi.org/10.1016/j.semcdb.2010.04.003.
Article
Google Scholar
Lee MS, Kim YJ. Signaling pathways downstream of pattern-recognition receptors and their cross talk. Annu Rev Biochem. 2007. https://doi.org/10.1146/annurev.biochem.76.060605.122847.
Article
Google Scholar
Choi Y, Bowman JW, Jung JU. Autophagy during viral infection - a double-edged sword. Nat Rev Microbiol. 2018. https://doi.org/10.1038/s41579-018-0003-6.
Article
Google Scholar
Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol. 2014. https://doi.org/10.3389/fimmu.2014.00461.
Article
Google Scholar
Qian Y, Commane M, Ninomiya-Tsuji J, Matsumoto K, Li X. IRAK-mediated translocation of TRAF6 and TAB2 in the interleukin-1-induced activation of NFkappa B. J Biol Chem. 2001. https://doi.org/10.1074/jbc.M102262200.
Article
Google Scholar
Rasmussen SB, Horan KA, Holm CK, Stranks AJ, Mettenleiter TC, Simon AK, et al. Activation of autophagy by alpha-herpesviruses in myeloid cells is mediated by cytoplasmic viral DNA through a mechanism dependent on stimulator of IFN genes. J Immunol. 2011. https://doi.org/10.4049/jimmunol.1100949.
Article
Google Scholar
Parker ZM, Murphy AA, Leib DA. Role of the DNA Sensor STING in Protection from Lethal Infection following Corneal and Intracerebral Challenge with Herpes Simplex Virus 1. J Virol. 2015. https://doi.org/10.1128/JVI.00954-15.
Article
Google Scholar
Zhang R, Kang R, Tang D. The STING1 network regulates autophagy and cell death. Signal Transduct Target Ther. 2021. https://doi.org/10.1038/s41392-021-00613-4.
Article
Google Scholar
Lee NR, Ban J, Lee NJ, Yi CM, Choi JY, Kim H, et al. Activation of RIG-I-Mediated Antiviral Signaling Triggers Autophagy Through the MAVS-TRAF6-Beclin-1 Signaling Axis. Front Immunol. 2018. https://doi.org/10.3389/fimmu.2018.02096.
Article
Google Scholar
Liu S, Chen J, Cai X, Wu J, Chen X, Wu YT, et al. MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades. Elife. 2013. https://doi.org/10.7554/eLife.00785.
Article
Google Scholar
Fang R, Jiang Q, Zhou X, Wang C, Guan Y, Tao J, et al. MAVS activates TBK1 and IKKepsilon through TRAFs in NEMO dependent and independent manner. PLoS Pathog. 2017. https://doi.org/10.1371/journal.ppat.1006720.
Article
Google Scholar
Shi CS, Kehrl JH. MyD88 and Trif target Beclin 1 to trigger autophagy in macrophages. J Biol Chem. 2008. https://doi.org/10.1074/jbc.M804478200.
Article
Google Scholar
Yang Q, Liu TT, Lin H, Zhang M, Wei J, Luo WW, et al. TRIM32-TAX1BP1-dependent selective autophagic degradation of TRIF negatively regulates TLR3/4-mediated innate immune responses. PLoS Pathog. 2017. https://doi.org/10.1371/journal.ppat.1006600.
Article
Google Scholar
Takeuchi O, Akira S. Innate immunity to virus infection. Immunol Rev. 2009. https://doi.org/10.1111/j.1600-065X.2008.00737.x.
Article
Google Scholar
West AP, Shadel GS, Ghosh S. Mitochondria in innate immune responses. Nat Rev Immunol. 2011. https://doi.org/10.1038/nri2975.
Article
Google Scholar
Biasizzo M, Kopitar-Jerala N. Interplay Between NLRP3 Inflammasome and Autophagy. Front Immunol. 2020. https://doi.org/10.3389/fimmu.2020.591803.
Article
Google Scholar
Yang CS, Rodgers M, Min CK, Lee JS, Kingeter L, Lee JY, et al. The Autophagy Regulator Rubicon Is a Feedback Inhibitor of CARD9-Mediated Host Innate Immunity. Cell Host Microbe. 2012. https://doi.org/10.1016/j.chom.2012.01.019.
Article
Google Scholar
Lee HK, Lund JM, Ramanathan B, Mizushima N, Iwasaki A. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science. 2007. https://doi.org/10.1126/science.1136880.
Article
Google Scholar
de Carvalho RVH, Lima-Junior DS, da Silva MVG, Dilucca M, Rodrigues TS, Horta CV, et al. Leishmania RNA virus exacerbates Leishmaniasis by subverting innate immunity via TLR3-mediated NLRP3 inflammasome inhibition. Nat Commun. 2019. https://doi.org/10.1038/s41467-019-13356-2.
Article
Google Scholar
Yordy B, Tal MC, Hayashi K, Arojo O, Iwasaki A. Autophagy and selective deployment of Atg proteins in antiviral defense. Int Immunol. 2013. https://doi.org/10.1093/intimm/dxs101.
Article
Google Scholar
Zhang R, Qin X, Yang Y, Zhu X, Zhao S, Zhang Z, et al. STING1 is essential for an RNA-virus triggered autophagy. Autophagy. 2022. https://doi.org/10.1080/15548627.2021.1959086.
Article
Google Scholar
Liu Y, Gordesky-Gold B, Leney-Greene M, Weinbren NL, Tudor M, Cherry S. Inflammation-Induced, STING-Dependent Autophagy Restricts Zika Virus Infection in the Drosophila Brain. Cell Host Microbe. 2018. https://doi.org/10.1016/j.chom.2018.05.022.
Article
Google Scholar
Delorme-Axford E, Klionsky DJ. Inflammatory-dependent Sting activation induces antiviral autophagy to limit zika virus in the Drosophila brain. Autophagy. 2019. https://doi.org/10.1080/15548627.2018.1539585.
Article
Google Scholar
Chan ST, Lee J, Narula M, Ou JJ. Suppression of Host Innate Immune Response by Hepatitis C Virus via Induction of Autophagic Degradation of TRAF6. J Virol. 2016. https://doi.org/10.1128/JVI.01365-16.
Article
Google Scholar
Chandra PK, Bao LL, Song K, Aboulnasr FM, Baker DP, Shores N, et al. HCV Infection Selectively Impairs Type I but Not Type III IFN Signaling. Am J Pathol. 2014. https://doi.org/10.1016/j.ajpath.2013.10.005.
Article
Google Scholar
Liang QM, Seo GJ, Choi YJ, Kwak MJ, Ge JN, Rodgers MA, et al. Crosstalk between the cGAS DNA Sensor and Beclin-1 Autophagy Protein Shapes Innate Antimicrobial Immune Responses. Cell Host Microbe. 2014. https://doi.org/10.1016/j.chom.2014.01.009.
Article
Google Scholar
Xie W, Tian S, Yang J, Cai S, Jin S, Zhou T, et al. OTUD7B deubiquitinates SQSTM1/p62 and promotes IRF3 degradation to regulate antiviral immunity. Autophagy. 2022. https://doi.org/10.1080/15548627.2022.2026098.
Article
Google Scholar
Blum JS, Wearsch PA, Cresswell P. Pathways of Antigen Processing. Ann Rev Immunol. 2013. https://doi.org/10.1146/annurev-immunol-032712-095910.
Article
Google Scholar
Lich JD, Elliott JF, Blum JS. Cytoplasmic processing is a prerequisite for presentation of an endogenous antigen by major histocompatibility complex class II proteins. J Exp Med. 2000. https://doi.org/10.1084/jem.191.9.1513.
Article
Google Scholar
Tewari MK, Sinnathamby G, Rajagopal D, Eisenlohr LC. A cytosolic pathway for MHC class II-restricted antigen processing that is proteasome and TAP dependent (vol 6, pg 287, 2005). Nat Immunol. 2005. https://doi.org/10.1038/ni0405-420.
Article
Google Scholar
Dahl SW, Halkier T, Lauritzen C, Dolenc I, Pedersen J, Turk V, et al. Human recombinant pro-dipeptidyl peptidase I (cathepsin C) can be activated by cathepsins L and S but not by autocatalytic processing. Biochemistry. 2001. https://doi.org/10.1021/bi001693z.
Article
Google Scholar
Munz C. Antigen processing via autophagy–not only for MHC class II presentation anymore? Curr Opin Immunol. 2010. https://doi.org/10.1016/j.coi.2010.01.016.
Article
Google Scholar
Valecka J, Almeida CR, Su B, Pierre P, Gatti E. Autophagy and MHC-restricted antigen presentation. Mol Immunol. 2018. https://doi.org/10.1016/j.molimm.2018.05.009.
Article
Google Scholar
Loi M, Muller A, Steinbach K, Niven J, da Silva RB, Paul P, et al. Macroautophagy Proteins Control MHC Class I Levels on Dendritic Cells and Shape Anti-viral CD8(+) T Cell Responses. Cell Rep. 2016. https://doi.org/10.1016/j.celrep.2016.04.002.
Article
Google Scholar
Parekh VV, Pabbisetty SK, Wu L, Sebzda E, Martinez J, Zhang JH, et al. Autophagy-related protein Vps34 controls the homeostasis and function of antigen cross-presenting CD8 alpha(+) dendritic cells. Proc Natl Acad Sci USA. 2017. https://doi.org/10.1073/pnas.1706504114.
Article
Google Scholar
Yamamoto K, Venida A, Yano J, Biancur DE, Kakiuchi M, Gupta S, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature. 2020. https://doi.org/10.1038/s41586-020-2229-5.
Article
Google Scholar
Tey SK, Khanna R. Autophagy mediates transporter associated with antigen processing-independent presentation of viral epitopes through MHC class I pathway. Blood. 2012. https://doi.org/10.1182/blood-2012-01-402404.
Article
Google Scholar
Wenger T, Terawaki S, Camosseto V, Abdelrassoul R, Mies A, Catalan N, et al. Autophagy inhibition promotes defective neosynthesized proteins storage in ALIS, and induces redirection toward proteasome processing and MHCI-restricted presentation. Autophagy. 2012. https://doi.org/10.4161/auto.18806.
Article
Google Scholar
Schmid D, Pypaert M, Munz C. Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity. 2007. https://doi.org/10.1016/j.immuni.2006.10.018.
Article
Google Scholar
Comber JD, Robinson TM, Siciliano NA, Snook AE, Eisenlohr LC. Functional Macroautophagy Induction by Influenza A Virus without a Contribution to Major Histocompatibility Complex Class II-Restricted Presentation. J Virol. 2011. https://doi.org/10.1128/Jvi.02122-10.
Article
Google Scholar
Jin Y, Sun C, Feng L, Li P, Xiao L, Ren Y, et al. Regulation of SIV antigen-specific CD4+ T cellular immunity via autophagosome-mediated MHC II molecule-targeting antigen presentation in mice. PLoS ONE. 2014. https://doi.org/10.1371/journal.pone.0093143.
Article
Google Scholar
Blanchet FP, Moris A, Nikolic DS, Lehmann M, Cardinaud S, Stalder R, et al. Human immunodeficiency virus-1 inhibition of immunoamphisomes in dendritic cells impairs early innate and adaptive immune responses. Immunity. 2010. https://doi.org/10.1016/j.immuni.2010.04.011.
Article
Google Scholar
Zhang Y, Chen Y, Li Y, Huang F, Luo B, Yuan Y, et al. The ORF8 protein of SARS-CoV-2 mediates immune evasion through down-regulating MHC-Iota. Proc Natl Acad Sci U S A. 2021. https://doi.org/10.1073/pnas.2024202118.
Article
Google Scholar
English L, Chemali M, Desjardins M. Nuclear membrane-derived autophagy, a novel process that participates in the presentation of endogenous viral antigens during HSV-1 infection. Autophagy. 2009. https://doi.org/10.4161/auto.5.7.9163.
Article
Google Scholar
Dong XN, Yang YT, Zou ZJ, Zhao YT, Ci B, Zhong L, et al. Sorting nexin 5 mediates virus-induced autophagy and immunity. Nature. 2020. https://doi.org/10.1038/s41586-020-03056-z.
Article
Google Scholar
Schuchman R, Kilianski A, Piper A, Vancini R, Ribeiro JMC, Sprague TR, et al. Comparative Characterization of the Sindbis Virus Proteome from Mammalian and Invertebrate Hosts Identifies nsP2 as a Component of the Virion and Sorting Nexin 5 as a Significant Host Factor for Alphavirus Replication. J Virol. 2018. https://doi.org/10.1128/JVI.00694-18.
Article
Google Scholar
Nanbo A, Imai M, Watanabe S, Noda T, Takahashi K, Neumann G, et al. Ebolavirus is internalized into host cells via macropinocytosis in a viral glycoprotein-dependent manner. PLoS Pathog. 2010. https://doi.org/10.1371/journal.ppat.1001121.
Article
Google Scholar
Feng ZK, Kovalev N, Nagy PD. Key interplay between the co-opted sorting nexin-BAR proteins and PI3P phosphoinositide in the formation of the tombusvirus replicase. PLoS Pathog. 2020. https://doi.org/10.1371/journal.ppat.1009120.
Article
Google Scholar
Maschkowitz G, Gartner S, Hofmann-Winkler H, Fickenscher H, Winkler M. Interaction of Human Cytomegalovirus Tegument Proteins ppUL35 and ppUL35A with Sorting Nexin 5 Regulates Glycoprotein B (gpUL55) Localization. J Virol. 2018. https://doi.org/10.1128/JVI.00013-18.
Article
Google Scholar