Geldmacher C, Schuetz A, Ngwenyama N, Casazza JP, Sanga E, Saathoff E, et al. Early depletion of Mycobacterium tuberculosis –specific T helper 1 cell responses after HIV-1 infection. J Infect Dis [Internet] 2008;198:1590–1598. Available from: https://academic.oup.com/jid/article-lookup/doi/https://doi.org/10.1086/593017
Article
PubMed
Google Scholar
Tiberi S, du Plessis N, Walzl G, Vjecha MJ, Rao M, Ntoumi F, et al. Tuberculosis: progress and advances in development of new drugs, treatment regimens, and host-directed therapies. Lancet Infect Dis [Internet]. 2018;18:e183–98 Available from: https://linkinghub.elsevier.com/retrieve/pii/S1473309918301105.
Article
Google Scholar
Wallis RS, Maeurer M, Mwaba P, Chakaya J, Rustomjee R, Migliori GB, et al. Tuberculosis—advances in development of new drugs, treatment regimens, host-directed therapies, and biomarkers. Lancet infect dis [Internet]. Elsevier Ltd. 2016;16:e34–46 Available from: http://www.sciencedirect.com/science/article/pii/S1473309916000700.
CAS
Google Scholar
Ernst JD. The immunological life cycle of tuberculosis. Nat Rev Immunol [Internet]. Nature Publishing Group; 2012 [cited 2013 Feb 28];12:581–591. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22790178.
Sallusto F. Heterogeneity of human CD4 + T cells against microbes. Annu Rev Immunol [Internet] 2016;34:317–334. Available from: http://www.annualreviews.org/doi/https://doi.org/10.1146/annurev-immunol-032414-112056
Article
CAS
PubMed
Google Scholar
Flynn JL. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med [Internet]. 1993;178:2249–2254. Available from: http://www.jem.org/cgi/doi/https://doi.org/10.1084/jem.178.6.2249
Article
CAS
PubMed
Google Scholar
Vinicius M, Gomes M, Tiburcio S, Machado JR, Alexandre D, Silva A, et al. Complexity and controversies over the cytokine profiles of T helper cell subpopulations in Tuberculosis. J Immunol Res. 2015;2015:1–13.
Google Scholar
Lin PL, Plessner HL, Voitenok NN, Flynn JL. Tumor necrosis factor and tuberculosis. J Investig dermatology Symp Proc [Internet]. Elsevier Masson SAS; 2007;12:22–25. Available from: http://dx.doi.org/https://doi.org/10.1038/sj.jidsymp.5650027
Article
CAS
PubMed
Google Scholar
Stenger S. Immunological control of tuberculosis: role of tumour necrosis factor and more. Ann Rheum Dis [Internet]. 2005;64:iv24–iv28. Available from: http://ard.bmj.com/cgi/doi/https://doi.org/10.1136/ard.2005.042531
Article
CAS
PubMed
PubMed Central
Google Scholar
Philips J A, Ernst JD. Tuberculosis pathogenesis and immunity. Annu Rev Pathol [Internet]. 2012 [cited 2013 mar 7];7:353–384. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22054143.
Garg NK, Dwivedi P, Jain A, Tyagi S, Sahu T, Tyagi RK. Development of novel carrier(s) mediated tuberculosis vaccine: more than a tour de force. Eur J Pharm Sci [Internet]. Elsevier B.V.; 2014 [cited 2015 mar 10];62:227–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24909731.
Article
CAS
PubMed
Google Scholar
Okamoto Yoshida Y, Umemura M, Yahagi A, O’Brien RL, Ikuta K, Kishihara K, et al. Essential Role of IL-17A in the Formation of a Mycobacterial Infection-Induced Granuloma in the Lung. J Immunol [Internet]. 2010;184:4414–4422. Available from: http://www.jimmunol.org/cgi/doi/https://doi.org/10.4049/jimmunol.0903332
Article
CAS
PubMed
Google Scholar
Cruz A, Fraga AG, Fountain JJ, Rangel-Moreno J, Torrado E, Saraiva M, et al. Pathological role of interleukin 17 in mice subjected to repeated BCG vaccination after infection with Mycobacterium tuberculosis. J Exp Med [Internet]. 2010;207:1609–1616. Available from: http://www.jem.org/lookup/doi/https://doi.org/10.1084/jem.20100265
Article
CAS
PubMed
PubMed Central
Google Scholar
Suarez GV, Vecchione MB, Angerami MT, Sued O, Bruttomesso AC, Bottasso OA, et al. Immunoendocrine interactions during HIV-TB coinfection : implications for the design of new adjuvant therapies. Biomed Res Int. 2015;2015.
Angerami M, Suarez G, Pascutti MF, Salomon H, Bottasso O, Quiroga MF. Modulation of the phenotype and function of Mycobacterium tuberculosis-stimulated dendritic cells by adrenal steroids. Int Immunol [Internet]. 2013 [cited 2014 may 26];25:405–411. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23446847.
Article
CAS
PubMed
Google Scholar
Suarez GV, Angerami MT, Vecchione MB, Laufer N, Turk G, Ruiz MJ, et al. HIV–TB coinfection impairs CD8+ T-cell differentiation and function while dehydroepiandrosterone improves cytotoxic antitubercular immune responses. Eur J Immunol. 2015;45:2529–41.
Article
CAS
PubMed
Google Scholar
Vecchione MB, Eiras J, Suarez GV, Angerami MT, Marquez C, Sued O, et al. Determination of dehydroepiandrosterone and its biologically active oxygenated metabolites in human plasma evinces a hormonal imbalance during HIV-TB coinfection. Sci Rep [Internet]. 2018;8:6692 Available from: http://www.nature.com/articles/s41598-018-24771-8.
Article
CAS
Google Scholar
Department of Health and Human Services. Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents Living with HIV. [Internet]. 2018. Available from: http://www.aidsinfo.nih.gov/ContentFiles/ AdultandAdolescentGL.pdf. Accessed.
Cruz A, Khader SA, Torrado E, Fraga A, Pearl JE, Pedrosa J, et al. Cutting Edge: IFN- Regulates the Induction and Expansion of IL-17-Producing CD4 T Cells during Mycobacterial Infection. J Immunol [Internet]. 2006;177:1416–1420. Available from: http://www.jimmunol.org/cgi/doi/https://doi.org/10.4049/jimmunol.177.3.1416
Article
CAS
PubMed
Google Scholar
Bekker L-G, Moreira AL, Bergtold A, Freeman S, Ryffel B, Kaplan G. Immunopathologic effects of tumor necrosis factor alpha in murine mycobacterial infection are dose dependent. Infect Immun [Internet] 2000;68:6954–6961. Available from: http://iai.asm.org/cgi/doi/https://doi.org/10.1128/IAI.68.12.6954-6961.2000
Article
CAS
PubMed
PubMed Central
Google Scholar
Wherry EJ. T cell exhaustion. Nat Immunol [Internet]. Nature publishing group; 2011;12:492–499. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21739672.
Article
CAS
PubMed
Google Scholar
Iyasere C, Tilton JC, Johnson AJ, Younes S, Yassine-Diab B, Sekaly R-P, et al. Diminished Proliferation of Human Immunodeficiency Virus-Specific CD4+ T Cells Is Associated with Diminished Interleukin-2 (IL-2) Production and Is Recovered by Exogenous IL-2. J Virol [Internet]. 2003;77:10900–10909. Available from: http://jvi.asm.org/cgi/doi/https://doi.org/10.1128/JVI.77.20.10900-10909.2003
Article
CAS
PubMed
PubMed Central
Google Scholar
Siddiqui S, Sarro Y, Diarra B, Diallo H, Guindo O, Dabitao D, et al. Tuberculosis specific responses following therapy for TB: Impact of HIV co-infection. Clin Immunol [Internet]. Elsevier B.V.; 2015;159:1–12. Available from: http://dx.doi.org/https://doi.org/10.1016/j.clim.2015.04.002
Article
CAS
PubMed
Google Scholar
Lyadova I V., Panteleev A V. Th1 and Th17 Cells in Tuberculosis: Protection, Pathology, and Biomarkers. Mediators Inflamm. Hindawi Publishing Corporation; 2015;2015.
Quiroga MF, Angerami MT, Santucci N, Ameri D, Francos JL, Wallach J, et al. Dynamics of adrenal steroids are related to variations in Th1 and Treg populations during Mycobacterium tuberculosis infection in HIV positive persons. PLoS One [Internet]. 2012 [cited 2013 Mar 13];7:e33061. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3303789&tool=pmcentrez&rendertype=abstract
Angerami MT, Suarez GV, Vecchione MB, Laufer N, Ameri D, Ben G, et al. Expansion of CD25-negative forkhead box P3-positive T cells during HIV and mycobacterium tuberculosis infection. Front Immunol. 2017.
Riou C, Strickland N, Soares AP, Corleis B, Kwon DS, Wherry EJ, et al. HIV skews the lineage-defining transcriptional profile of Mycobacterium tuberculosis-specific CD4+ T cells. J Immunol. 2016;196:3006–18.
Article
CAS
PubMed
Google Scholar
Von Reyn CF, Horsburgh CR, Olivier KN, Barnes PF, Waddell R, Warren C, et al. Skin test reactions to Mycobacterium tuberculosis purified protein derivative and Mycobacterium avium sensitin among health care workers and medical students in the United States SUMMARY. Int J Tuberc Lung Dis. 2001;5:1122–8.
Google Scholar
Hammond AS, McConkey SJ, Hill PC, Crozier S, Klein MR, Adegbola RA, et al. Mycobacterial T Cell Responses in HIV-Infected Patients with Advanced Immunosuppression. J Infect Dis [Internet]. 2008;197:295–299. Available from: https://academic.oup.com/jid/article-lookup/doi/https://doi.org/10.1086/524685
Article
CAS
PubMed
Google Scholar
Mahuad C, Bay ML, Farroni MA, Bozza V, Del Rey A, Besedovsky H, et al. Cortisol and Dehydroepiandrosterone affect the response of peripheral blood mononuclear cells to mycobacterial antigens during Tuberculosis. Scand J Immunol [Internet] 2004;60:639–646. Available from: http://doi.wiley.com/https://doi.org/10.1111/j.0300-9475.2004.01514.x
Article
CAS
PubMed
Google Scholar
Skolimowska KH, Rangaka MX, Meintjes G, Pepper DJ, Seldon R, Matthews K, et al. Altered Ratio of IFN-γ/IL-10 in Patients with Drug Resistant Mycobacterium tuberculosis and HIV- Tuberculosis Immune Reconstitution Inflammatory Syndrome. Hoshino Y, editor. PLoS One [Internet]. 2012;7:e46481. Available from: https://dx.plos.org/https://doi.org/10.1371/journal.pone.0046481
Article
CAS
PubMed
PubMed Central
Google Scholar
Gómez D, Correa PA, Gómez LM, Cadena J, Molina JF, Anaya J-M. Th1/Th2 cytokines in patients with systemic lupus erythematosus: is tumor necrosis factor α protective? Semin Arthritis Rheum [Internet]. 2004;33:404–13 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0049017203002142.
Article
CAS
Google Scholar
Prabhavathi M, Pathakumari B, Raja A. IFN-γ/TNF-α ratio in response to immuno proteomically identified human T-cell antigens of Mycobacterium tuberculosis – the most suitable surrogate biomarker for latent TB infection. J infect [Internet]. Elsevier Ltd; 2015;71:238–249. Available from: http://dx.doi.org/https://doi.org/10.1016/j.jinf.2015.04.032
Article
PubMed
Google Scholar
Umemura M, Yahagi A, Hamada S, Begum MD, Watanabe H, Kawakami K, et al. IL-17-mediated regulation of innate and acquired immune response against pulmonary Mycobacterium bovis Bacille Calmette-Guerin infection. J Immunol. 2014;178:3786–96.
Article
Google Scholar
Khader SA, Bell GK, Pearl JE, Fountain JJ, Rangel-Moreno J, Cilley GE, et al. IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat Immunol [Internet]. 2007;8:369–77 Available from: http://www.nature.com/articles/ni1449.
Article
CAS
Google Scholar
Riou C, Strickland N, Soares AP, Corleis B, Kwon DS, Wherry EJ, et al. HIV skews the lineage-defining transcriptional profile of Mycobacterium tuberculosis –specific CD4 + T cells. J Immunol [Internet]. 2016;196:3006–3018. Available from: http://www.jimmunol.org/lookup/doi/https://doi.org/10.4049/jimmunol.1502094
Article
CAS
PubMed
Google Scholar
Angerami MT, Suarez G V., Vecchione MB, Laufer N, Ameri D, Ben G, et al. Expansion of CD25-Negative Forkhead Box P3-Positive T Cells during HIV and Mycobacterium tuberculosis Infection. Front Immunol [Internet]. 2017;8. Available from: http://journal.frontiersin.org/article/https://doi.org/10.3389/fimmu.2017.00528/full
Chen X, Zhou B, Li M, Deng Q, Wu X, Le X, et al. CD4+CD25+FoxP3+ regulatory T cells suppress Mycobacterium tuberculosis immunity in patients with active disease. Clin Immunol. 2007;123:50–9.
Article
CAS
PubMed
Google Scholar
Urdahl KB. Understanding and overcoming the barriers to T cell-mediated immunity against tuberculosis. Semin Immunol [Internet]. Elsevier Ltd; 2014;26:578–587. Available from: http://dx.doi.org/https://doi.org/10.1016/j.smim.2014.10.003
Article
CAS
PubMed
PubMed Central
Google Scholar
Ribeiro-Rodrigues R, Resende Co T, Rojas R, Toossi Z, Dietze R, Boom WH, et al. A role for CD4+CD25+ T cells in regulation of the immune response during human tuberculosis. Clin Exp Immunol [Internet] 2006;144:25–34. Available from: http://doi.wiley.com/https://doi.org/10.1111/j.1365-2249.2006.03027.x
Article
CAS
PubMed
PubMed Central
Google Scholar
Garra AO, Redford PS, Mcnab FW, Bloom CI, Wilkinson RJ, Berry MPR. The immune response in Tuberculosis. Annu Rev Immunol. 2013;32:475–527.
Article
CAS
Google Scholar
Lochner M, Peduto L, Cherrier M, Sawa S, Langa F, Varona R, et al. In vivo equilibrium of proinflammatory IL-17 + and regulatory IL-10 + Foxp3 + RORγt + T cells. J Exp Med [Internet] 2008;205:1381–1393. Available from: http://www.jem.org/lookup/doi/https://doi.org/10.1084/jem.20080034
Article
CAS
PubMed
PubMed Central
Google Scholar
Buggert M, Tauriainen J, Yamamoto T, Frederiksen J, Ivarsson MA, Michaëlsson J, et al. T-bet and Eomes are differentially linked to the exhausted phenotype of CD8+ T cells in HIV infection. PLoS Pathog. 2014;10.
Article
PubMed
PubMed Central
CAS
Google Scholar
Knox JJ, Cosma GL, Betts MR, McLane LM. Characterization of T-bet and Eomes in peripheral human immune cells. Front Immunol. 2014;5:1–13.
Article
CAS
Google Scholar
Babu S, Bhat SQ, Kumar NP, Kumaraswami V, Nutman TB. Regulatory T cells modulate Th17 responses in patients with positive tuberculin skin test results. J Infect Dis [Internet]. 2010;201:20–31. Available from: https://academic.oup.com/jid/article-lookup/doi/https://doi.org/10.1086/648735
Article
CAS
PubMed
Google Scholar
Zeng C, Shi X, Zhang B, Liu H, Zhang L, Ding W, et al. The imbalance of Th17/Th1/Tregs in patients with type 2 diabetes: relationship with metabolic factors and complications. J Mol Med [Internet] 2012;90:175–186. Available from: http://link.springer.com/https://doi.org/10.1007/s00109-011-0816-5
Article
PubMed
CAS
Google Scholar
Kwon DS, Angin M, Hongo T, Law KM, Johnson J, Porichis F, et al. CD4+ CD25+ regulatory T cells impair HIV-1-specific CD4 T cell responses by Upregulating Interleukin-10 production in monocytes. J Virol [Internet] 2012;86:6586–6594. Available from: http://jvi.asm.org/cgi/doi/https://doi.org/10.1128/JVI.06251-11
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin L, Finak G, Ushey K, Seshadri C, Hawn TR, Frahm N, et al. COMPASS identifies T-cell subsets correlated with clinical outcomes. Nat Biotechnol [Internet]. 2015;33:610–6 Available from: http://www.nature.com/articles/nbt.3187.
Article
CAS
Google Scholar
Rakshit S, Adiga V, Nayak S, Sahoo PN, Sharma PK, van Meijgaarden KE, et al. Circulating Mycobacterium tuberculosis DosR latency antigen-specific, polyfunctional, regulatory IL10+ Th17 CD4 T-cells differentiate latent from active tuberculosis. Sci Rep [Internet]. 2017;7:11948 Available from: http://www.nature.com/articles/s41598-017-10773-5.
Article
CAS
Google Scholar
Voo KS, Wang Y-H, Santori FR, Boggiano C, Wang Y-H, Arima K, et al. Identification of IL-17-producing FOXP3+ regulatory T cells in humans. Proc Natl Acad Sci U S A. 2009;106:4793–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kachler K, Holzinger C, Trufa DI, Sirbu H, Finotto S. The role of Foxp3 and Tbet co-expressing Treg cells in lung carcinoma. Oncoimmunol [Internet]. Taylor & Francis; 2018;7:e1456612. Available from: https://doi.org/https://doi.org/10.1080/2162402X.2018.1456612.
Koch MA, Tucker-Heard G, Perdue NR, Killebrew JR, Urdahl KB, Campbell DJ. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat Immunol [Internet]. 2009;10:595–602. Available from: http://www.nature.com/doifinder/https://doi.org/10.1038/ni.1731
Article
CAS
PubMed
PubMed Central
Google Scholar
Simmons JD, Stein CM, Seshadri C, Campo M, Alter G, Fortune S, et al. Immunological mechanisms of human resistance to persistent Mycobacterium tuberculosis infection. Nat Rev Immunol [Internet]. Springer US. 2018;18:575–89 Available from: http://www.nature.com/articles/s41577-018-0025-3.
CAS
Google Scholar
da Silva MV, Massaro Junior VJ, Machado JR, Silva DAA, Castellano LR, Alexandre PBD, et al. Expression Pattern of Transcription Factors and Intracellular Cytokines Reveals That Clinically Cured Tuberculosis Is Accompanied by an Increase in Mycobacterium -Specific Th1, Th2, and Th17 Cells. Biomed Res Int [Internet]. 2015;2015:1–14 Available from: http://www.hindawi.com/journals/bmri/2015/591237/.
Google Scholar
Singh A, Vajpayee M, Ali SA, Chauhan NK. Cellular interplay among Th17, Th1, and Treg cells in HIV-1 subtype “C” infection. J Med Virol [Internet]. 2014;86:372–384. Available from: http://doi.wiley.com/https://doi.org/10.1002/jmv.23810
Article
PubMed
CAS
Google Scholar
Lardy H, Kneer N, Wei Y, Partridge B, Marwah P. Ergosteroids II: Biologically active metabolites and synthetic derivatives of Dehydroepiandrosterone. Steroids [Internet] 1998;63:158–165. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0039128X97001591
Bobyleva V, Bellei M, Kneer N, Lardy H. The effects of the Ergosteroid 7-Oxo-dehydroepiandrosterone on mitochondrial membrane potential: possible relationship to thermogenesis. Arch Biochem Biophys [Internet]. 1997;341:122–8 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0003986197999550.
Article
CAS
Google Scholar
Saheki T, Moriyama M, Kuroda E, Funahashi A, Yasuda I, Setogawa Y, et al. Pivotal role of inter-organ aspartate metabolism for treatment of mitochondrial aspartate-glutamate carrier 2 (citrin) deficiency, based on the mouse model. Sci Rep [Internet]. Springer US; 2019;9:4179. Available from: http://dx.doi.org/https://doi.org/10.1038/s41598-019-39627-y
Kamiński MM, Sauer SW, Kamiński M, Opp S, Ruppert T, Grigaravičius P, et al. T cell activation is driven by an ADP-dependent Glucokinase linking enhanced glycolysis with mitochondrial reactive oxygen species generation. Cell Rep. 2012;2:1300–15.
Article
PubMed
CAS
Google Scholar
Sena LA, Li S, Jairaman A, Prakriya M, Ezponda T, Hildeman DA, et al. Mitochondria Are Required for Antigen-Specific T Cell Activation through Reactive Oxygen Species Signaling. Immunity [Internet]. Elsevier Inc.; 2013;38:225–236. Available from: http://dx.doi.org/https://doi.org/10.1016/j.immuni.2012.10.020
Article
CAS
PubMed
PubMed Central
Google Scholar
Corn RA, Aronica MA, Zhang F, Tong Y, Stanley SA, Kim SRA, et al. T cell-intrinsic requirement for NF-κB induction in Postdifferentiation IFN-γ production and clonal expansion in a Th1 response. J Immunol [Internet] 2003;171:1816–1824. Available from: http://www.jimmunol.org/lookup/doi/https://doi.org/10.4049/jimmunol.171.4.1816
Article
CAS
PubMed
Google Scholar
McCracken SA, Hadfield K, Rahimi Z, Gallery ED, Morris JM. NF-κB-regulated suppression of T-bet in T cells represses Th1 immune responses in pregnancy. Eur J Immunol [Internet]. 2007;37:1386–1396. Available from: http://doi.wiley.com/https://doi.org/10.1002/eji.200636322
Article
CAS
PubMed
Google Scholar
Balázs Z, Nashev LG, Chandsawangbhuwana C, Baker ME, Odermatt A. Hexose-6-phosphate dehydrogenase modulates the effect of inhibitors and alternative substrates of 11beta-hydroxysteroid dehydrogenase 1. Mol Cell Endocrinol [Internet]. 2009 [cited 2013 may 1];301:117–122. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19010388.