Zell R, Delwart E, Gorbalenya AE, Hovi T, King AMQ, Knowles NJ, et al. ICTV virus taxonomy profile: Picornaviridae. J Gen Virol. 2017;98:2421–2.
Article
CAS
PubMed
PubMed Central
Google Scholar
Palacios G, Oberste M. Enteroviruses as agents of emerging infectious diseases. J Neuro-Oncol. 2005;11:424–33 Springer-Verlag.
CAS
Google Scholar
Endemic Countries – GPEI [Internet]. [cited 2018 Nov 6]. Available from: http://polioeradication.org/where-we-work/polio-endemic-countries/
Schmidt NJ, Lennette EHHH. An apparently new enterovirus isolated from patients with disease of the central nervous system. J Infect Dis. 1974;129:304–9.
Article
CAS
PubMed
Google Scholar
Lum LC, Wong KT, Lam SK, Chua KB, Goh AY, Lim WL, et al. Fatal enterovirus 71 encephalomyelitis. J Pediatr. 1998;133:795–8.
Article
CAS
PubMed
Google Scholar
Wasserstrom R, Mamourian AC, McGary CT, Miller G. Bulbar poliomyelitis: MR findings with pathologic correlation. AJNR Am J Neuroradiol. 1999;13:371–3.
Google Scholar
Huang C-C, Liu C-C, Chang Y-C, Chen C-Y, Wang S-T, Yeh T-F. Neurologic complications in children with Enterovirus 71 infection. N Engl J Med. 1999;341:936–42.
Article
CAS
PubMed
Google Scholar
Shen WC, Chiu HH, Chow KC, Tsai CH, Lee K-W, Huang S-C. MR imaging findings of enteroviral encephaloymelitis: an outbreak in Taiwan. AJNR Am J Neuroradiol. 2001;20:1889–95.
Google Scholar
Cooper DJ, Shaw DR, LaBrooy JT, Blumbergs P, Gilbert J, Simmons A. Fatal rhabdomyolysis and renal failure associated with hand, foot and mouth disease. Med J Aust. 1989;151:232–4.
CAS
PubMed
Google Scholar
Zhou H-T, Wang B, Che X-Y. Nephrotic syndrome in hand, foot and mouth disease caused by coxsackievirus A16: a case report. Int J Infect Dis. 2014;28:1–2.
Article
PubMed
Google Scholar
Xu Y, Wu YF, Luo HH, Zhang DD, Wu Y, Hu P. Acute kidney injury secondary to severe hand, foot and mouth disease caused by Enterovirus-A71: hypertension is a common. J Trop Pediatr. 2018.
Ooi E-E, Phoon M-C, Ishak B, Chan S-H. Seroepidemiology of human enterovirus 71, Singapore. Emerg Infect Dis. 2002;8:995–7 Centers for Disease Control and Prevention.
Article
PubMed
PubMed Central
Google Scholar
Xing W, Liao Q, Viboud C, Zhang J, Sun J, Wu JT, et al. Hand, foot, and mouth disease in China, 2008–12: an epidemiological study. Lancet Infect Dis. 2014;14:308–18.
Article
PubMed
PubMed Central
Google Scholar
Messacar K, Burakoff A, Nix WA, Rogers S, Oberste MS, Gerber SI, et al. Notes from the Field: Enterovirus A71 neurologic disease in children — Colorado, 2018. MMWR Morb Mortal Wkly Rep. 2018;67:1017–8.
Article
PubMed
PubMed Central
Google Scholar
NikNadia NMN, Sam IC, Rampal S, WanNorAmalina WMZ, NurAtifah G, Verasahib K, et al. Cyclical patterns of hand, foot and mouth disease caused by Enterovirus A71 in Malaysia. PLoS Negl Trop Dis. 2016;10:e0004562 Williams M, editor. Public Library of Science.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pons-Salort M, Oberste MS, Pallansch MA, Abedi GR, Takahashi S, Grenfell BT, et al. The seasonality of nonpolio enteroviruses in the United States: patterns and drivers. Proc Natl Acad Sci U S A. 2018;115:3078–83 National Academy of Sciences.
Article
CAS
PubMed
PubMed Central
Google Scholar
Koh WM, Badaruddin H, La H, Chen MI-C, Cook AR. Severity and burden of hand, foot and mouth disease in Asia: a modelling study. BMJ Glob Heal. 2018;3:e000442 BMJ Publishing Group.
Article
Google Scholar
Fernandez-Garcia MD, Kebe O, Fall AD, Ndiaye K. Identification and molecular characterization of non-polio enteroviruses from children with acute flaccid paralysis in West Africa, 2013–2014. Sci Rep. 2017;7:3808 Nature Publishing Group.
Article
PubMed
PubMed Central
CAS
Google Scholar
DALLDORF G, SICKLES GM, Plager H, Gifford R. A virus recovered from the feces of poliomyelitis patients pathogenic for suckling mice. J Exp Med. 1949;89:567–82 The Rockefeller University Press.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ogi M, Yano Y, Chikahira M, Takai D, Oshibe T, Arashiro T, et al. Characterization of genome sequences and clinical features of coxsackievirus A6 strains collected in Hyogo, Japan in 1999-2013. J Med Virol. 2017;89:1395–403.
Article
CAS
PubMed
Google Scholar
Anh NT, Nhu LNT, Van HMT, Hong NTT, Thanh TT, Hang VTT, et al. Emerging Coxsackievirus A6 causing hand, foot and mouth disease, Vietnam. Emerg Infect Dis. 2018;24:654–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Puenpa J, Chieochansin T, Linsuwanon P, Korkong S, Thongkomplew S, Vichaiwattana P, et al. Hand, foot, and mouth disease caused by Coxsackievirus A6, Thailand, 2012. Emerg Infect Dis. 2013;19:641–3.
Article
PubMed
PubMed Central
Google Scholar
Montes M, Artieda J, Piñeiro LD, Gastesi M, Diez-Nieves I, Cilla G. Hand, foot, and mouth disease outbreak and Coxsackievirus A6, Northern Spain, 2011. Emerg Infect Dis. 2013;19.
Fujimoto T, Iizuka S, Enomoto M, Abe K, Yamashita K, Hanaoka N, et al. Hand, foot, and mouth disease caused by Coxsackievirus A6, Japan, 2011. Emerg Infect Dis. 2012;18:337–9.
Article
PubMed
PubMed Central
Google Scholar
Österback R, Vuorinen T, Linna M, Susi P, Hyypiä T, Waris M. Coxsackievirus A6 and hand, foot, and mouth disease, Finland. Emerg Infect Dis. 2009;15:1485–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bian L, Wang Y, Yao X, Mao Q, Xu M, Liang Z. Coxsackievirus A6: a new emerging pathogen causing hand, foot and mouth disease outbreaks worldwide. Expert Rev Anti-Infect Ther. 2015;13:1061–71.
Article
CAS
PubMed
Google Scholar
HE SZ, CHEN MY, XU XR, YAN Q, NIU JJ, WU WH, et al. Epidemics and aetiology of hand, foot and mouth disease in Xiamen, China, from 2008 to 2015. Epidemiol Infect. 2017;145:1865–74.
Article
CAS
PubMed
Google Scholar
Mirand A, Henquell C, Archimbaud C, Ughetto S, Antona D, Bailly J-L, et al. Outbreak of hand, foot and mouth disease/herpangina associated with coxsackievirus A6 and A10 infections in 2010, France: a large citywide, prospective observational study. Clin Microbiol Infect. 2012;18:E110–8.
Article
CAS
PubMed
Google Scholar
Li J, Sun Y, Du Y, Yan Y, Huo D, Liu Y, et al. Characterization of Coxsackievirus A6- and Enterovirus 71-Associated Hand Foot and Mouth Disease in Beijing, China, from 2013 to 2015. Front Microbiol. 2016;7:391 Frontiers.
PubMed
PubMed Central
Google Scholar
Yip CCY, Lau SKP, Woo PCY, Wong SSY, Tsang THF, Lo JYC, et al. Recombinant Coxsackievirus A2 and deaths of children, Hong Kong, 2012. Emerg Infect Dis. 2013;19:1285–8.
Article
PubMed
PubMed Central
Google Scholar
He Y-Q, Chen L, Xu W-B, Yang H, Wang H-Z, Zong W-P, et al. Emergence, circulation, and spatiotemporal phylogenetic analysis of coxsackievirus a6- and coxsackievirus a10-associated hand, foot, and mouth disease infections from 2008 to 2012 in Shenzhen, China. J Clin Microbiol. 2013;51:3560–6 American Society for Microbiology Journals.
Article
PubMed
PubMed Central
Google Scholar
Lu Q-B, Zhang X-A, Wo Y, Xu H-M, Li X-J, Wang X-J, et al. Circulation of Coxsackievirus A10 and A6 in hand-foot-mouth disease in China, 2009–2011. PLoS One. 2012;7:e52073 Zhang C, editor Public Library of Science.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Y, Chang Z, Wu P, Liao Q, Liu F, Zheng Y, et al. Emerging enteroviruses causing hand, foot and mouth disease, China, 2010–2016. Emerg Infect Dis. 2018;24:1902–6.
Article
PubMed
PubMed Central
Google Scholar
Hu YF, Yang F, Du J, Dong J, Zhang T, Wu ZQ, et al. Complete genome analysis of coxsackievirus A2, A4, A5, and A10 strains isolated from hand, foot, and mouth disease patients in China revealing frequent recombination of human enterovirus A. J Clin Microbiol. 2011;49:2426–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schieble JH, Fox VL, Lennette EH. A probable new human picornavirus associated with respiratory disease1. Am J Epidemiol. 1967;85:297–310 Oxford University Press.
Article
CAS
PubMed
Google Scholar
Chen I-J, Hu S-C, Hung K-L, Lo C-W. Acute flaccid myelitis associated with enterovirus D68 infection. Medicine (Baltimore). 2018;97:e11831.
Article
Google Scholar
Midgley CM, Watson JT, Nix WA, Curns AT, Rogers SL, Brown BA, et al. Severe respiratory illness associated with a nationwide outbreak of enterovirus D68 in the USA (2014): a descriptive epidemiological investigation. Lancet Respir Med. 2015;3:879–87.
Article
PubMed
PubMed Central
Google Scholar
Yoder JA, Lloyd M, Zabrocki L, Auten J. Pediatric acute flaccid paralysis: Enterovirus D68–associated anterior myelitis. J Emerg Med. 2017;53:e19–23.
Article
PubMed
Google Scholar
Dyda A, Stelzer-Braid S, Adam D, Chughtai AA, MacIntyre CR. The association between acute flaccid myelitis (AFM) and Enterovirus D68 (EV-D68) – what is the evidence for causation? Eurosurveillance. 2018;23.
Brown DM, Hixon AM, Oldfield LM, Zhang Y, Novotny M, Wang W, et al. Contemporary circulating Enterovirus D68 strains have acquired the capacity for viral entry and replication in human neuronal cells. MBio. 2018:9 Griffin DE, editor.
Kramer R, Sabatier M, Wirth T, Pichon M, Lina B, Schuffenecker I, et al. Molecular diversity and biennial circulation of enterovirus D68: a systematic screening study in Lyon, France, 2010 to 2016. Eurosurveillance. 2018;23.
Hixon AM, Yu G, Leser JS, Yagi S, Clarke P, Chiu CY, et al. A mouse model of paralytic myelitis caused by enterovirus D68. PLoS Pathog. 2017;13:e1006199 Coyne CB, editor.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hussain KM, Leong KLJ, Ng MM-L, Chu JJH. The essential role of Clathrin-mediated endocytosis in the infectious entry of human Enterovirus 71. J Biol Chem. 2011;286:309–21.
Article
CAS
PubMed
Google Scholar
Lin Y-W, Lin H-Y, Tsou Y-L, Chitra E, Hsiao K-N, Shao H-Y, et al. Human SCARB2-mediated entry and endocytosis of EV71. PLoS One. 2012;7:e30507 Poh LNF, editor.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuan M, Yan J, Xun J, Chen C, Zhang Y, Wang M, et al. Enhanced human enterovirus 71 infection by endocytosis inhibitors reveals multiple entry pathways by enterovirus causing hand-foot-and-mouth diseases. Virol J. 2018;15:1.
Article
PubMed
PubMed Central
CAS
Google Scholar
Greve JM, Davis G, Meyer AM, Forte CP, Yost SC, Marlor CW, et al. The major human rhinovirus receptor is ICAM-1. Cell. 1989;56:839–47 Elsevier.
Article
CAS
PubMed
Google Scholar
Mendelsohn CL, Wimmer E, Racaniello VR. Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell. 1989;56:855–65.
Article
CAS
PubMed
Google Scholar
Yamayoshi S, Yamashita Y, Li J, Hanagata N, Minowa T, Takemura T, et al. Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nat Med. 2009;15:798–801.
Article
CAS
PubMed
Google Scholar
Reczek D, Schwake M, Schröder J, Hughes H, Blanz J, Jin X, et al. LIMP-2 is a receptor for lysosomal Mannose-6-phosphate-independent targeting of β-Glucocerebrosidase. Cell. 2007;131:770–83.
Article
CAS
PubMed
Google Scholar
Nishimura Y, Shimizu H. Cellular receptors for human Enterovirus species a. Front Microbiol. 2012;3:105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dang M, Wang X, Wang Q, Wang Y, Lin J, Sun Y, et al. Molecular mechanism of SCARB2-mediated attachment and uncoating of EV71. Protein Cell. 2014;5:692–703.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nishimura Y, Lee H, Hafenstein S, Kataoka C, Wakita T, Bergelson JM, et al. Enterovirus 71 binding to PSGL-1 on leukocytes: VP1-145 acts as a molecular switch to control receptor interaction. PLoS Pathog. 2013;9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nishimura Y, Shimojima M, Tano Y, Miyamura T, Wakita T, Shimizu H. Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71. Nat Med. 2009;15:794–7.
Article
CAS
PubMed
Google Scholar
Ley K, Kansas GS. Selectins in T-cell recruitment to non-lymphoid tissues and sites of inflammation. Nat Rev Immunol. 2004;4:325–36.
Article
CAS
PubMed
Google Scholar
Seiya Y, Ohka S, Fujii K, Koike S. Functional comparison of SCARB2 and PSGL1 as receptors for enterovirus 71. J Virol. 2013;87:3335–47.
Article
CAS
Google Scholar
Yang B, Chuang H, Yang KD. Sialylated glycans as receptor and inhibitor of enterovirus 71 infection to DLD-1 intestinal cells. Virol J. 2009;6:141.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tan CW, Poh CL, Sam I-C, Chan YF. Enterovirus 71 uses cell surface heparan sulfate glycosaminoglycan as an attachment receptor. J Virol. 2013;87:611–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tseligka ED, Sobo K, Stoppini L, Cagno V, Abdul F, Piuz I, et al. A VP1 mutation acquired during an enterovirus 71 disseminated infection confers heparan sulfate binding ability and modulates ex vivo tropism. PLoS Pathog. 2018;14:e1007190 Shih S-R, editor.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang S-L, Chou Y-T, Wu C-N, Ho M-S. Annexin II binds to capsid protein VP1 of Enterovirus 71 and enhances viral infectivity. J Virol. 2011;85:11809–20.
Article
PubMed
PubMed Central
Google Scholar
Du N, Cong H, Tian H, Zhang H, Zhang W, Song L, et al. Cell surface vimentin is an attachment receptor for Enterovirus 71. J Virol. 2014;88:5816–33 American Society for Microbiology Journals.
Article
PubMed
PubMed Central
CAS
Google Scholar
Su P-Y, Wang Y-F, Huang S-W, Lo Y-C, Wang Y-H, Wu S-R, et al. Cell surface nucleolin facilitates enterovirus 71 binding and infection. J Virol., American Society for Microbiology Journals. 2015;89:4527–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Too IHK, Bonne I, Tan EL, Chu JJH, Alonso S. Prohibitin plays a critical role in Enterovirus 71 neuropathogenesis. PLOS Pathog. 2018;14:e1006778 Randall G, editor Public Library of Science.
Article
PubMed
PubMed Central
CAS
Google Scholar
He Q-Q, Ren S, Xia Z-C, Cheng Z-K, Peng N-F, Zhu Y. Fibronectin facilitates Enterovirus 71 infection by mediating viral entry. J Virol. 2018;92:JVI.02251–17 American Society for Microbiology Journals.
Article
Google Scholar
Yeung ML, Jia L, Yip CCY, Chan JFW, Teng JLL, Chan K-H, et al. Human tryptophanyl-tRNA synthetase is an IFN-γ–inducible entry factor for Enterovirus. J Clin Invest. 2018;128:5163–77.
Article
PubMed
PubMed Central
Google Scholar
Perlman S, Gallagher T. Not your usual tRNA synthetase: hWARS serves as an enterovirus entry factor. J Clin Invest. 2018;128:4767–9 American Society for Clinical Investigation.
Article
PubMed
PubMed Central
Google Scholar
Wei W, Guo H, Chang J, Yu Y, Liu G, Zhang N, et al. ICAM-5/Telencephalin is a functional entry receptor for Enterovirus D68. Cell Host Microbe. 2016;20:631–41.
Article
CAS
PubMed
Google Scholar
Liu Y, Sheng J, Baggen J, Meng G, Xiao C, Thibaut HJ, et al. Sialic acid-dependent cell entry of human enterovirus D68. Nat Commun. 2015;6:8865.
Article
PubMed
Google Scholar
Bergelson JM, Krithivas A, Celi L, Droguett G, Horwitz MS, Wickham T, et al. The murine CAR homolog is a receptor for coxsackie B viruses and adenoviruses. J Virol. 1998;72:415–9 American Society for Microbiology (ASM).
CAS
PubMed
PubMed Central
Google Scholar
Roelvink PW, Lizonova A, Lee JG, Li Y, Bergelson JM, Finberg RW, et al. The coxsackievirus-adenovirus receptor protein can function as a cellular attachment protein for adenovirus serotypes from subgroups A, C, D, E, and F. J Virol. 1998;72:7909–15 American Society for Microbiology (ASM).
CAS
PubMed
PubMed Central
Google Scholar
Baggen J, Hurdiss DL, Zocher G, Mistry N, Roberts RW, Slager JJ, et al. Role of enhanced receptor engagement in the evolution of a pandemic acute hemorrhagic conjunctivitis virus. Proc Natl Acad Sci U S A. 2018;115:397–402.
Article
CAS
PubMed
Google Scholar
Hofer F, Gruenberger M, Kowalski H, Machat H, Huettinger M, Kuechler E, et al. Members of the low density lipoprotein receptor family mediate cell entry of a minor-group common cold virus. Proc Natl Acad Sci U S A. 1994;91:1839–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gruenberger M, Wandl R, Nimpf J, Hiesberger T, Schneider WJ, Kuechler E, et al. Avian homologs of the mammalian low-density lipoprotein receptor family bind minor receptor group human rhinovirus. J Virol. 1998;69:7244–7 American Society for Microbiology Journals.
Google Scholar
Shafren DR, Dorahy DJ, Greive SJ, Burns GF, Barry RD. Mouse cells expressing human intercellular adhesion molecule-1 are susceptible to infection by coxsackievirus A21. J Virol. 1997;71:785–9.
CAS
PubMed
PubMed Central
Google Scholar
Staring J, van den Hengel LG, Raaben M, Blomen VA, Carette JE, Brummelkamp TR. KREMEN1 Is a Host Entry Receptor for a Major Group of Enteroviruses. Cell Host Microbe. 2018;23:636–643.e5 Elsevier.
Article
CAS
PubMed
Google Scholar
Bochkov YA, Watters K, Ashraf S, Griggs TF, Devries MK, Jackson DJ, et al. Cadherin-related family member 3, a childhood asthma susceptibility gene product, mediates rhinovirus C binding and replication. Proc Natl Acad Sci U S A. 2015;112:5485–90 National Academy of Sciences.
Article
CAS
PubMed
PubMed Central
Google Scholar
Uncapher CR, DeWitt CM, Colonno RJ. The major and minor group receptor families contain all but one human rhinovirus serotype. Virology. 1991;180:814–7.
Article
CAS
PubMed
Google Scholar
Bergelson JM, Chan M, Solomon KR, St John NF, Lin H, Finberg RW. Decay-accelerating factor (CD55), a glycosylphosphatidylinositol-anchored complement regulatory protein, is a receptor for several echoviruses. Proc Natl Acad Sci U S A. 1994;91:6245–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shieh JTC, Bergelson JM. Interaction with decay-accelerating factor facilitates coxsackievirus B infection of polarized epithelial cells. J Virol. 2002;76:9474–80 American Society for Microbiology (ASM).
Article
CAS
PubMed
PubMed Central
Google Scholar
Schmitt V, Evans DJ, Goodfellow I, Powell RM, Almond JW, Ward T. Characterization of echoviruses that bind decay accelerating factor (CD55): evidence that some haemagglutinating strains use more than one cellular receptor. J Gen Virol. 1998;79:1707–13.
Article
PubMed
Google Scholar
Nishimura Y, Wakita T, Shimizu H. Tyrosine Sulfation of the amino terminus of PSGL-1 is critical for Enterovirus 71 infection. PLoS Pathog. 2010;6:e1001174 Farzan M, editor.
Article
PubMed
PubMed Central
CAS
Google Scholar
Panda D, Cherry S. A genome-wide RNAi screening method to discover novel genes involved in virus infection. Methods. 2015;91:75–81 NIH Public Access.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu KX, Phuektes P, Kumar P, Goh GYL, Moreau D, Chow VTK, et al. Human genome-wide RNAi screen reveals host factors required for enterovirus 71 replication. Nat Commun. 2016;7:13150 Nature Publishing Group.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arita M, Wakita T, Shimizu H. Valosin-containing protein (VCP/p97) is required for poliovirus replication and is involved in cellular protein secretion pathway in poliovirus infection. J Virol. 2012;86:5541–53 American Society for Microbiology Journals.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang T, Wang B, Huang H, Zhang C, Zhu Y, Pei B, et al. Enterovirus 71 protease 2Apro and 3Cpro differentially inhibit the cellular endoplasmic reticulum-associated degradation (ERAD) pathway via distinct mechanisms, and enterovirus 71 hijacks ERAD component p97 to promote its replication. PLOS Pathog. 2017;13:e1006674 Public Library of Science. Li K, editor.
Article
PubMed
PubMed Central
CAS
Google Scholar
Corbic Ramljak I, Stanger J, Real-Hohn A, Dreier D, Wimmer L, Redlberger-Fritz M, et al. Cellular N-myristoyltransferases play a crucial picornavirus genus-specific role in viral assembly, virion maturation, and infectivity. PLOS Pathog. 2018;14:e1007203 Belov GA, editor Public Library of Science.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tan YW, Hong WJ, Chu JJH. Inhibition of enterovirus VP4 myristoylation is a potential antiviral strategy for hand, foot and mouth disease. Antivir Res. 2016;133:191–5.
Article
CAS
PubMed
Google Scholar
Barr JN, Fearns R. How RNA viruses maintain their genome integrity. J Gen Virol. 2010;91:1373–87.
Article
CAS
PubMed
Google Scholar
van der Schaar HM, Dorobantu CM, Albulescu L, Strating JRPM, van Kuppeveld FJM. Fat(al) attraction: picornaviruses usurp lipid transfer at membrane contact sites to create replication organelles. Trends Microbiol. 2016;24:535–46.
Article
PubMed
CAS
PubMed Central
Google Scholar
Stoeck IK, Lee J-Y, Tabata K, Romero-Brey I, Paul D, Schult P, et al. Hepatitis C virus replication depends on endosomal cholesterol homeostasis. J Virol. 2017;9307:JVI.01196–17.
Google Scholar
Hsu N-Y, Ilnytska O, Belov G, Santiana M, Chen Y-H, Takvorian PM, et al. Viral reorganization of the secretory pathway generates distinct organelles for RNA replication. Cell. 2010;141:799–811.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang L, Hong Z, Lin W, Shao R-X, Goto K, Hsu VW, et al. ARF1 and GBF1 generate a PI4P-enriched environment supportive of hepatitis C virus replication. PLoS One. 2012;7:e32135 Qiu J, editor.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dorobantu CM, van der Schaar HM, Ford LA, Strating JRPM, Ulferts R, Fang Y, et al. Recruitment of PI4KIII to Coxsackievirus B3 replication organelles is independent of ACBD3, GBF1, and Arf1. J Virol. 2014;88:2725–36.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xiao X, Lei X, Zhang Z, Ma Y, Qi J, Wu C, et al. Enterovirus 3A facilitates viral replication by promoting PI4KB-ACBD3 interaction. J Virol. 2017;JVI:00791–17.
Google Scholar
Banerjee S, Aponte-Diaz D, Yeager C, Sharma SD, Ning G, Oh HS, et al. Hijacking of multiple phospholipid biosynthetic pathways and induction of membrane biogenesis by a picornaviral 3CD protein. PLoS Pathog. 2018;14:e1007086 Randall G, editor.
Article
PubMed
PubMed Central
CAS
Google Scholar
Melia CE, van der Schaar HM, de Jong AWM, Lyoo HR, Snijder EJ, Koster AJ, et al. The origin, dynamic morphology, and PI4P-independent formation of Encephalomyocarditis virus replication organelles. MBio. 2018;9:e00420–18 Denison MR, editor.
Article
CAS
PubMed
PubMed Central
Google Scholar
Melia CE, van der Schaar HM, Lyoo H, Limpens RWAL, Feng Q, Wahedi M, et al. Escaping host factor PI4KB inhibition: Enterovirus genomic RNA replication in the absence of replication organelles. Cell Rep. 2017;21:587–99.
Article
CAS
PubMed
PubMed Central
Google Scholar
van der Schaar HM, Leyssen P, Thibaut HJ, de Palma A, van der Linden L, Lanke KHW, et al. A novel, broad-Spectrum inhibitor of Enterovirus replication that targets host cell factor phosphatidylinositol 4-kinase IIIβ. Antimicrob Agents Chemother. 2013;57:4971–81.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nguyen A, Guedán A, Mousnier A, Swieboda D, Zhang Q, Horkai D, et al. Host lipidome analysis during rhinovirus replication in HBECs identifies potential therapeutic targets. J Lipid Res. 2018;59:1671–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weighardt F, Biamonti G, Riva S. Nucleo-cytoplasmic distribution of human hnRNP proteins: a search for the targeting domains in hnRNP A1. J Cell Sci. 1995;108.
Siomi H, Dreyfuss G. A nuclear localization domain in the hnRNP A1 protein. J Cell Biol. 1995;129:551–60 Rockefeller University Press.
Article
CAS
PubMed
Google Scholar
Lin J-Y, Shih S-R, Pan M, Li C, Lue C-F, Stollar V, et al. hnRNP A1 interacts with the 5′ untranslated regions of Enterovirus 71 and Sindbis virus RNA and is required for viral replication. J Virol. 2009;83:6106–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Levengood JD, Tolbert M, Li M-L, Tolbert BS. High-affinity interaction of hnRNP A1 with conserved RNA structural elements is required for translation and replication of enterovirus 71. RNA Biol. 2013;10:1136–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tolbert M, Morgan CE, Pollum M, Crespo-Hernández CE, Li M-L, Brewer G, et al. HnRNP A1 alters the structure of a conserved Enterovirus IRES domain to stimulate viral translation. J Mol Biol. 2017;429:2841–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Izumi RE, Das S, Barat B, Raychaudhuri S, Dasgupta A. A peptide from autoantigen La blocks poliovirus and hepatitis C virus cap-independent translation and reveals a single tyrosine critical for La RNA binding and translation stimulation. J Virol. 2004;78:3763–76 American Society for Microbiology Journals.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y-F, Chen S-C, Wu FY-H, Wu C-W. The interaction between human Cytomegalovirus immediate-early gene 2 (IE2) protein and heterogeneous ribonucleoprotein A1. Biochem Biophys Res Commun. 1997;232:590–4.
Article
CAS
PubMed
Google Scholar
Paranjape SM, Harris E. Y box-binding protein-1 binds to the dengue virus 3′-untranslated region and mediates antiviral effects. J Biol Chem. 2007;282:30497–508 American Society for Biochemistry and Molecular Biology.
Article
CAS
PubMed
Google Scholar
Zhao X, Rush M, Schwartz S. Identification of an hnRNP A1-dependent splicing silencer in the human papillomavirus type 16 L1 coding region that prevents premature expression of the late L1 gene. J Virol. 2004;78:10888–905 American Society for Microbiology Journals.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin JY, Li ML, Shih SR. Far upstream element binding protein 2 interacts with enterovirus 71 internal ribosomal entry site and negatively regulates viral translation. Nucleic Acids Res. 2009;37:47–59.
Article
CAS
PubMed
Google Scholar
Chen L-L, Kung Y-A, Weng K-F, Lin J-Y, Horng J-T, Shih S-R. Enterovirus 71 infection cleaves a negative regulator for viral internal ribosomal entry site-driven translation. J Virol. 2013;87:3828–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang P-N, Lin J-Y, Locker N, Kung Y-A, Hung C-T, Lin J-Y, et al. Far upstream element binding protein 1 binds the internal ribosomal entry site of enterovirus 71 and enhances viral translation and viral growth. Nucleic Acids Res. 2011;39:9633–48 Oxford University Press.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang H, Song L, Cong H, Tien P. Nuclear protein Sam68 interacts with the Enterovirus 71 internal ribosome entry site and positively regulates viral protein translation. J Virol. 2015;89:10031–43 Beemon KL, editor.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wong J, Si X, Angeles A, Zhang J, Shi J, Fung G, et al. Cytoplasmic redistribution and cleavage of AUF1 during coxsackievirus infection enhance the stability of its viral genome. FASEB J. 2013;27:2777–87.
Article
CAS
PubMed
Google Scholar
Cathcart AL, Rozovics JM, Semler BL. Cellular mRNA decay protein AUF1 negatively regulates Enterovirus and human rhinovirus infections. J Virol. 2013;87:10423–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rozovics JM, Chase AJ, Cathcart AL, Chou W, Gershon PD, Palusa S, et al. Picornavirus modification of a host mRNA decay protein. MBio. 2012;3:e00431–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cathcart AL, Semler BL. Differential restriction patterns of mRNA decay factor AUF1 during picornavirus infections. J Gen Virol. 2014;95:1488–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin J-Y, Li M-L, Brewer G. mRNA decay factor AUF1 binds the internal ribosomal entry site of Enterovirus 71 and inhibits virus replication. PLoS One. 2014;9:e103827 Menéndez-Arias L, editor. Public Library of Science.
Article
PubMed
PubMed Central
CAS
Google Scholar
Leong SY, Ong BKT, Chu JJH. The role of misshapen NCK-related kinase (MINK), a novel Ste20 family kinase, in the IRES-mediated protein translation of human Enterovirus 71. PLoS Pathog. 2015;11:e1004686 Semler BL, editor.
Article
PubMed
PubMed Central
CAS
Google Scholar
Brunner JE, Nguyen JHC, Roehl HH, Ho TV, Swiderek KM, Semler BL. Functional interaction of heterogeneous nuclear ribonucleoprotein C with poliovirus RNA synthesis initiation complexes. J Virol. 2005;79:3254–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Back SH, Kim YK, Kim WJ, Cho S, Oh HR, Kim J-E, et al. Translation of polioviral mRNA is inhibited by cleavage of polypyrimidine tract-binding proteins executed by polioviral 3C(pro). J Virol. 2002;76:2529–42 American Society for Microbiology Journals.
Article
CAS
PubMed
PubMed Central
Google Scholar
Merrill MK, Dobrikova EY, Gromeier M. Cell-type-specific repression of internal ribosome entry site activity by double-stranded RNA-binding protein 76. J Virol; 2006;80:3147–3156 American Society for Microbiology (ASM).
Article
CAS
PubMed
PubMed Central
Google Scholar
Merrill MK, Gromeier M. The double-stranded RNA binding protein 76:NF45 heterodimer inhibits translation initiation at the rhinovirus type 2 internal ribosome entry site. J Virol. 2006;80:6936–42 American Society for Microbiology Journals.
Article
CAS
PubMed
PubMed Central
Google Scholar
Choi K, Kim JH, Li X, Paek KY, Ha SH, Ryu SH, et al. Identification of cellular proteins enhancing activities of internal ribosomal entry sites by competition with oligodeoxynucleotides. Nucleic Acids Res. 2004;32:1308–17 Oxford University Press.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shieh WJ, Jung SM, Hsueh C, Kuo TT, Mounts A, Parashar U, et al. Pathologic studies of fatal cases in outbreak of hand, foot, and mouth disease, Taiwan. Emerg Infect Dis. 2001;7:146–8 Centers for Disease Control and Prevention.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun. 2005;73:1907–16 American Society for Microbiology (ASM).
Article
CAS
PubMed
PubMed Central
Google Scholar
Yu X, Li Y, Chen Q, Su C, Zhang Z, Yang C, et al. Herpes simplex virus 1 (HSV-1) and HSV-2 mediate species-specific modulations of programmed necrosis through the viral ribonucleotide reductase large subunit R1. J Virol. 2016;90:1088–95 Sandri-Goldin RM, editor.
Article
CAS
PubMed
Google Scholar
Huang Z, Wu S-Q, Liang Y, Zhou X, Chen W, Li L, et al. RIP1/RIP3 binding to HSV-1 ICP6 initiates necroptosis to restrict virus propagation in mice. Cell Host Microbe. 2015;17:229–42.
Article
CAS
PubMed
Google Scholar
Guo H, Gilley RP, Fisher A, Lane R, Landsteiner VJ, Ragan KB, et al. Species-independent contribution of ZBP1/DAI/DLM-1-triggered necroptosis in host defense against HSV1. Cell Death Dis. 2018;9:816 Nature Publishing Group.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ramos HJ, Lanteri MC, Blahnik G, Negash A, Suthar MS, Brassil MM, et al. IL-1β signaling promotes CNS-intrinsic immune control of West Nile virus infection. PLoS Pathog. 2012;8:e1003039 Iwasaki A, editor. Public Library of Science.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fink SL, Cookson BT. Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol. 2006;8:1812–25 Wiley/Blackwell (10.1111).
Article
CAS
PubMed
Google Scholar
Cunha LD, Zamboni DS. Subversion of inflammasome activation and pyroptosis by pathogenic bacteria. Front Cell Infect Microbiol. 2013;3:76.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhu X, Wu T, Chi Y, Ge Y, Wu B, Zhou M, et al. Pyroptosis induced by enterovirus A71 infection in cultured human neuroblastoma cells. Virology. 2018;521:69–76.
Article
CAS
PubMed
Google Scholar
Yogarajah T, Ong KC, Perera D, Wong KT. AIM2 Inflammasome-mediated Pyroptosis in Enterovirus A71-infected neuronal cells restricts viral replication. Sci Rep. 2017;7:5845.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yogarajah T, Ong KC, Perera D, Wong KT. RSAD2 and AIM2 modulate Coxsackievirus A16 and Enterovirus A71 replication in neuronal cells in different ways that may be associated with their 5′ nontranslated regions. Pfeiffer JK, editor. J Virol. 2017;92.
Ito M, Yanagi Y, Ichinohe T. Encephalomyocarditis virus Viroporin 2B activates NLRP3 Inflammasome. PLoS Pathog. 2012;8:e1002857 Damania B, editor. Public Library of Science.
Article
CAS
PubMed
PubMed Central
Google Scholar
Triantafilou K, Kar S, van Kuppeveld FJM, Triantafilou M. Rhinovirus-induced calcium flux triggers NLRP3 and NLRC5 activation in bronchial cells. Am J Respir Cell Mol Biol. 2013;49:923–34.
Article
CAS
PubMed
Google Scholar
Eichholz K, Bru T, Tran TTP, Fernandes P, Welles H, Mennechet FJD, et al. Immune-complexed adenovirus induce AIM2-mediated Pyroptosis in human dendritic cells. PLOS Pathog. 2016;12:e1005871 Benedict CA, editor. Public Library of Science.
Article
PubMed
PubMed Central
CAS
Google Scholar
DeCaprio JA, Ludlow JW, Figge J, Shew JY, Huang CM, Lee WH, et al. SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell. 1988;54:275–83.
Article
CAS
PubMed
Google Scholar
Werness BA, Levine AJ, Howley PM. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science. 1990;248:76–9.
Article
CAS
PubMed
Google Scholar
Flemington EK. Herpesvirus lytic replication and the cell cycle: arresting new developments. J Virol. 2001;75:4475–81 American Society for Microbiology Journals.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li FQ, Tam JP, Liu DX. Cell cycle arrest and apoptosis induced by the coronavirus infectious bronchitis virus in the absence of p53. Virology. 2007;365:435–45.
Article
CAS
PubMed
Google Scholar
Dove B, Brooks G, Bicknell K, Wurm T, Hiscox JA. Cell cycle perturbations induced by infection with the coronavirus infectious bronchitis virus and their effect on virus replication. J Virol. 2006;80:4147–56 American Society for Microbiology (ASM).
Article
CAS
PubMed
PubMed Central
Google Scholar
He Y, Xu K, Keiner B, Zhou J, Czudai V, Li T, et al. Influenza a virus replication induces cell cycle arrest in G0/G1 phase. J Virol. 2010;84:12832–40 American Society for Microbiology Journals.
Article
CAS
PubMed
PubMed Central
Google Scholar
He J, Choe S, Walker R, Di Marzio P, Morgan DO, Landau NR. Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity. J Virol. 1995;69:6705–11 American Society for Microbiology (ASM).
CAS
PubMed
PubMed Central
Google Scholar
Goh WC, Rogel ME, Kinsey CM, Michael SF, Fultz PN, Nowak MA, et al. HIV-1 Vpr increases viral expression by manipulation of the cell cycle: a mechanism for selection of Vpr in vivo. Nat Med. 1998;4:65–71.
Article
CAS
PubMed
Google Scholar
Chen C-J, Makino S. Murine coronavirus replication induces cell cycle arrest in G0/G1 phase. J Virol. 2004;78:5658–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yuan X, Shan Y, Zhao Z, Chen J, Cong Y. G0/G1 arrest and apoptosis induced by SARS-CoV 3b protein in transfected cells. Virol J. 2005;2:66 BioMed Central.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yuan X, Wu J, Shan Y, Yao Z, Dong B, Chen B, et al. SARS coronavirus 7a protein blocks cell cycle progression at G0/G1 phase via the cyclin D3/pRb pathway. Virology. 2006;346:74–85.
Article
CAS
PubMed
Google Scholar
Yu J, Zhang L, Ren P, Zhong T, Li Z, Wang Z, et al. Enterovirus 71 mediates cell cycle arrest in S phase through non-structural protein 3D. Cell Cycle Taylor & Francis. 2015;14:425–36.
Article
CAS
Google Scholar
Wang Z-Y, Zhong T, Wang Y, Song F-M, Yu X-F, Xing L-P, et al. Human Enterovirus 68 interferes with the host cell cycle to facilitate viral production. Front Cell Infect Microbiol. 2017;7:29 Frontiers Media SA.
CAS
PubMed
PubMed Central
Google Scholar
Yu J, Wang Z, Wang Y, Wang S, Meng X, Song F, et al. Coxsackievirus A6 induces cell cycle arrest in G0/G1 phase for viral production. Front Cell Infect Microbiol. 2018;8:279.
Article
PubMed
PubMed Central
Google Scholar
Suhy DA, Giddings TH, Kirkegaard K. Remodeling the endoplasmic reticulum by poliovirus infection and by individual viral proteins: an autophagy-like origin for virus-induced vesicles. J Virol. 2000;74:8953–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alirezaei M, Flynn CT, Wood MR, Whitton JL. Pancreatic acinar cell-specific autophagy disruption reduces Coxsackievirus replication and pathogenesis in vivo. Cell Host Microbe. 2012;11:298–305.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jackson WT, Giddings TH, Taylor MP, Mulinyawe S, Rabinovitch M, Kopito RR, et al. Subversion of cellular Autophagosomal machinery by RNA viruses. PLoS Biol. 2005;3:e156 Sugden B, editor. Public Library of Science.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cho MW, Teterina N, Egger D, Bienz K, Ehrenfeld E. Membrane rearrangement and vesicle induction by recombinant poliovirus 2C and 2BC in human cells. Virology. 1994;202:129–45.
Article
CAS
PubMed
Google Scholar
Schlegel A, Giddings TH, Ladinsky MS, Kirkegaard K. Cellular origin and ultrastructure of membranes induced during poliovirus infection. J Virol. 1996;70:6576–88.
CAS
PubMed
PubMed Central
Google Scholar
Wong J, Zhang J, Si X, Gao G, Mao I, McManus BM, et al. Autophagosome supports coxsackievirus B3 replication in host cells. J Virol. 2008;82:9143–53 American Society for Microbiology Journals.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morosky S, Lennemann NJ, Coyne CB. BPIFB6 regulates secretory pathway trafficking and Enterovirus replication. J Virol. 2016;90:5098–107 Lyles DS, editor.
Article
CAS
PubMed
PubMed Central
Google Scholar
Delorme-Axford E, Morosky S, Bomberger J, Stolz DB, Jackson WT, Coyne CB. BPIFB3 regulates autophagy and Coxsackievirus B replication through a noncanonical pathway independent of the Core initiation machinery. MBio. 2014;5:e02147.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhai X, Qin Y, Chen Y, Lin L, Wang T, Zhong X, et al. Coxsackievirus B3 induces the formation of autophagosomes in cardiac fibroblasts both in vitro and in vivo. Exp Cell Res. 2016;349:255–63.
Article
CAS
PubMed
Google Scholar
Robinson SM, Tsueng G, Sin J, Mangale V, Rahawi S, McIntyre LL, et al. Coxsackievirus B exits the host cell in shed microvesicles displaying Autophagosomal markers. PLoS Pathog. 2014;10:e1004045 Pierson TC, editor. Public Library of Science.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sin J, McIntyre L, Stotland A, Feuer R, Gottlieb RA. Coxsackievirus B escapes the infected cell in ejected Mitophagosomes. J Virol. 2017;91 Dermody TS, editor.
Kim S-J, Syed GH, Khan M, Chiu W-W, Sohail MA, Gish RG, et al. Hepatitis C virus triggers mitochondrial fission and attenuates apoptosis to promote viral persistence. Proc Natl Acad Sci. 2014;111:6413–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee Y-R, Wang P-S, Wang J-R, Liu H-S. Enterovirus 71-induced autophagy increases viral replication and pathogenesis in a suckling mouse model. J Biomed Sci. 2014;21:80.
Article
PubMed
PubMed Central
CAS
Google Scholar
Huang S-C, Chang C-L, Wang P-S, Tsai Y, Liu H-S. Enterovirus 71-induced autophagy detected in vitro and in vivo promotes viral replication. J Med Virol. 2009;81:1241–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lai JKF, Sam I-C, Verlhac P, Baguet J, Eskelinen E-L, Faure M, et al. 2BC non-structural protein of Enterovirus A71 interacts with SNARE proteins to trigger autolysosome formation. Viruses. 2017;9 Multidisciplinary Digital Publishing Institute (MDPI).
Article
PubMed Central
CAS
Google Scholar
Corona AK, Saulsbery HM, Corona Velazquez AF, Jackson WT. Enteroviruses remodel Autophagic trafficking through regulation of host SNARE proteins to promote virus replication and cell exit. Cell Rep. 2018;22:3304–14 NIH Public Access.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lai JKF, Sam IC, Chan YF. The autophagic machinery in Enterovirus infection. Viruses. 2016;8 Multidisciplinary Digital Publishing Institute (MDPI).
Mutsafi Y, Altan-Bonnet N. Enterovirus transmission by secretory autophagy. Viruses Multidisciplinary Digital Publishing Institute (MDPI); 2018;10.
Corona AK, Mohamud Y, Jackson WT, Luo H. Oh, SNAP! How enteroviruses redirect autophagic traffic away from degradation. Autophagy. 2018;14:1469–71 Taylor & Francis.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mohamud Y, Shi J, Qu J, Poon T, Xue YC, Deng H, et al. Enteroviral infection inhibits Autophagic flux via disruption of the SNARE complex to enhance viral replication. Cell Rep. 2018;22:3292–303 Cell Press.
Article
CAS
PubMed
Google Scholar
Delorme-Axford E, Abernathy E, Lennemann NJ, Bernard A, Ariosa A, Coyne CB, et al. The exoribonuclease Xrn1 is a post-transcriptional negative regulator of autophagy. Autophagy. 2018;14:898–912 Taylor & Francis.
Article
CAS
PubMed
PubMed Central
Google Scholar
Corona Velazquez A, Corona AK, Klein KA, Jackson WT. Poliovirus induces autophagic signaling independent of the ULK1 complex. Autophagy. 2018;14:1201–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi J, Wong J, Piesik P, Fung G, Zhang J, Jagdeo J, et al. Cleavage of sequestosome 1/p62 by an enteroviral protease results in disrupted selective autophagy and impaired NFKB signaling. Autophagy. 2013;9:1591–603.
Article
CAS
PubMed
Google Scholar
Komatsu M, Ichimura Y. Selective autophagy regulates various cellular functions. Genes Cells. 2010, 15:923–33 Wiley/Blackwell (10.1111).
Ichimura Y, Komatsu M. Selective degradation of p62 by autophagy. Semin Immunopathol. 2010;32:431–6.
Article
PubMed
Google Scholar
Johansen T, Lamark T. Selective autophagy mediated by autophagic adapter proteins. Autophagy. 2011;7:279–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mohamud Y, Qu J, Xue YC, Liu H, Deng H, Luo H. CALCOCO2/NDP52 and SQSTM1/p62 differentially regulate coxsackievirus B3 propagation. Cell death differ. Nat Publ Group. 2018;1.
Zhang L, Qin Y, Chen M. Viral strategies for triggering and manipulating mitophagy. Autophagy. 2018;14:1665–73 Taylor & Francis.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li Z, Li C, Ling P, Shen F, Chen S, Liu C, et al. Ribavirin reduces mortality in Enterovirus 71–infected mice by decreasing viral replication. J Infect Dis. 2008;197:854–7.
Article
CAS
PubMed
Google Scholar
Yao C, Xi C, Hu K, Gao W, Cai X, Qin J, et al. Inhibition of enterovirus 71 replication and viral 3C protease by quercetin. Virol J. 2018;15:116.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chern J-H, Shia K-S, Hsu T-A, Tai C-L, Lee C-C, Lee Y-C, et al. Design, synthesis, and structure–activity relationships of pyrazolo[3,4-d]pyrimidines: a novel class of potent enterovirus inhibitors. Bioorg Med Chem Lett. 2004;14:2519–25.
Article
CAS
PubMed
Google Scholar
Wang D, Guo H, Chang J, Wang D, Liu B, Gao P, et al. Andrographolide prevents EV-D68 replication by inhibiting the acidification of virus-containing endocytic vesicles. Front Microbiol. 2018;9:2407.
Article
PubMed
PubMed Central
Google Scholar
Wang Y, Li G, Yuan S, Gao Q, Lan K, Altmeyer R, et al. In vitro assessment of combinations of Enterovirus inhibitors against Enterovirus 71. Antimicrob Agents Chemother. 2016;60:5357–67 American Society for Microbiology Journals.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ulferts R, de Boer SM, van der Linden L, Bauer L, Lyoo HR, Maté MJ, et al. Screening of a library of FDA-approved drugs identifies several Enterovirus replication inhibitors that target viral protein 2C. Antimicrob Agents Chemother. 2016;60:2627–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zakaryan H, Arabyan E, Oo A, Zandi K. Flavonoids: promising natural compounds against viral infections. Arch Virol. 2017;162:2539–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. ScientificWorldJ. 2013;2013:162750 Hindawi.
Google Scholar
Gaudry A, Bos S, Viranaicken W, Roche M, Krejbich-Trotot P, Gadea G, et al. The flavonoid Isoquercitrin precludes initiation of Zika virus infection in human cells. Int J Mol Sci. 2018;19:1093 Multidisciplinary Digital Publishing Institute.
Article
PubMed Central
CAS
Google Scholar
Lani R, Hassandarvish P, Shu M-H, Phoon WH, Chu JJH, Higgs S, et al. Antiviral activity of selected flavonoids against chikungunya virus. Antivir Res. 2016;133:50–61.
Article
CAS
PubMed
Google Scholar
Shibata C, Ohno M, Otsuka M, Kishikawa T, Goto K, Muroyama R, et al. The flavonoid apigenin inhibits hepatitis C virus replication by decreasing mature microRNA122 levels. Virology. 2014;462–463:42–8 Academic Press.
Article
PubMed
CAS
Google Scholar
Hakobyan A, Arabyan E, Avetisyan A, Abroyan L, Hakobyan L, Zakaryan H. Apigenin inhibits African swine fever virus infection in vitro. Arch Virol. 2016;161:3445–53 Springer Vienna.
Article
CAS
PubMed
Google Scholar
Zhang W, Qiao H, Lv Y, Wang J, Chen X, Hou Y, et al. Apigenin inhibits Enterovirus-71 infection by disrupting viral RNA association with trans-acting factors. PLoS One. 2014;9:e110429 Qiu J, editor.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lv X, Qiu M, Chen D, Zheng N, Jin Y, Wu Z. Apigenin inhibits enterovirus 71 replication through suppressing viral IRES activity and modulating cellular JNK pathway. Antiviral Res. 2014;109:30–41 Elsevier.
Article
CAS
PubMed
Google Scholar
Qian S, Fan W, Qian P, Zhang D, Wei Y, Chen H, et al. Apigenin restricts FMDV infection and inhibits viral IRES driven translational activity. Viruses. 2015;7:1613–26 Multidisciplinary Digital Publishing Institute.
Article
CAS
PubMed
PubMed Central
Google Scholar
Min N, Leong PT, Lee RCH, Khuan JSE, Chu JJH. A flavonoid compound library screen revealed potent antiviral activity of plant-derived flavonoids on human enterovirus A71 replication. Antivir Res. 2018;150:60–8.
Article
CAS
PubMed
Google Scholar
Chen T-C, Chang H-Y, Lin P-F, Chern J-H, Hsu JT-A, Chang C-Y, et al. Novel antiviral agent DTriP-22 targets RNA-dependent RNA polymerase of enterovirus 71. Antimicrob Agents Chemother. 2009;53:2740–7 American Society for Microbiology Journals.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu G, Qi J, Chen Z, Xu X, Gao F, Lin D, et al. Enterovirus 71 and Coxsackievirus A16 3C proteases: binding to Rupintrivir and their substrates and anti-hand, foot, and mouth disease virus drug design. J Virol. 2011;85:10319–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patick AK, Binford SL, Brothers MA, Jackson RL, Ford CE, Diem MD, et al. In vitro antiviral activity of AG7088, a potent inhibitor of human rhinovirus 3C protease. Antimicrob Agents Chemother. 1999;43:2444–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mello C, Aguayo E, Rodriguez M, Lee G, Jordan R, Cihlar T, et al. Multiple classes of antiviral agents exhibit in vitro activity against human rhinovirus type C. Antimicrob Agents Chemother. 2014;58:1546–55 American Society for Microbiology Journals.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zuo J, Quinn KK, Kye S, Cooper P, Damoiseaux R, Krogstad P. Fluoxetine is a potent inhibitor of Coxsackievirus replication. Antimicrob Agents Chemother. 2012;56:4838–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamaya M, Nishimura H, Nadine L, Kubo H, Nagatomi R. Formoterol and budesonide inhibit rhinovirus infection and cytokine production in primary cultures of human tracheal epithelial cells. Respir Investig. 2014;52:251–60.
Article
PubMed
Google Scholar