McCall , Millington Wr, Wurtman RJ: Metabolic fuel and amino acid transport into the brain in experimental diabetes mellitus. Proc Nadl Acad Sci USA. 1982, 97: 2881-2885.
Google Scholar
Nagy R, O' Connor A, Kempers S, yeo R, Qualis C: Adaption in brain glucose uptake following recurrent hypoglycaemia. Proc Acad Sci USA. 1994, 91: 9352-69356. 10.1073/pnas.91.20.9352.
Article
Google Scholar
Brownlee M: Biochemistry and molecular cell biology of diabetic complications. Nature. 2001, 414: 813-820. 10.1038/414813a.
Article
CAS
PubMed
Google Scholar
Pardridge WM: Brain metabolism: a perspective from the blood-brain barrier. Physiol Rev. 1983, 63: 1481-1535.
CAS
PubMed
Google Scholar
Feldman EL, Stevens MJ, Greene DA: Pathogenesis of diabetic neuropathy. Clin Neurosci. 1997, 4: 365-370.
CAS
PubMed
Google Scholar
Auer RN, Siesjo BK: Hypoglycaemia: brain neurochemistry and neuropathology. Baillieres Clin Endocrinol Metab. 1993, 7: 611-625. 10.1016/S0950-351X(05)80210-1.
Article
CAS
PubMed
Google Scholar
Kamal A, Biessels GJ, Duis SE, Gispen WH: Learning and hippocampal synaptic plasticity in streptozotocin-diabetic rats: interaction of diabetes and ageing. Diabetologia. 2000, 43: 500-506. 10.1007/s001250051335.
Article
CAS
PubMed
Google Scholar
Ouyang L, Wang J, Zhu X: Diagnostic efficacy of glutamic acid decarboxylase antibody and islet cell antibody in type I diabetes mellitus. Zhonghua Nei Ke Za Zhi. 2000, 39: 674-676.
CAS
PubMed
Google Scholar
Osawa T, Kato Y: Protective role of antioxidative food factors in oxidative stress caused by hyperglycemia. Ann N Y Acad Sci. 2005, 1043: 440-451. 10.1196/annals.1333.050.
Article
CAS
PubMed
Google Scholar
Ahmad M, Turkseven S, Mingone CJ, Gupte SA, Wolin MS, Abraham NG: Heme oxygenase-1 gene expression increases vascular relaxation and decreases inducible nitric oxide synthase in diabetic rats. Cell Mol Biol (Noisy-le-grand). 2005, 51: 371-376.
CAS
Google Scholar
Ishrat T, Khan MB, Hoda MN, Yousuf S, Ahmad M, Ansari MA, Ahmad AS, Islam F: Coenzyme Q10 modulates cognitive impairment against intracerebroventricular injection of streptozotocin in rats. Behav Brain Res. 2006, 171: 9-16. 10.1016/j.bbr.2006.03.009.
Article
CAS
PubMed
Google Scholar
Itokawa H, Hirayama F, Funakoshi K, Takeya K: Studies on the antitumor bisabolane sesquiterpenoids isolated from Curcuma xanthorrhiza. Chem Pharm Bull. 1985, 33: 3488-3492.
Article
CAS
PubMed
Google Scholar
Bala K, Tripathy BC, Sharma D: Neuroprotective and anti-ageing effects of curcumin in aged rat brain regions. Biogerontology. 2006, 7: 81-9. 10.1007/s10522-006-6495-x.
Article
CAS
PubMed
Google Scholar
Kuhad A, Chopra K: Curcumin attenuates diabetic encephalopathy in rats: behavioral and biochemical evidences. Eur J Pharmacol. 2007, 576: 34-42. 10.1016/j.ejphar.2007.08.001.
Article
CAS
PubMed
Google Scholar
Shishodia S, Sethi G, Aggarwal BB: Curcumin: getting back to the roots. Ann N Y Acad Sci. 2005, 1056: 206-217. 10.1196/annals.1352.010.
Article
CAS
PubMed
Google Scholar
Marchall JF, Friedman MI, Heffner TG: Reduced anorexic and locomotor-stimulant action of d-amphetamine in alloxan-diabetic rats. Brain Res. 1976, 111: 428-32. 10.1016/0006-8993(76)90789-7.
Article
Google Scholar
Waxman SG, Sabin TD: Diabetic truncal polyneuropathy. Arch Neurol. 1981, 38: 46-7.
Article
CAS
PubMed
Google Scholar
Vallone D, Picetti R, Borrelli E: Structure and function of dopamine receptors. Neurosci Biobehav Rev. 2000, 24: 125-132. 10.1016/S0149-7634(99)00063-9.
Article
CAS
PubMed
Google Scholar
Nogueira CR, Machado UF, Curi R, Carpinelli AR: Modulation of insulin secretion and 45Ca2+ efflux by dopamine in glucose-stimulated pancreatic islets. Gen Pharmacol. 1994, 25: 909-16.
Article
CAS
PubMed
Google Scholar
Barik S, de Beaurepaire R: Evidence for a functional role of the dopamine D3 receptors in the cerebellum. Brain Res. 1996, 737 (1-2): 347-350. 10.1016/0006-8993(96)00964-X.
Article
CAS
PubMed
Google Scholar
Slater Lauren: Opening Skinner's Box: Great Psychological Experiments of the Twentieth Century. 2005, New York: W. W. Norton & Company, 86-90.
Google Scholar
Spaulding SW: The ways in which hormones change cyclic adenosine 3',5'-monophosphate-dependent protein kinase subunits, and how such changes affect cell behavior. Endocr Rev. 1993, 14 (5): 632-650.
CAS
PubMed
Google Scholar
Shimomura A, Okamoto Y, Hirata Y, Kobayashi M, Kawakami K, Kiuchi K, Wakabayashi T, Hagiwara M: Dominant negative ATF1 blocks cyclic AMP-induced neurite outgrowth in PC12 D cells. J Neurochem. 1998, 70 (3): 1029-34. 10.1046/j.1471-4159.1998.70031029.x.
Article
CAS
PubMed
Google Scholar
Whiting PH, Palmano KP, Howthorne JN: Enzymes of myoinositol and inositol lipid metabolism in rats with streptozotocin induced diabetes. Biochem J. 1979, 179: 549-553.
Article
PubMed Central
CAS
PubMed
Google Scholar
Junod A, Lambert AE, Staufferacher W, Renold AE: Diabetogenic action of Streptozotocin: Relationship of dose to metabolic response. J Clin Invest. 1969, 48: 2129-2139. 10.1172/JCI106180.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hohenegger M, Rudas B: Kidney failure in experimental diabetes mellitus. Wien Z Inn Med. 1971, 52 (1): 36-40.
CAS
PubMed
Google Scholar
Arison RN, Ciaccio EI, Glitzer MS, Cassaro JA, Pruss MP: Light and electron microscopy of lesions in rats rendered diabetic with streptozotocin. Diabetes. 1967, 16: 51-56.
Article
CAS
PubMed
Google Scholar
Sharma S, Kulkarni SK, Agrewala JN, Chopra K: Curcumin attenuates thermal hyperalgesia in a diabetic mouse model of neuropathic pain. Eur J Pharmacol. 2006, 536: 256-261. 10.1016/j.ejphar.2006.03.006.
Article
CAS
PubMed
Google Scholar
Glowinski J, Iversen LL: Regional studies of catecholamines in the rat brain. J Neurochem. 1966, 13: 655-659. 10.1111/j.1471-4159.1966.tb09873.x.
Article
CAS
PubMed
Google Scholar
Madras BK, Fahey MA, Canfield DR, Spealman RD: D1 and D2 dopamine receptors in caudate-putamen of nonhuman primates (Macaca fascicularis). J Neurochem. 1988, 51: 934-943. 10.1111/j.1471-4159.1988.tb01830.x.
Article
CAS
PubMed
Google Scholar
Lowry OH, Rosenbrough NH, Farr AL, Randall RJ: Protein measurement with folin Phenol reagent. J Biol Chem. 1951, 193: 265-275.
CAS
PubMed
Google Scholar
Scatchard G: The attraction of proteins for small molecules and ions. Ann NY Acad Sci. 1949, 51: 660-72. 10.1111/j.1749-6632.1949.tb27297.x.
Article
CAS
Google Scholar
Aragno M, Parola S, Brignardello E, Mauro A, Tamagno E, Manti R, Danni O, Boccuzzi G: Dehydroepiandrosterone prevents oxidative injury induced by transient ischemia/reperfusion in the brain of diabetic rats. Diabetes. 2000, 49: 1924-1931. 10.2337/diabetes.49.11.1924.
Article
CAS
PubMed
Google Scholar
Low PA, Nickander KK, Tritschler HJ: The role of oxidative stress and antioxidant treatment in experimental diabetic neuropathy. Diabetes. 1997, 44: 46:38-
Google Scholar
Meghana K, Sanjeev G, Ramesh B: Curcumin prevents streptozotocin-induced islet damage by scavenging free radicals: a prophylactic and protective role. Eur J Pharmacol. 2007, 577: 183-191. 10.1016/j.ejphar.2007.09.002.
Article
CAS
PubMed
Google Scholar
Seo KI, Choi MS, Jung UJ, Kim HJ, Yeo J, Jeon SM, Lee MK: Effect of curcumin supplementation on blood glucose, plasma insulin, and glucose homeostasis related enzyme activities in diabetic db/db mice. Mol Nutr Food Res. 2008, 52: 995-1004. 10.1002/mnfr.200700184.
Article
CAS
PubMed
Google Scholar
McCall AL: The impact of diabetes on the CNS. Diabetes. 1992, 41: 557-570. 10.2337/diabetes.41.5.557.
Article
CAS
PubMed
Google Scholar
Missale C, Nash SR, Robinson SW, Jaber MC: Dopamine receptors: From structure to function. Physiol Rev. 1998, 78: 189-225.
CAS
PubMed
Google Scholar
Lozovsky D, Saller CF, Kopin IJ: Dopamine receptor binding is increased in diabetic rats. Science. 1981, 214: 1031-1033. 10.1126/science.6458088.
Article
CAS
PubMed
Google Scholar
Garris : Age diabetes associated alterations in regional brain norepinephrine concentrations and adrenergic populations in C57BL/KsL mice. Developmental Brain Research. 1990, 51: 161-166. 10.1016/0165-3806(90)90272-Z.
Article
CAS
PubMed
Google Scholar
Fink JS, Smith GP: Decreased locomotor and investigatory exploration after denervation of catecholamine terminal fields in the forebrain of rats. J Comp Physiol Psychol. 1979, 93: 34-65. 10.1037/h0077587.
Article
CAS
PubMed
Google Scholar
Funada M. Suzuki T, Misawa M: The role of dopamine D1-receptor in morphine induced hyperlocomotion in mice. Neurosci Lett. 1994, 169: 1-4. 10.1016/0304-3940(94)90342-5.
Article
PubMed
Google Scholar
Marshall JF, Friedman MI, Heffner TG: Reduced anorexic and locomotor-stimulant action of D-amphetamine in alloxan-diabetic rats. Brain Res. 1976, 111: 428-432. 10.1016/0006-8993(76)90789-7.
Article
CAS
PubMed
Google Scholar
Bhattacharya SK, Saraswathi M: Effect of intracerebroventricularly administered insulin on brain monoamines and acetylcholine in euglycemic and alloxan- induced hyperglycemic rats. Indian J Exp Biol. 1991, 29: 1095-1100.
CAS
PubMed
Google Scholar
Lackovic Z, Salkovic M, Kuci Z, Relja M: Effect of long-lasting diabetes mellitus on rat and human brain monoamines. J Neurochem. 1990, 51: 143-147. 10.1111/j.1471-4159.1990.tb13294.x.
Article
Google Scholar
Kamei J, Saitoh A, Iwamoto Y, Funada M, Suzuki T, Misawa M, Nagase H, Kasuya Y: Effects of diabetes on spontaneous locomotor activity in mice. Neurosci Lett. 1994, 178: 69-72. 10.1016/0304-3940(94)90292-5.
Article
CAS
PubMed
Google Scholar
de Paulis T: The discovery of epidepride and its analogs as highaffinity radioligands for imaging extrastriatal dopamine D2 receptors in human brain. Curr Pharm Des. 2003, 9: 673-696. 10.2174/1381612033391135.
Article
CAS
PubMed
Google Scholar
Verma A, Moghaddam B: NMDA receptor antagonists impair prefrontal cortex function as assessed via spatial delayed alternation performance in rats: modulation by dopamine. J Neurosci. 1996, 16: 373-379.
CAS
PubMed
Google Scholar
Castellano C, Ventura R, Cabib S, Puglisi-Allegra S: Strain-dependent effects of anandamide on memory consolidation in mice are antagonized by naltrexone. Behav Pharmacol. 1999, 10: 453-457. 10.1097/00008877-199909000-00003.
Article
CAS
PubMed
Google Scholar
Zhou QY, Palmiter RD: Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic. Cell. 1995, 83: 1197-1209. 10.1016/0092-8674(95)90145-0.
Article
CAS
PubMed
Google Scholar
Kobayashi M, Shigeta Y: Anti-insulin receptor antibody--its measurement and significance. Nippon Rinsho. 1990, 48: 308-14.
PubMed
Google Scholar
Shimomura YSH, Takahashi M, Uehara Y, Kobayashi I, Kobayashi S: Ambulatory activity and dopamine turnover in streptozotocin-induced diabetic rats. Exp Clin Endocrinol. 1990, 95: 385-388. 10.1055/s-0029-1210980.
Article
CAS
PubMed
Google Scholar
Kolasiewicz W, Maj J: Locomotor hypoactivity and motor disturbances-behavioral effects induced by intracerebellar microinjections of dopaminergic DA-D2/D3 receptor agonists. Pol J Pharmacol. 2001, 53: 509-15.
CAS
PubMed
Google Scholar
Gireesh G, Balarama Kaimal S, Peeyush Kumar T, Paulose CS: Decreased muscarinic M1 receptor gene expression in the hypothalamus, brainstem, and pancreatic islets of streptozotocin-induced diabetic rats. Journal of Neuroscience Research. 2008, 86: 947-953. 10.1002/jnr.21544.
Article
CAS
PubMed
Google Scholar
Mohanan VV, Kaimal SB, Paulose CS: Decreased 5-HT1A receptor gene expression and 5HT1A receptor protein in the cerebral cortex and brain stem during pancreatic regeneration in rats. Neurochemical Research. 2005, 30: 25-32. 10.1007/s11064-004-9682-7.
Article
CAS
PubMed
Google Scholar
Kaimal SB, George KA, Paulose CS: Gamma-aminobutyric acid A receptor functional decrease in the hypothalamus during pancreatic regeneration in rats. Pancreas. 2008, 37: e20-30. 10.1097/MPA.0b013e3181661af4.
Article
CAS
PubMed
Google Scholar
Anu J, Peeyush Kumar T, Nandhu MS, Paulose CS: Enhanced NMDAR1, NMDA2B and mGlu5 receptors gene expression in the cerebellum of insulin induced hypoglycaemic and streptozotocin induced diabetic rats. Eur J Pharmacol. 2010, 630: 61-68. 10.1016/j.ejphar.2009.12.024.
Article
CAS
PubMed
Google Scholar
Puglisi-Allegra S, Cestari V, Cabib S, Castellano C: Strain-dependent effects of post-training cocaine or nomifensine on memory storage involve both D1 and D2 dopamine receptors. Psychopharmacology. 1994, 115: 157-162. 10.1007/BF02244766.
Article
CAS
PubMed
Google Scholar
Imperato A, Obinu MC, Gessa GL: Stimulation of both dopamine D1 and D2 receptors facilitates in vivo acetylcholine release in the hippocampus. Brain Research. 1993, 618: 341-345. 10.1016/0006-8993(93)91288-4.
Article
CAS
PubMed
Google Scholar
Umegaki H, Munoz J, Meyer RC, Spangler EL, Yoshimura J, Ikari H, Iguchi A, Ingram DK: Involvement of dopamine D(2) receptors in complex maze learning and acetylcholine release in ventral hippocampus of rats. Neuroscience. 2001, 103: 27-33. 10.1016/S0306-4522(00)00542-X.
Article
CAS
PubMed
Google Scholar
Finkbeiner S: CREB couples neurotrophin signals to survival messages. Neuron. 2000, 25: 11-14. 10.1016/S0896-6273(00)80866-1.
Article
CAS
PubMed
Google Scholar
Mayr B, Montminy M: Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol. 2001, 2: 599-609. 10.1038/35085068.
Article
CAS
PubMed
Google Scholar
Nestler EJ: . Total recall-the memory of addiction. Neurobiology Science. 2001, 292: 2266-2267.
CAS
PubMed
Google Scholar
Dudman Joshua JT, Eaton Molly, Rajadhyaksha Anjali, Taher Mac Muffadal Wendy, Barczak Amy, Kameyama Kimihiko, Huganir Richard, Konradi Christine: Dopamine D1 receptors mediate CREB phosphorylation via phosphorylation of the NMDA receptor at Ser897-NR1. J Neurochem. 2003, 87: 922-934. 10.1046/j.1471-4159.2003.02067.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Monsma F, Mahan L, McVittie L, Gerfen C, Sibley D: Molecular cloning and expression of a D1 dopamine receptor linked to adenylyl cyclase activation. Proc Natl Acad Sci. 1990, 87: 6723-6727. 10.1073/pnas.87.17.6723.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sibley DR, Monsma FJ, Shen Y: Molecular neurobiology of dopaminergic receptors. Int Rev Neurobiol. 1993, 35: 391-415. 10.1016/S0074-7742(08)60573-5.
Article
CAS
PubMed
Google Scholar
Orbana Paul, Paul FC, Riccardo B: Is the Ras-MAPK signalling pathway necessary for long-term memory formation?. Trends in Neurosciences. 1999, 22: 38-44. 10.1016/S0166-2236(98)01306-X.
Article
Google Scholar
Zhao Jing, Zhao Yong, Zheng Weiping, Lu Yuyu, Feng Gang, Yu Shanshan: Neuroprotective effect of curcumin on transient focal cerebral ischemia in rats. Brain Research. 2008, 1229: 224-232. 10.1016/j.brainres.2008.06.117.
Article
CAS
PubMed
Google Scholar
Ashe PC, Berry MD: Apoptotic signaling cascades. Prog. Neuro-psychopharmacol. Biol Psychiatry. 2003, 27: 199-214.
CAS
Google Scholar
Guan QH, Pei DS, Liu XM, Wang XT, Xu TL, Zhang GY: Neuroprotection against ischemic brain injury by SP600125 via suppressing the extrinsic and intrinsic pathways of apoptosis. Brain Res. 2006, 1092: 36-46. 10.1016/j.brainres.2006.03.086.
Article
CAS
PubMed
Google Scholar
Davis EA, Keating B, Byrne GC, Russell M, Jones TW: Impact of improved glycaemic control on rates of hypoglycaemia in insulin dependent diabetes mellitus. Arch Dis Child. 1998, 78: 111-115. 10.1136/adc.78.2.111.
Article
PubMed Central
CAS
PubMed
Google Scholar
Dube MG, Torto R, Kalra SP: Increased leptin expression selectively in the hypothalamus suppresses inflammatory markers CRP and IL-6 in leptin-deficient diabetic obese mice. Peptides. 2008, 29: 593-598. 10.1016/j.peptides.2008.01.001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gao Q, Horvath TL: "Cross-talk between estrogen and leptin signaling in the hypothalamus,". American Journal of Physiology. 2008, 294: E817-E826.
CAS
PubMed
Google Scholar
Gerozissis K: "Brain insulin, energy and glucose homeostasis; genes, environment and metabolic pathologies,". European Journal of Pharmacology. 2008, 585: 38-49. 10.1016/j.ejphar.2008.01.050.
Article
CAS
PubMed
Google Scholar