Zapolska DD, Bryk D, Olejarz W. Trans fatty acids and atherosclerosis-effects on inflammation and endothelial function. J Nutr Food Sci. 2015;5:426. doi:10.4172/2155-9600.1000426.
Egan BM, Greene EL, Goodfriend TL. Nonesterified fatty acids in blood pressure control and cardiovascular complications. Curr Hypertens Rep. 2001;3(2):107.
Article
CAS
PubMed
Google Scholar
Boden G. Obesity and free fatty acids. Endocrinol Metab Clin N Am. 2008;37(3):635–46.
Article
CAS
Google Scholar
Capurso C, Capurso A. From excess adiposity to insulin resistance: the role of free fatty acids. Vasc Pharmacol. 2012;57(2):91–7.
Article
CAS
Google Scholar
Delarue J, Magnan C. Free fatty acids and insulin resistance. Current Opinion in Clinical Nutrition & Metabolic Care. 2007;10(2):142–8.
Article
CAS
Google Scholar
Haus JM, Solomon TP, Marchetti CM, Edmison JM, Gonzalez F, Kirwan JP. Free fatty acid-induced hepatic insulin resistance is attenuated following lifestyle intervention in obese individuals with impaired glucose tolerance. The Journal of Clinical Endocrinology & Metabolism. 2010;95(1):323–7.
Article
CAS
Google Scholar
Steinberg H, Baron A. Vascular function, insulin resistance and fatty acids. Diabetologia. 2002;45(5):623–34.
Article
CAS
PubMed
Google Scholar
Liu J, Mazzone PJ, Cata JP, Kurz A, Bauer M, Mascha EJ, et al. Serum free fatty acid biomarkers of lung cancer. Chest. 2014;146(3):670–9.
Article
PubMed
Google Scholar
Zhang Y, He C, Qiu L, Wang Y, Zhang L, Qin X, et al. Serum unsaturated free fatty acids: potential biomarkers for early detection and disease progression monitoring of non-small cell lung cancer. J Cancer. 2014;5(8):706.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lv W, Yang T. Identification of possible biomarkers for breast cancer from free fatty acid profiles determined by GC–MS and multivariate statistical analysis. Clin Biochem. 2012;45(1):127–33.
Article
CAS
PubMed
Google Scholar
Zhang Y, He C, Qiu L, Wang Y, Qin X, Liu Y, et al. Serum unsaturated free fatty acids: a potential biomarker panel for early-stage detection of colorectal cancer. J Cancer. 2016;7(4):477.
Article
PubMed
PubMed Central
Google Scholar
Iantorno M, Campia U, Di Daniele N, Nistico S, Forleo G, Cardillo C, et al. Obesity, inflammation and endothelial dysfunction. J Biol Regul Homeost Agents. 2014;28(2):169–76.
CAS
PubMed
Google Scholar
Virdis A. Endothelial dysfunction in obesity: role of inflammation. High Blood Pressure & Cardiovascular Prevention. 2016;23(2):83–5.
Article
CAS
Google Scholar
Durrant JR, Seals DR, Connell ML, Russell MJ, Lawson BR, Folian BJ, et al. Voluntary wheel running restores endothelial function in conduit arteries of old mice: direct evidence for reduced oxidative stress, increased superoxide dismutase activity and down-regulation of NADPH oxidase. J Physiol. 2009;587(13):3271–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nilsson J, Ares MP, Dichtl W. VLDL and atherosclerosis. Endothelial dysfunctions in vascular disease. 2007:85–94.
Artwohl M, Roden M, Waldhäusl W, Freudenthaler A, Baumgartner-Parzer SM. Free fatty acids trigger apoptosis and inhibit cell cycle progression in human vascular endothelial cells. FASEB J. 2004;18(1):146–8.
CAS
PubMed
Google Scholar
Khan MJ, Alam MR, Waldeck-Weiermair M, Karsten F, Groschner L, Riederer M, et al. Inhibition of autophagy rescues palmitic acid-induced necroptosis of endothelial cells. J Biol Chem. 2012;287(25):21110–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee C-H, Lee S-D, Ou H-C, Lai S-C, Cheng Y-J. Eicosapentaenoic acid protects against palmitic acid-induced endothelial dysfunction via activation of the AMPK/eNOS pathway. Int J Mol Sci. 2014;15(6):10334–49.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jiang H, Liang C, Liu X, Jiang Q, He Z, Wu J, et al. Palmitic acid promotes endothelial progenitor cells apoptosis via p38 and JNK mitogen-activated protein kinase pathways. Atherosclerosis. 2010;210(1):71–7.
Article
CAS
PubMed
Google Scholar
Lai WKC, Kan MY. Homocysteine-induced endothelial dysfunction. Ann Nutr Metab. 2015;67(1):1–12.
Article
CAS
PubMed
Google Scholar
Chlopicki S. Perspectives in pharmacology of endothelium: from bench to bedside. Pharmacological reports: PR. 2015;67(4):vi.
Article
PubMed
Google Scholar
Aird WC. Endothelial cell heterogeneity. Crit Care Med. 2003;31(4):S221–S30.
Article
PubMed
Google Scholar
Maruyama I. Biology of endothelium. Lupus. 1998;7(2_suppl):41–3.
Article
Google Scholar
Jaffe EA. Cell biology of endothelial cells. Hum Pathol. 1987;18(3):234–9.
Article
CAS
PubMed
Google Scholar
Vallance P, Chan N. Endothelial function and nitric oxide: clinical relevance. Heart. 2001;85(3):342–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang PL. Endothelial nitric oxide synthase and endothelial dysfunction. Curr Hypertens Rep. 2003;5(6):473–80.
Article
PubMed
Google Scholar
Deanfield J, Donald A, Ferri C, Giannattasio C, Halcox J, Halligan S, et al. Endothelial function and dysfunction. Part I: methodological issues for assessment in the different vascular beds: a statement by the working group on Endothelin and endothelial factors of the European Society of Hypertension. J Hypertens. 2005;23(1):7–17.
Article
CAS
PubMed
Google Scholar
Arrebola-Moreno AL, Laclaustra M, Kaski JC. Noninvasive assessment of endothelial function in clinical practice. Revista Española de Cardiología (English Edition). 2012;65(1):80–90.
Article
Google Scholar
Hadi HA, Carr CS, Al SJ. Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vasc Health Risk Manag. 2005;1(3):183.
CAS
PubMed
PubMed Central
Google Scholar
Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res. 2000;87(10):840–4.
Article
CAS
PubMed
Google Scholar
Donato AJ, Morgan RG, Walker AE, Lesniewski LA. Cellular and molecular biology of aging endothelial cells. J Mol Cell Cardiol. 2015;89:122–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hamilton CA, McIntyre M, Brosnan MJ, Graham D, Dominiczak AF. Superoxide excess in hypertension and aging: a common cause of endothelial dysfunction? Am Heart Assoc. 2000;37(2):529–34.
Google Scholar
Avogaro A, de Kreutzenberg SV. Mechanisms of endothelial dysfunction in obesity. Clin Chim Acta. 2005;360(1):9–26.
Article
CAS
PubMed
Google Scholar
Wever RM, van Dam T, van Rijn HJ, de Groot F, Rabelink TJ. Tetrahydrobiopterin regulates superoxide and nitric oxide generation by recombinant endothelial nitric oxide synthase. Biochem Biophys Res Commun. 1997;237(2):340–4.
Article
CAS
PubMed
Google Scholar
Eskurza I, Myerburgh LA, Kahn ZD, Seals DR. Tetrahydrobiopterin augments endothelium-dependent dilatation in sedentary but not in habitually exercising older adults. J Physiol. 2005;568(3):1057–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roberts AC, Porter KE. Cellular and molecular mechanisms of endothelial dysfunction in diabetes. Diab Vasc Dis Res. 2013;10(6):472–82.
Article
PubMed
CAS
Google Scholar
Lesniewski LA, Durrant JR, Connell ML, Folian BJ, Donato AJ, Seals DR. Salicylate treatment improves age-associated vascular endothelial dysfunction: potential role of nuclear factor κB and forkhead box O phosphorylation. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences. 2011;66(4):409–18.
Article
CAS
Google Scholar
Wang M, Zhang J, Jiang L-Q, Spinetti G, Pintus G, Monticone R, et al. Proinflammatory profile within the grossly normal aged human aortic wall. Hypertension. 2007;50(1):219–27.
Article
CAS
PubMed
Google Scholar
Pierce GL, Lesniewski LA, Lawson BR, Beske SD, Seals DR. Nuclear factor-κB activation contributes to vascular endothelial dysfunction via oxidative stress in overweight/obese middle-aged and older humans. Circulation. 2009;119(9):1284–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walker AE, Kaplon RE, Pierce GL, Nowlan MJ, Seals DR. Prevention of age-related endothelial dysfunction by habitual aerobic exercise in healthy humans: possible role of nuclear factor κB. Clin Sci. 2014;127(11):645–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kempe S, Kestler H, Lasar A, Wirth T. NF-κB controls the global pro-inflammatory response in endothelial cells: evidence for the regulation of a pro-atherogenic program. Nucleic Acids Res. 2005;33(16):5308–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Donato AJ, Pierce GL, Lesniewski LA, Seals DR. Role of NFκB in age-related vascular endothelial dysfunction in humans. Aging. 2009;1(8):678.
Article
CAS
PubMed
PubMed Central
Google Scholar
Csiszar A, Wang M, Lakatta EG, Ungvari Z. Inflammation and endothelial dysfunction during aging: role of NF-κB. J Appl Physiol. 2008;105(4):1333–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garcia-Prieto CF, Hernandez-Nuno F, Rio DD, Ruiz-Hurtado G, Aranguez I, Ruiz-Gayo M, et al. High-fat diet induces endothelial dysfunction through a down-regulation of the endothelial AMPK-PI3K-Akt-eNOS pathway. Mol Nutr Food Res. 2015;59(3):520–32.
Article
CAS
PubMed
Google Scholar
Cai W, Duan XM, Liu Y, Yu J, Tang YL, Liu ZL, et al. Uric acid induces endothelial dysfunction by activating the HMGB1/RAGE signaling pathway. Biomed Res Int. 2017;2017:4391920.
PubMed
PubMed Central
Google Scholar
Wang L, Chen Y, Li X, Zhang Y, Gulbins E, Zhang Y. Enhancement of endothelial permeability by free fatty acid through lysosomal cathepsin B-mediated Nlrp3 inflammasome activation. Oncotarget. 2016;7(45):73229–41.
PubMed
PubMed Central
Google Scholar
Rasanen M, Degerman J, Nissinen TA, Miinalainen I, Kerkela R, Siltanen A, et al. VEGF-B gene therapy inhibits doxorubicin-induced cardiotoxicity by endothelial protection. Proc Natl Acad Sci U S A. 2016;113(46):13144–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yin Z, Zhao Y, Li H, Yan M, Zhou L, Chen C, et al. miR-320a mediates doxorubicin-induced cardiotoxicity by targeting VEGF signal pathway. Aging (Albany NY). 2016;8(1):192–207.
Article
Google Scholar
Sepulveda C, Palomo I, Fuentes E. Mechanisms of endothelial dysfunction during aging: predisposition to thrombosis. Mech Ageing Dev. 2017;164:91–9.
Article
CAS
PubMed
Google Scholar
Migrino RQ, Davies H, Truran S, Karamanova N, Franco DA, Serrano G, et al. Amyloidogenic Medin induces endothelial dysfunction and vascular inflammation through the receptor for advanced Glycation Endproducts. FASEB J. 2017;31(1 Supplement):1015.19.
Google Scholar
Ikdahl E, Hisdal J, Rollefstad S, Olsen IC, Kvien TK, Pedersen TR, et al. Rosuvastatin improves endothelial function in patients with inflammatory joint diseases, longitudinal associations with atherosclerosis and arteriosclerosis: results from the RORA-AS statin intervention study. Arthritis Res Ther. 2015;17:279.
Article
PubMed
PubMed Central
CAS
Google Scholar
Timar O, Szekanecz Z, Kerekes G, Vegh J, Olah AV, Nagy G, et al. Rosuvastatin improves impaired endothelial function, lowers high sensitivity CRP, complement and immuncomplex production in patients with systemic sclerosis--a prospective case-series study. Arthritis Res Ther. 2013;15(5):R105.
Article
PubMed
PubMed Central
CAS
Google Scholar
Erbs S, Beck EB, Linke A, Adams V, Gielen S, Krankel N, et al. High-dose rosuvastatin in chronic heart failure promotes vasculogenesis, corrects endothelial function, and improves cardiac remodeling--results from a randomized, double-blind, and placebo-controlled study. Int J Cardiol. 2011;146(1):56–63.
Article
PubMed
Google Scholar
Nagashima H, Endo M. Pitavastatin prevents postprandial endothelial dysfunction via reduction of the serum triglyceride level in obese male subjects. Heart Vessel. 2011;26(4):428–34.
Article
Google Scholar
Chen LL, Yu F, Zeng TS, Liao YF, Li YM, Ding HC. Effects of gliclazide on endothelial function in patients with newly diagnosed type 2 diabetes. Eur J Pharmacol. 2011;659(2–3):296–301.
Article
CAS
PubMed
Google Scholar
Sakatani Y, Miyoshi T, Oe H, Noda Y, Ohno Y, Nakamura K, et al. Pioglitazone prevents the endothelial dysfunction induced by ischemia and reperfusion in healthy subjects. J Cardiovasc Pharmacol. 2014;64(4):326–31.
Article
CAS
PubMed
Google Scholar
Rizza S, Cardellini M, Porzio O, Pecchioli C, Savo A, Cardolini I, et al. Pioglitazone improves endothelial and adipose tissue dysfunction in pre-diabetic CAD subjects. Atherosclerosis. 2011;215(1):180–3.
Article
CAS
PubMed
Google Scholar
Kunasegaran T, Mustafa MR, Achike FI, Murugan DD. Quercetin and pioglitazone synergistically reverse endothelial dysfunction in isolated aorta from fructose-streptozotocin (F-STZ)-induced diabetic rats. Eur J Pharmacol. 2017;799:160–70.
Article
CAS
PubMed
Google Scholar
Stojanović M, Prostran M, Radenković M. Thiazolidinediones improve flow-mediated dilation: a meta-analysis of randomized clinical trials. Eur J Clin Pharmacol. 2016;72(4):385–98.
Article
PubMed
CAS
Google Scholar
Jialal I, Fadini GP, Pollock K, Devaraj S. Circulating Levels of Endothelial Progenitor Cell Mobilizing Factors in the Metabolic Syndrome. The American Journal of Cardiology. 2010;106(11):1606-8.
Jearath V, Vashisht R, Rustagi V, Raina S, Sharma R. Pioglitazone-induced congestive heart failure and pulmonary edema in a patient with preserved ejection fraction. J Pharmacol Pharmacother. 2016;7(1):41–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Akoumianakis I, Antoniades C. Dipeptidyl peptidase IV inhibitors as novel regulators of vascular disease. Vasc Pharmacol. 2017;S1537-1891(17):30155–6.
Google Scholar
Radenkovic M, Stojanovic M, Potpara T, Prostran M. Therapeutic approach in the improvement of endothelial dysfunction: the current state of the art. Biomed Res Int. 2013;2013:252158.
Article
PubMed
PubMed Central
CAS
Google Scholar
Aguilar EC, Santos LC, Leonel AJ, de Oliveira JS, Santos EA, Navia-Pelaez JM, et al. Oral butyrate reduces oxidative stress in atherosclerotic lesion sites by a mechanism involving NADPH oxidase down-regulation in endothelial cells. J Nutr Biochem. 2016;34:99–105.
Article
CAS
PubMed
Google Scholar
Dai W, Wei C, Kong H, Jia Z, Han J, Zhang F, et al. Effect of the traditional Chinese medicine tongxinluo on endothelial dysfunction rats studied by using urinary metabonomics based on liquid chromatography-mass spectrometry. J Pharm Biomed Anal. 2011;56(1):86–92.
Article
CAS
PubMed
Google Scholar
Yang RX, Huang SY, Yan FF, Lu XT, Xing YF, Liu Y, et al. Danshensu protects vascular endothelia in a rat model of hyperhomocysteinemia. Acta Pharmacol Sin. 2010;31(10):1395–400.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brattstrom L, Wilcken DE. Homocysteine and cardiovascular disease: cause or effect? Am J Clin Nutr. 2000;72(2):315-23.
Xiong X, Yang X, Liu Y, Zhang Y, Wang P, Wang J. Chinese herbal formulas for treating hypertension in traditional Chinese medicine: perspective of modern science. Hypertens Res. 2013;36(7):570–9.
Article
PubMed
PubMed Central
Google Scholar
Vadivel V, Kunyanga CN, Biesalski HK. Health benefits of nut consumption with special reference to body weight control. Nutrition. 2012;28(11-12):1089-97.
Mielenz M. Invited review: nutrient-sensing receptors for free fatty acids and hydroxycarboxylic acids in farm animals. Animal. 2017;11(6):1008–16.
Article
CAS
PubMed
Google Scholar
Miyamoto J, Hasegawa S, Kasubuchi M, Ichimura A, Nakajima A, Kimura I. Nutritional signaling via free fatty acid receptors. Int J Mol Sci. 2016;17(4):450.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yonezawa T, Kurata R, Yoshida K, Murayama MA, Cui X, Hasegawa A. Free fatty acids-sensing G protein-coupled receptors in drug targeting and therapeutics. Curr Med Chem. 2013;20(31):3855–71.
Article
CAS
PubMed
Google Scholar
Dranse HJ, Kelly ME, Hudson BD. Drugs or diet?--developing novel therapeutic strategies targeting the free fatty acid family of GPCRs. Br J Pharmacol. 2013;170(4):696–711.
Article
CAS
PubMed
PubMed Central
Google Scholar
Briggs MA, Petersen KS, Kris-Etherton PM. Saturated fatty acids and cardiovascular disease: replacements for saturated fat to reduce cardiovascular risk. Healthcare (Basel). 2017;5(2):E29.
Article
Google Scholar
Chen X, Liu L, Palacios G, Gao J, Zhang N, Li G, et al. Plasma metabolomics reveals biomarkers of the atherosclerosis. J Sep Sci. 2010;33(17–18):2776–83.
Article
CAS
PubMed
Google Scholar
Sokolova M, Vinge LE, Alfsnes K, Olsen MB, Eide L, Kaasboll OJ, et al. Palmitate promotes inflammatory responses and cellular senescence in cardiac fibroblasts. Biochim Biophys Acta. 2017;1862(2):234–45.
Article
CAS
PubMed
Google Scholar
Zhang Y, Xia G, Zhang Y, Liu J, Liu X, Li W, et al. Palmitate induces VSMC apoptosis via toll like receptor (TLR)4/ROS/p53 pathway. Atherosclerosis. 2017;263:74–81.
Article
CAS
PubMed
Google Scholar
Fatehi-Hassanabad Z, Chan CB. Transcriptional regulation of lipid metabolism by fatty acids: a key determinant of pancreatic β-cell function. Nutrition & metabolism. 2005;2(1):1.
Article
CAS
Google Scholar
Thijssen M, Mensink R. Fatty acids and atherosclerotic risk. Atherosclerosis: Diet and Drugs: Springer. 2005:165–94.
Boden G. Free Fatty Acids, A Major Link Between Obesity, Insulin Resistance, Inflammation, and Atherosclerotic Vascular Disease. In: Fonseca VA, editor. Cardiovascular Endocrinology: Shared Pathways and Clinical Crossroads. Totowa: Humana Press; 2009. p. 61-70.
Jensen MD, Haymond MW, Rizza RA, Cryer PE, Miles J. Influence of body fat distribution on free fatty acid metabolism in obesity. J Clin Investig. 1989;83(4):1168.
Article
CAS
PubMed
PubMed Central
Google Scholar
Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C--dependent activation of NAD (P) H oxidase in cultured vascular cells. Diabetes. 2000;49(11):1939–45.
Article
CAS
PubMed
Google Scholar
Soardo G, Donnini D, Domenis L, Catena C, De Silvestri D, Cappello D, et al. Oxidative stress is activated by free fatty acids in cultured human hepatocytes. Metab Syndr Relat Disord. 2011;9(5):397–401.
Article
CAS
PubMed
Google Scholar
Cury-boaventura MF, Rui C. Regulation of reactive oxygen species (ROS) production by C18 fatty acids in Jurkat and Raji cells. Clin Sci. 2005;108(3):245–53.
Article
CAS
PubMed
Google Scholar
Savage DB, Petersen KF, Shulman GI. Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol Rev. 2007;87(2):507–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruderman N, Cacicedo J, Itani S, Yagihashi N, Saha A, Ye J, et al. Malonyl-CoA and AMP-activated protein kinase (AMPK): possible links between insulin resistance in muscle and early endothelial cell damage in diabetes. London: Portland Press Limited; 2003.
Google Scholar
Legrand-Poels S, Esser N, L’homme L, Scheen A, Paquot N, Piette J. Free fatty acids as modulators of the NLRP3 inflammasome in obesity/type 2 diabetes. Biochem Pharmacol. 2014;92(1):131–41.
Article
CAS
PubMed
Google Scholar
Guo H, Callaway JB, Ting JP-Y. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med. 2015;21(7):677.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wen H, Gris D, Lei Y, Jha S, Zhang L, Huang MT-H, et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol. 2011;12(5):408–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Steinberg HO, Brechtel G, Johnson A, Fineberg N, Baron AD. Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release. J Clin Investig. 1994;94(3):1172.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruderman NB, Carling D, Prentki M, Cacicedo JM. AMPK, insulin resistance, and the metabolic syndrome. J Clin Invest. 2013;123(7):2764.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chopra I, Li H, Wang H, Webster K. Phosphorylation of the insulin receptor by AMP-activated protein kinase (AMPK) promotes ligand-independent activation of the insulin signalling pathway in rodent muscle. Diabetologia. 2012;55(3):783–94.
Article
CAS
PubMed
Google Scholar
Wakil SJ, Abu-Elheiga LA. Fatty acid metabolism: target for metabolic syndrome. J Lipid Res. 2009;50(Supplement):S138–S43.
Article
PubMed
PubMed Central
CAS
Google Scholar
Steinberg HO, Tarshoby M, Monestel R, Hook G, Cronin J, Johnson A, et al. Elevated circulating free fatty acid levels impair endothelium-dependent vasodilation. J Clin Investig. 1997;100(5):1230.
Article
CAS
PubMed
PubMed Central
Google Scholar
Steinberg HO, Paradisi G, Hook G, Crowder K, Cronin J, Baron AD. Free fatty acid elevation impairs insulin-mediated vasodilation and nitric oxide production. Diabetes. 2000;49(7):1231–8.
Article
CAS
PubMed
Google Scholar
Yu Y, Li H, Zhang X. Effects of free fatty acids on nitric oxide synthase activity and mRNA expression in endothelial cell of SD rat aorta. Sichuan da xue xue bao Yi xue ban. Journal of Sichuan University Medical science edition. 2008;39(2):193–6.
CAS
PubMed
Google Scholar
Wang XL, Zhang L, Youker K, Zhang M-X, Wang J, LeMaire SA, et al. Free fatty acids inhibit insulin signaling–stimulated endothelial nitric oxide synthase activation through upregulating PTEN or inhibiting Akt kinase. Diabetes. 2006;55(8):2301–10.
Article
CAS
PubMed
Google Scholar
García-Prieto CF, Hernández-Nuño F, Rio DD, Ruiz-Hurtado G, Aránguez I, Ruiz-Gayo M, et al. High-fat diet induces endothelial dysfunction through a down-regulation of the endothelial AMPK–PI3K–Akt–eNOS pathway. Mol Nutr Food Res. 2015;59(3):520–32.
Article
PubMed
CAS
Google Scholar
Van Vickle GD. The effect of free fatty acids on endothelial cells: University of Missouri--Columbia; 2005.
Google Scholar
Das U. Long-chain polyunsaturated fatty acids interact with nitric oxide, superoxide anion, and transforming growth factor-beta to prevent human essential hypertension. Eur J Clin Nutr. 2004;58(2):195.
Article
CAS
PubMed
Google Scholar
Mitjavila M, Storniolo C, Moreno J. Olive oil polyphenols protect endothelial dysfunction induced by high glucose and free fatty acids by modulating nitric oxide and endothelin-1. Atherosclerosis. 2014;235(2):e110–e1.
Google Scholar
Storniolo CE, Roselló-Catafau J, Pintó X, Mitjavila MT, Moreno JJ. Polyphenol fraction of extra virgin olive oil protects against endothelial dysfunction induced by high glucose and free fatty acids through modulation of nitric oxide and endothelin-1. Redox Biol. 2014;2:971–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stirban A, Nandrean S, Götting C, Tamler R, Pop A, Negrean M, et al. Effects of n–3 fatty acids on macro-and microvascular function in subjects with type 2 diabetes mellitus. Am J Clin Nutr. 2010;91(3):808–13.
Article
CAS
PubMed
Google Scholar
Sawada T, Tsubata H, Hashimoto N, Takabe M, Miyata T, Aoki K, et al. Effects of 6-month eicosapentaenoic acid treatment on postprandial hyperglycemia, hyperlipidemia, insulin secretion ability, and concomitant endothelial dysfunction among newly-diagnosed impaired glucose metabolism patients with coronary artery disease. An open label, single blinded, prospective randomized controlled trial. Cardiovasc Diabetol. 2016;15(1):121.
Article
PubMed
PubMed Central
Google Scholar
Schwingshackl L, Christoph M, Hoffmann G. Effects of olive oil on markers of inflammation and endothelial function-a systematic review and meta-analysis. Nutrients. 2015;7(9):7651–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xing S-S, Yang X-Y, Zheng T, Li W-J, Wu D, Chi J-Y, et al. Salidroside improves endothelial function and alleviates atherosclerosis by activating a mitochondria-related AMPK/PI3K/Akt/eNOS pathway. Vasc Pharmacol. 2015;72:141–52.
Article
CAS
Google Scholar
Shankar SS, Mirzamohammadi B, Walsh JP, Steinberg HO. L-Carnitine may attenuate free fatty acid-induced endothelial dysfunction. Ann N Y Acad Sci. 2004;1033(1):189–97.
Article
CAS
PubMed
Google Scholar
Binienda ZK, Sarkar S, Silva-Ramirez S, Gonzalez C. Role of free fatty acids in physiological conditions and mitochondrial dysfunction. Food Nutr Sci. 2013;4(09):6.
Article
CAS
Google Scholar
Lückhoff A, Pohl U, Mülsch A, Busse R. Differential role of extra-and intracellular calcium in the release of EDRF and prostacyclin from cultured endothelial cells. Br J Pharmacol. 1988;95(1):189–96.
Article
PubMed
PubMed Central
Google Scholar
Demer L, Wortham C, Dirksen E, Sanderson M. Mechanical stimulation induces intercellular calcium signaling in bovine aortic endothelial cells. Am J Phys Heart Circ Phys. 1993;264(6):H2094–H102.
CAS
Google Scholar
Boo YC, Jo H. Flow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases. Am J Phys Cell Phys. 2003;285(3):C499–508.
Article
CAS
Google Scholar
Nauli SM, Kawanabe Y, Kaminski JJ, Pearce WJ, Ingber DE, Zhou J. Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1. Circulation. 2008;117(9):1161–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuroda R, Hirata K-I, Kawashima S, Yokoyama M. Unsaturated free fatty acids inhibit ca^ 2^+ mobilization and NO release in endothelial cells. Kobe J Med Sci. 2001;47(5):211–20.
CAS
PubMed
Google Scholar
Esenabhalu VE, Schaeffer G, Graier WF. Free fatty acid overload attenuates Ca2+ signaling and NO production in endothelial cells. Antioxid Redox Signal. 2003;5(2):147–53.
Article
CAS
PubMed
Google Scholar
Zhang W-Y, Schwartz E, Wang Y, Attrep J, Li Z, Reaven P. Elevated concentrations of nonesterified fatty acids increase monocyte expression of CD11b and adhesion to endothelial cells. Arterioscler Thromb Vasc Biol. 2006;26(3):514–9.
Article
CAS
PubMed
Google Scholar
Mestas J, Ley K. Monocyte-endothelial cell interactions in the development of atherosclerosis. Trends in cardiovascular medicine. 2008;18(6):228–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mathew M, Tay E, Cusi K. Elevated plasma free fatty acids increase cardiovascular risk by inducing plasma biomarkers of endothelial activation, myeloperoxidase and PAI-1 in healthy subjects. Cardiovasc Diabetol. 2010;9(1):9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Williams MJ, Sutherland WH, McCormick MP, de Jong SA, Walker RJ, Wilkins GT. Impaired endothelial function following a meal rich in used cooking fat. J Am Coll Cardiol. 1999;33(4):1050–5.
Article
CAS
PubMed
Google Scholar
Edirisinghe I, Burton-Freeman BM. Age associated endothelial dysfunction: role of oxidative stress, inflammation and western diet. Nutrition and Aging. 2014;2(4):197–211.
CAS
Google Scholar
Chinen I, Shimabukuro M, Yamakawa K, Higa N, Matsuzaki T, Noguchi K, et al. Vascular lipotoxicity: endothelial dysfunction via fatty-acid-induced reactive oxygen species overproduction in obese Zucker diabetic fatty rats. Endocrinology. 2007;148(1):160–5.
Article
CAS
PubMed
Google Scholar
Tampakakis E, Tabit CE, Holbrook M, Linder EA, Berk BD, Frame AA, et al. Intravenous lipid infusion induces endoplasmic reticulum stress in endothelial cells and blood mononuclear cells of healthy adults. J Am Heart Assoc. 2016;5(1):e002574.
Article
PubMed
PubMed Central
Google Scholar
Li X, Wang L, Nguyen T, Zhang Y. Enhanced endothelial permeability by free fatty acid due to lysosomal cathepsin B-mediated activation of Nlrp3 inflammasome. The FASEB Journal. 2016;30(1 Supplement):1198.2.
Li H, Li H, Bao Y, Zhang X, Yu Y. Free fatty acids induce endothelial dysfunction and activate protein kinase C and nuclear factor-κB pathway in rat aorta. Int J Cardiol. 2011;152(2):218–24.
Article
PubMed
Google Scholar
Iwata NG, Pham M, Rizzo NO, Cheng AM, Maloney E, Kim F. Trans fatty acids induce vascular inflammation and reduce vascular nitric oxide production in endothelial cells. PLoS One. 2011;6(12):e29600.
Article
CAS
PubMed
PubMed Central
Google Scholar
Staiger K, Staiger H, Weigert C, Haas C, Häring H-U, Kellerer M. Saturated, but not unsaturated, fatty acids induce apoptosis of human coronary artery endothelial cells via nuclear factor-κB activation. Diabetes. 2006;55(11):3121–6.
Article
CAS
PubMed
Google Scholar
Toborek M, Lee YW, Garrido R, Kaiser S, Hennig B. Unsaturated fatty acids selectively induce an inflammatory environment in human endothelial cells. Am J Clin Nutr. 2002;75(1):119–25.
CAS
PubMed
Google Scholar
Kim F, Tysseling KA, Rice J, Pham M, Haji L, Gallis BM, et al. Free fatty acid impairment of nitric oxide production in endothelial cells is mediated by IKKβ. Arterioscler Thromb Vasc Biol. 2005;25(5):989–94.
Article
CAS
PubMed
Google Scholar
Yasu T, Kobayashi M, Mutoh A, Yamakawa K, Momomura S-I, Ueda S. Dihydropyridine calcium channel blockers inhibit non-esterified-fatty-acid-induced endothelial and rheological dysfunction. Clin Sci. 2013;125(5):247–55.
Article
CAS
PubMed
Google Scholar
Kupchan SM, Anderson WK, Bollinger P, Doskotch RW, Smith RM, Saenz-Renauld JA, et al. Tumor inhibitors. XXXIX. Active principles of Acnistur arborescens. Isolation and structural and spectral studies of withaferin a and withacnistin. The Journal of organic chemistry. 1969;34(12):3858–66.
Article
CAS
PubMed
Google Scholar
Batumalaie K, Amin MA, Murugan DD, Sattar MZA, Abdullah NA. Withaferin a protects against palmitic acid-induced endothelial insulin resistance and dysfunction through suppression of oxidative stress and inflammation. Sci Rep. 2016;6:27236.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu K, Zhao W, Gao X, Huang F, Kou J, Liu B. Diosgenin ameliorates palmitate-induced endothelial dysfunction and insulin resistance via blocking IKKβ and IRS-1 pathways. Atherosclerosis. 2012;223(2):350–8.
Article
CAS
PubMed
Google Scholar
Fratantonio D, Speciale A, Ferrari D, Cristani M, Saija A, Cimino F. Palmitate-induced endothelial dysfunction is attenuated by cyanidin-3-O-glucoside through modulation of Nrf2/Bach1 and NF-κB pathways. Toxicol Lett. 2015;239(3):152–60.
Article
CAS
PubMed
Google Scholar
Fratantonio D, Cimino F, Molonia MS, Ferrari D, Saija A, Virgili F, et al. Cyanidin-3-O-glucoside ameliorates palmitate-induced insulin resistance by modulating IRS-1 phosphorylation and release of endothelial derived vasoactive factors. Biochim Biophys Acta. 2017;1862(3):351–7.
Article
CAS
PubMed
Google Scholar
Wang Y, Yu Y. Protective effects of Astragalus Membranaceus on free fatty acid-induced vascular endothelial cell dysfunction. Sichuan da xue xue bao Yi xue ban= Journal of Sichuan University Medical science edition. 2011;42(1):48–51.
CAS
PubMed
Google Scholar
Lüscher TF. Endothelial dysfunction: the role and impact of the renin-angiotensin system. Heart. 2000;84(suppl 1):i20–i2.
Article
PubMed
PubMed Central
Google Scholar
Pellieux C, Montessuit C, Papageorgiou I, Lerch R. Angiotensin II downregulates the fatty acid oxidation pathway in adult rat cardiomyocytes via release of tumour necrosis factor-α. Cardiovasc Res. 2009;82(2):341–50.
Article
CAS
PubMed
Google Scholar
Sun J, Luo J, Ruan Y, Xiu L, Fang B, Zhang H, et al. Free fatty acids activate renin-angiotensin system in 3T3-L1 adipocytes through nuclear factor-kappa B pathway. Journal of diabetes research. 2015;2016:1587594.
PubMed
PubMed Central
Google Scholar
Jayasooriya AP, Mathai ML, Walker LL, Begg DP, Denton DA, Cameron-Smith D, et al. Mice lacking angiotensin-converting enzyme have increased energy expenditure, with reduced fat mass and improved glucose clearance. Proc Natl Acad Sci. 2008;105(18):6531–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nemoto S, Kobayashi T, Taguchi K, Matsumoto T, Kamata K. Losartan improves aortic endothelium-dependent relaxation via proline-rich tyrosine kinase 2/Src/Akt pathway in type 2 diabetic Goto-Kakizaki rats. Am J Phys Heart Circ Phys. 2011;301(6):H2383–H94.
CAS
Google Scholar
Azekoshi Y, Yasu T, Watanabe S, Tagawa T, Abe S, Yamakawa K, et al. Free fatty acid causes leukocyte activation and resultant endothelial dysfunction through enhanced angiotensin II production in mononuclear and polymorphonuclear cells. Hypertension. 2010;56(1):136–42.
Article
CAS
PubMed
Google Scholar
Watanabe S, Tagawa T, Yamakawa K, Shimabukuro M, Ueda S. Inhibition of the renin-angiotensin system prevents free fatty acid–induced acute endothelial dysfunction in humans. Arterioscler Thromb Vasc Biol. 2005;25(11):2376–80.
Article
CAS
PubMed
Google Scholar
Sorrentino SA, Bahlmann FH, Besler C, Müller M, Schulz S, Kirchhoff N, et al. Oxidant stress impairs in vivo reendothelialization capacity of endothelial progenitor cells from patients with type 2 diabetes mellitus. Circulation. 2007;116(2):163–73.
Article
CAS
PubMed
Google Scholar
Werner N, Nickenig G. Influence of cardiovascular risk factors on endothelial progenitor cells. Arterioscler Thromb Vasc Biol. 2006;26(2):257–66.
Article
CAS
PubMed
Google Scholar
Liu H, Wang Q, Zhang Y, Qi D, Li M, Guo W, et al. Pioglitazone up-regulates long non-coding RNA MEG3 to protect endothelial progenitor cells via increasing HDAC7 expression in metabolic syndrome. Biomed Pharmacother. 2016;78:101–9.
Article
CAS
PubMed
Google Scholar
Huang N, Zhang R, Shi D, Li D, He H, Zhou H, et al. LncRNA MEG3 is involved in endothelial differentiation of human bone marrow-derived Mesenchymal stem cells. 2nd international conference on architectural, civil and hydraulics engineering (ICACHE 2016). 2016.
Book
Google Scholar
Boon RA, Hofmann P, Michalik KM, Lozano-Vidal N, Berghäuser D, Fischer A, et al. Long noncoding RNA Meg3 controls endothelial cell aging and function. J Am Coll Cardiol. 2016;68(23):2589.
Article
PubMed
Google Scholar
Arce-Esquivel AA, Bunker AK, Mikus CR, Laughlin MH. Insulin resistance and endothelial dysfunction: macro and microangiopathy. Type 2 diabetes: InTech; 2013.
Google Scholar
Imrie H, Abbas A, Kearney M. Insulin resistance, lipotoxicity and endothelial dysfunction. Biochimica et Biophysica Acta (BBA)-molecular and cell biology of. Lipids. 2010;1801(3):320–6.
CAS
Google Scholar
Yu Y, Zhu J, Wu Y, Baron A. Insulin mitigates the effect of free fatty acid to cause endothelial dysfunction in rat aortic rings. Zhonghua Yi Xue Za Zhi. 2002;82(6):422–5.
CAS
PubMed
Google Scholar
Ding X, Saxena NK, Lin S, Gupta N, Anania FA. Exendin-4, a glucagon-like protein-1 (GLP-1) receptor agonist, reverses hepatic steatosis in ob/ob mice. Hepatology. 2006;43(1):173–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Idris I, Patiag D, Gray S, Donnelly R. Exendin-4 increases insulin sensitivity via a PI-3-kinase-dependent mechanism: contrasting effects of GLP-1. Biochem Pharmacol. 2002;63(5):993–6.
Article
CAS
PubMed
Google Scholar
Li L, Yang G, Li Q, Tan X, Liu H, Tang Y, et al. Exenatide prevents fat-induced insulin resistance and raises adiponectin expression and plasma levels. Diabetes Obes Metab. 2008;10(10):921–30.
Article
CAS
PubMed
Google Scholar
Han L, Yu Y, Sun X, Wang B. Exendin-4 directly improves endothelial dysfunction in isolated aortas from obese rats through the cAMP or AMPK–eNOS pathways. Diabetes Res Clin Pract. 2012;97(3):453–60.
Article
CAS
PubMed
Google Scholar
Liu L, Wang Y, Wang L, Lin Y, Liu X, Liu X, et al. Exendin-4 protects murine pancreatic β-cells from free fatty acid-induced apoptosis through PI-3K signaling. Endocr Res. 2013;38(1):40–7.
Article
PubMed
CAS
Google Scholar
Tews D, Werner U, Eckel J. Enhanced protection against cytokine-and fatty acid-induced apoptosis in pancreatic beta cells by combined treatment with glucagon-like peptide-1 receptor agonists and insulin analogues. Horm Metab Res. 2008;40(03):172–80.
Article
CAS
PubMed
Google Scholar
Han F, Zhang S, Hou N, Wang D, Sun X. Irisin improves endothelial function in obese mice through the AMPK-eNOS pathway. Am J Phys Heart Circ Phys. 2015;309(9):H1501–H8.
CAS
Google Scholar
Lu J, Xiang G, Liu M, Mei W, Xiang L, Dong J. Irisin protects against endothelial injury and ameliorates atherosclerosis in apolipoprotein E-null diabetic mice. Atherosclerosis. 2015;243(2):438–48.
Article
CAS
PubMed
Google Scholar
Xin C, Liu J, Zhang J, Zhu D, Wang H, Xiong L, et al. Irisin improves fatty acid oxidation and glucose utilization in type 2 diabetes by regulating the AMPK signaling pathway. Int J Obes. 2016;40(3):443.
Article
CAS
Google Scholar
Liu T-Y, Shi C-X, Gao R, Sun H-J, Xiong X-Q, Ding L, et al. Irisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via the PI3K/Akt pathway in type 2 diabetic mice and hepatocytes. Clin Sci. 2015;129(10):839–50.
Article
CAS
PubMed
Google Scholar
Zhang S, Yang L, Chen P, Jin H, Xie X, Yang M, et al. Circulating Adipocyte fatty acid binding protein (FABP4) levels are associated with Irisin in the middle-aged general Chinese population. PLoS One. 2016;11(1):e0146605.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ye F, Li X, Li L, Yuan J, Chen J. T-BHQ provides protection against lead neurotoxicity via Nrf2/HO-1 pathway. Oxidative Med Cell Longev. 2015;2016:2075915.
Google Scholar
Wang C, Wang P, Zeng W, Li W. Tetramethylpyrazine improves the recovery of spinal cord injury via Akt/Nrf2/HO-1 pathway. Bioorg Med Chem Lett. 2016;26(4):1287–91.
Article
CAS
PubMed
Google Scholar
Lou J, Cao G, Li R, Liu J, Dong Z, Xu L. β-Caryophyllene attenuates focal cerebral ischemia-reperfusion injury by Nrf2/HO-1 pathway in rats. Neurochem Res. 2016;41(6):1291–304.
Article
CAS
PubMed
Google Scholar
Hu T, Wei G, Xi M, Yan J, Wu X, Wang Y, et al. Synergistic cardioprotective effects of Danshensu and hydroxysafflor yellow a against myocardial ischemia-reperfusion injury are mediated through the Akt/Nrf2/HO-1 pathway. Int J Mol Med. 2016;38(1):83–94.
CAS
PubMed
PubMed Central
Google Scholar
Yan T, Yu X, Sun X, Meng D, Jia J-M. A new steroidal saponin, furotrilliumoside from Trillium Tschonoskii inhibits lipopolysaccharide-induced inflammation in Raw264. 7 cells by targeting PI3K/Akt, MARK and Nrf2/HO-1 pathways. Fitoterapia. 2016;115:37–45.
Article
CAS
PubMed
Google Scholar
Li H, Qin T, Li M, Ma S. Thymol improves high-fat diet-induced cognitive deficits in mice via ameliorating brain insulin resistance and upregulating NRF2/HO-1 pathway. Metab Brain Dis. 2017;32(2):385–93.
Article
PubMed
CAS
Google Scholar
Li W, Ma F, Zhang L, Huang Y, Li X, Zhang A, et al. S-Propargyl-cysteine exerts a novel protective effect on Methionine and Choline deficient diet-induced fatty liver via Akt/Nrf2/HO-1 pathway. Oxidative Med Cell Longev. 2016;2016:4690857.
Google Scholar
Ma Q. Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol. 2013;53:401–26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zeng C, Zhong P, Zhao Y, Kanchana K, Zhang Y, Khan ZA, et al. Curcumin protects hearts from FFA-induced injury by activating Nrf2 and inactivating NF-κB both in vitro and in vivo. J Mol Cell Cardiol. 2015;79:1–12.
Article
CAS
PubMed
Google Scholar
Ludtmann MH, Angelova PR, Zhang Y, Abramov AY, Dinkova-Kostova AT. Nrf2 affects the efficiency of mitochondrial fatty acid oxidation. Biochem J. 2014;457(3):415–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dinkova-Kostova AT, Abramov AY. The emerging role of Nrf2 in mitochondrial function. Free Radic Biol Med. 2015;88:179–88.
Article
CAS
PubMed
PubMed Central
Google Scholar
Piantadosi CA, Carraway MS, Babiker A, Suliman HB. Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory factor-1. Circ Res. 2008;103(11):1232–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ishii T, Itoh K, Takahashi S, Sato H, Yanagawa T, Katoh Y, et al. Transcription factor Nrf2 coordinately regulates a group of oxidative stress-inducible genes in macrophages. J Biol Chem. 2000;275(21):16023–9.
Article
CAS
PubMed
Google Scholar
Yachie A, Niida Y, Wada T, Igarashi N, Kaneda H, Toma T, et al. Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J Clin Investig. 1999;103(1):129.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li FY, Lam KS, Tse H-F, Chen C, Wang Y, Vanhoutte PM, et al. Endothelium-selective activation of AMP-activated protein kinase prevents diabetes-induced impairment in vascular function and re-endothelialization via induction of heme oxygenase-1 in mice. Circulation. 2012:CIRCULATIONAHA. 112.108159.
Parfenova H, Basuroy S, Bhattacharya S, Tcheranova D, Qu Y, Regan RF, et al. Glutamate induces oxidative stress and apoptosis in cerebral vascular endothelial cells: contributions of HO-1 and HO-2 to cytoprotection. Am J Phys Cell Phys. 2006;290(5):C1399–C410.
Article
CAS
Google Scholar
Alfieri A, Srivastava S, Siow RC, Cash D, Modo M, Duchen MR, et al. Sulforaphane preconditioning of the Nrf2/HO-1 defense pathway protects the cerebral vasculature against blood–brain barrier disruption and neurological deficits in stroke. Free Radic Biol Med. 2013;65:1012–22.
Article
CAS
PubMed
Google Scholar
Han F, Hui Z, Zhang S, Hou N, Wang Y, Sun X. Induction of haemeoxygenase-1 improves FFA-induced endothelial dysfunction in rat aorta. Cell Physiol Biochem. 2015;35(3):1230–40.
Article
CAS
PubMed
Google Scholar
Wang B, Yu Y, Han L. Adiponectin improves endothelial dysfunction caused by elevated FFAs levels, partially through cAMP-dependent pathway. Diabetes Res Clin Pract. 2012;97(1):119–24.
Article
CAS
PubMed
Google Scholar
Li M, Kim DH, Tsenovoy PL, Peterson SJ, Rezzani R, Rodella LF, et al. Treatment of obese diabetic mice with a heme oxygenase inducer reduces visceral and subcutaneous adiposity, increases adiponectin levels, and improves insulin sensitivity and glucose tolerance. Diabetes. 2008;57(6):1526–35.
Article
CAS
PubMed
Google Scholar
Kim DH, Burgess AP, Li M, Tsenovoy PL, Addabbo F, McClung JA, et al. Heme oxygenase-mediated increases in adiponectin decrease fat content and inflammatory cytokines tumor necrosis factor-α and interleukin-6 in Zucker rats and reduce adipogenesis in human mesenchymal stem cells. J Pharmacol Exp Ther. 2008;325(3):833–40.
Article
CAS
PubMed
Google Scholar