Carvalho AF, Bortolato B, Miskowiak K, Vieta E, Köhler C. Cognitive dysfunction in bipolar disorder and schizophrenia: a systematic review of meta-analyses. Neuropsychiatr Dis Treat. 2015;11:3111–5.
Article
PubMed
PubMed Central
Google Scholar
Kurtz MM, Gerraty RT. A meta-analytic investigation of neurocognitive deficits in bipolar illness: profile and effects of clinical state. Neuropsychology. 2009;23:551–62.
Article
PubMed
PubMed Central
Google Scholar
King MJ, MacDougall AG, Ferris S, Herdman KA, Bielak T, Smith JRV, et al. Impaired episodic memory for events encoded during mania in patients with bipolar disorder. Psychiatry Res. 2013;205:213–9.
Article
PubMed
Google Scholar
Swerdlow NR, Koob GF. Dopamine, schizophrenia, mania, and depression: toward a unified hypothesis of cortico-striatopallido-thalamic function. Behav Brain Sci. 1987;10:197–208.
Article
Google Scholar
Cousins DA, Butts K, Young AH. The role of dopamine in bipolar disorder. Bipolar Disord. 2009;11:787–806.
Article
CAS
PubMed
Google Scholar
Horschitz S, Hummerich R, Lau T, Rietschel M, Schloss P. A dopamine transporter mutation associated with bipolar affective disorder causes inhibition of transporter cell surface expression. Mol Psychiatry. 2005;10:1104–9.
Article
CAS
PubMed
Google Scholar
Pinsonneault JK, Han DD, Burdick KE, Kataki M, Bertolino A, Malhotra AK, et al. Dopamine transporter gene variant affecting expression in human brain is associated with bipolar disorder. Neuropsychopharmacology. 2011;36:1644–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhuang X, Oosting RS, Jones SR, Gainetdinov RR, Miller GW, Caron MG, et al. Hyperactivity and impaired response habituation in hyperdopaminergic mice. Proc Natl Acad Sci. 2001;98:1982–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu N, Cepeda C, Zhuang X, Levine MS. Altered corticostriatal neurotransmission and modulation in dopamine transporter knock-down mice. J Neurophysiol. 2007;98:423–32.
Article
CAS
PubMed
Google Scholar
Young JW, van Enkhuizen J, Winstanley CA, Geyer MA. Increased risk-taking behavior in dopamine transporter knockdown mice: further support for a mouse model of mania. J Psychopharmacol. 2011;25:934–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Enkhuizen J, Henry BL, Minassian A, Perry W, Milienne-Petiot M, Higa KK, et al. Reduced dopamine transporter functioning induces high-reward risk-preference consistent with bipolar disorder. Neuropsychopharmacology. 2014;39:3112–22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chang P-K, Yu L, Chen J-C. Dopamine D3 receptor blockade rescues hyper-dopamine activity-induced deficit in novel object recognition memory. Neuropharmacology. 2018;133:216–23.
Article
CAS
PubMed
Google Scholar
Woodgett JR. Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J. 1990;9:2431–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takahashi-Yanaga F. Activator or inhibitor? GSK-3 as a new drug target. Biochem Pharmacol. 2013;86:191–9.
Article
CAS
PubMed
Google Scholar
Kaidanovich-Beilin O, Woodgett JR. GSK-3: functional insights from cell biology and animal models. Front Mol Neurosci. 2011;4:40.
Article
CAS
PubMed
PubMed Central
Google Scholar
O’Leary O, Nolan Y. Glycogen synthase kinase-3 as a therapeutic target for cognitive dysfunction in neuropsychiatric disorders. CNS Drugs. 2014;29:1–15.
Article
CAS
Google Scholar
Hernández F, Borrell J, Guaza C, Avila J, Lucas JJ. Spatial learning deficit in transgenic mice that conditionally over-express GSK-3β in the brain but do not form tau filaments. J Neurochem. 2002;83:1529–33.
Article
PubMed
Google Scholar
Engel T, Hernández F, Avila J, Lucas JJ. Full reversal of Alzheimer's disease-like phenotype in a mouse model with conditional overexpression of glycogen synthase kinase-3. J Neurosci. 2006;26:5083–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chew B, Ryu JR, Ng T, Ma D, Dasgupta A, Neo SH, et al. Lentiviral silencing of GSK-3β in adult dentate gyrus impairs contextual fear memory and synaptic plasticity. Front Behav Neurosci. 2015;9:1–12.
Article
CAS
Google Scholar
Rangel-Barajas C, Coronel I, Florán B. Dopamine receptors and neurodegeneration. Aging Dis. 2015;6:349–68.
Article
PubMed
PubMed Central
Google Scholar
Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995;378:785–9.
Article
CAS
PubMed
Google Scholar
Ripollés P, Marco-Pallarés J, Alicart H, Tempelmann C, Rodríguez-Fornells A, Noesselt T. Intrinsic monitoring of learning success facilitates memory encoding via the activation of the SN/VTA-hippocampal loop. eLife. 2016;5:507–36.
Article
Google Scholar
Winters BD, Forwood SE, Cowell RA, Saksida LM, Bussey TJ. Double dissociation between the effects of peri-postrhinal cortex and hippocampal lesions on tests of object recognition and spatial memory: heterogeneity of function within the temporal lobe. J Neurosci. 2004;24:5901–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barker GRI, Warburton EC. Object-in-place associative recognition memory depends on glutamate receptor neurotransmission within two defined hippocampal-cortical circuits: a critical role for AMPA and NMDA receptors in the hippocampus, perirhinal, and prefrontal cortices. Cereb Cortex. 2013;25:472–81.
Article
PubMed
PubMed Central
Google Scholar
Warburton EC, Brown MW. Neural circuitry for rat recognition memory. Behav Brain Res. 2015;285:131–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Easton A, Webster LAD, Eacott MJ. The episodic nature of episodic-like memories. Learn Mem. 2012;19:146–50.
Article
PubMed
Google Scholar
Barker GRI, Bird F, Alexander V, Warburton EC. Recognition memory for objects, place, and temporal order: a disconnection analysis of the role of the medial prefrontal cortex and perirhinal cortex. J Neurosci. 2007;27:2948–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tuscher JJ, Taxier LR, Fortress AM, Frick KM. Chemogenetic inactivation of the dorsal hippocampus and medial prefrontal cortex, individually and concurrently, impairs object recognition and spatial memory consolidation in female mice. Neurobiol Learn Mem. 2018;156:103–16.
Article
PubMed
PubMed Central
Google Scholar
Kamei H, Nagai T, Nakano H, Togan Y, Takayanagi M, Takahashi K, et al. Repeated methamphetamine treatment impairs recognition memory through a failure of novelty-induced ERK1/2 activation in the prefrontal cortex of mice. Biol Psychiatry. 2006;59:75–84.
Article
CAS
PubMed
Google Scholar
Evuarherhe O, Barker GRI, Savalli G, Warburton EC, Brown MW. Early memory formation disrupted by atypical PKC inhibitor ZIP in the medial prefrontal cortex but not hippocampus. Hippocampus. 2014;24:934–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ihalainen JA, Riekkinen P, Feenstra MG. Comparison of dopamine and noradrenaline release in mouse prefrontal cortex, striatum and hippocampus using microdialysis. Neurosci Lett. 1999;277:71–4.
Article
CAS
PubMed
Google Scholar
Mines MA, Jope RS. Brain region differences in regulation of Akt and GSK3 by chronic stimulant administration in mice. Cell Signal. 2012;24:1398–405.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salles M-J, Hervé D, Rivet J-M, Longueville S, Millan MJ, Girault J-A, et al. Transient and rapid activation of Akt/GSK-3β and mTORC1 signaling by D3 dopamine receptor stimulation in dorsal striatum and nucleus accumbens. J Neurochem. 2013;125:532–44.
Article
CAS
PubMed
Google Scholar
Mannoury la Cour C, Salles MJ, Pasteau V, Millan MJ. Signaling pathways leading to phosphorylation of Akt and GSK-3 by activation of cloned human and rat cerebral D2 and D3 receptors. Mol Pharmacol. 2010;79:91–105.
Article
PubMed
CAS
Google Scholar
Nakajima S, Gerretsen P, Takeuchi H, Caravaggio F, Chow T, Le Foll B, et al. The potential role of dopamine D3 receptor neurotransmission in cognition. Eur Neuropsychopharmacol. 2013;23:799–813.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nagai T, Takuma K, Kamei H, Ito Y, Nakamichi N, Ibi D, et al. Dopamine D1 receptors regulate protein synthesis-dependent long-term recognition memory via extracellular signal-regulated kinase 1/2 in the prefrontal cortex. Learn Mem. 2007;14:117–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang J-R, Sun P-H, Ren Z-X, Meltzer HY, Zhen X-C. GSK-3 βInteracts with dopamine D1 receptor to regulate receptor function: implication for prefrontal cortical D1 receptor dysfunction in schizophrenia. CNS Neurosci Ther. 2016;23:174–87.
Article
PubMed
PubMed Central
CAS
Google Scholar
Noda Y, Mouri A, Ando Y, Waki Y, Yamada S-N, Yoshimi A, et al. Galantamine ameliorates the impairment of recognition memory in mice repeatedly treated with methamphetamine: involvement of allosteric potentiation of nicotinic acetylcholine receptors and dopaminergic-ERK1/2 systems. Int J Neuropsychopharmacol. 2010;13:1343–54.
Article
CAS
PubMed
Google Scholar
Duda P, Wiśniewski J, Wójtowicz T, Wójcicka O, Jaśkiewicz M, Drulis-Fajdasz D, et al. Targeting GSK3 signaling as a potential therapy of neurodegenerative diseases and aging. Expert Opin Ther Targets. 2018;22:833–48.
Article
CAS
PubMed
Google Scholar
Hooper C, Markevich V, Plattner F, Killick R, Schofield E, Engel T, et al. Glycogen synthase kinase-3 inhibition is integral to long-term potentiation. Eur J Neurosci. 2007;25:81–6.
Article
PubMed
Google Scholar
Zhu LQ, Wang SH, Liu D, Yin YY, Tian Q, Wang XC, et al. Activation of glycogen synthase kinase-3 inhibits long-term potentiation with synapse-associated impairments. J Neurosci. 2007;27:12211–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi X, Miller JS, Harper LJ, Poole RL, Gould TJ, Unterwald EM. Reactivation of cocaine reward memory engages the Akt/GSK3/mTOR signaling pathway and can be disrupted by GSK3 inhibition. Psychopharmacology. 2014;231:3109–18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kapfhamer D, Berger KH, Hopf FW, Seif T, Kharazia V, Bonci A, et al. Protein phosphatase 2A and glycogen synthase kinase 3 signaling modulate prepulse inhibition of the acoustic startle response by altering cortical M-type potassium channel activity. J Neurosci. 2010;30:8830–40.
Article
PubMed
PubMed Central
Google Scholar
Scholes KE, Martin-Iverson MT. Relationships between prepulse inhibition and cognition are mediated by attentional processes. Behav Brain Res. 2009;205:456–67.
Article
PubMed
Google Scholar
Corbella B, Vieta E. Molecular targets of lithium action. Acta Neuropsychiatr. 2003;15:316–40.
Article
CAS
PubMed
Google Scholar
Stip E, Dufresne J, Lussier I, Yatham L. A double-blind, placebo-controlled study of the effects of lithium on cognition in healthy subjects: mild and selective effects on learning. J Affect Disord. 2000;60:147–57.
Article
CAS
PubMed
Google Scholar
Wingo AP, Wingo TS, Harvey PD, Baldessarini RJ. Effects of Lithium on cognitive performance. J Clin Psychiatry. 2009;70:1588–97.
Article
CAS
PubMed
Google Scholar
Hu S, Begum AN, Jones MR, Oh MS, Beech WK, Beech BH, et al. GSK3 inhibitors show benefits in an Alzheimer’s disease (AD) model of neurodegeneration but adverse effects in control animals. Neurobiol Dis. 2009;33:193–206.
Article
CAS
PubMed
Google Scholar
Cao G, Zhu J, Zhong Q, Shi C, Dang Y, Han W, et al. Distinct roles of methamphetamine in modulating spatial memory consolidation, retrieval, reconsolidation and the accompanying changes of ERK and CREB activation in hippocampus and prefrontal cortex. Neuropharmacology. 2013;67:144–54.
Article
CAS
PubMed
Google Scholar
Pardo M, Abrial E, Jope RS, Beurel E. GSK3β isoform-selective regulation of depression, memory and hippocampal cell proliferation. Genes Brain Behav. 2016;15:348–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dewachter I, Ris L, Jaworski T, Seymour CM, Kremer A, Borghgraef P, et al. GSK3beta, a centre-staged kinase in neuropsychiatric disorders, modulates long term memory by inhibitory phosphorylation at serine-9. Neurobiol Dis. 2009;35:193–200.
Article
CAS
PubMed
Google Scholar
Kimura T, Yamashita S, Nakao S, Park J-M, Murayama M, Mizoroki T, et al. GSK-3beta is required for memory reconsolidation in adult brain. PLoS One. 2008;3:e3540.
Article
PubMed
PubMed Central
CAS
Google Scholar
Maurin H, Lechat B, Dewachter I, Ris L, Louis JV, Borghgraef P, et al. Neurological characterization of mice deficient in GSK3α highlight pleiotropic physiological functions in cognition and pathological activity as tau kinase. Mol Brain. 2013;6:27–3.
Article
CAS
PubMed
PubMed Central
Google Scholar